首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, recent results obtained on highly radiative shocks generated in a xenon filled gas cell using the GEKKO XII laser facility are presented. Data show extremely high shock velocity (??150 km/s) never achieved before in gas. Preliminary analyses based on theoretical dimensionless numbers and numerical simulations suggest that these radiative shocks reach a new radiative regime where the radiative pressure plays a role in the dynamics and structure of the shock. A major effect observed is a strong anisotropic emission in the downstream gas. This unexpected feature is discussed and compared to available 2D radiation hydrodynamic simulations.  相似文献   

2.
A series of experiments is underway using the Omega laser to examine radiative shocks of astrophysical relevance. In these experiments, the laser accelerates a thin layer of low-Z material, which drives a strong shock into xenon gas. One-dimensional numerical simulations using the HYADES radiation hydrodynamics code predict that radiation cooling will cause the shocked xenon to collapse spatially, producing a thin layer of high density (i.e., a collapsed shock). Preliminary experimental results show a less opaque layer of shocked xenon than would be expected assuming that all the xenon accumulates in the layer and that the X-ray source is a pure Kα source. However, neither of these assumptions is strictly correct. Here we explore whether radial mass and/or energy transport may be significant to the dynamics of the system. We report the results of two-dimensional numerical simulations using the ZEUS-2D astrophysical fluid dynamics code. Particular attention is given to the simulation method.  相似文献   

3.
We model a one-dimensional shock-tube using smoothed particle hydrodynamics and investigate the consequences of having finite shock-width in numerical simulations caused by finite resolution of the codes. We investigate the cooling of gas during passage through the shock for three different cooling regimes.
For a theoretical shock temperature of 105 K, the maximum temperature of the gas is much reduced. When the ratio of the cooling time to shock-crossing time was 8, we found a reduction of 25 per cent in the maximum temperature reached by the gas. When the ratio was reduced to 1.2, the maximum temperature reached dropped to 50 per cent of the theoretical value. In both cases the cooling time was reduced by a factor of 2.
At lower temperatures, we are especially interested in the production of molecular hydrogen, and so we follow the ionization level and H2 abundance across the shock. The effect of in-shock cooling is substantial: the maximum temperature the gas reaches compared with the theoretical temperature is found to vary between 0.15 and 0.81, depending upon the shock strength and mass resolution. The downstream ionization level is reduced from the theoretical level by a factor of between 2.4 and 12.5, and the resulting H2 abundance by a factor of 1.35 to 2.22.
At temperatures above 105 K, radiative shocks are unstable and will oscillate. We find that the shock jump temperature varies by a factor of 20 because of these oscillations.
We conclude that extreme caution must be exercised when interpreting the results of simulations of galaxy formation.  相似文献   

4.
The physical peculiarities of supernova shock breakout are discussed. A number of models for various types of supernovae have been constructed based on multigroup radiative transfer by taking these peculiarities into account. The results of numerical simulations and the influence of the effects of photon scattering by electrons and the thermalization depth on them are considered. It is shown under which conditions the appearance of hard X-ray emission is possible at shock breakout. It is pointed out what refinements are necessary in the computational algorithms for radiative transfer and hydrodynamics.  相似文献   

5.
P. Xu  T. G. Forbes 《Solar physics》1992,139(2):315-342
We investigate the structure of slow-mode MHD shocks in a plasma where both radiation and thermal conduction are important. In such a plasma a slow shock dissociates into an extended foreshock, an isothermal subshock, and a downstream radiative cooling region. Our analysis, which is both numerical and analytical, focuses on the nearly switch-off shocks which are generated by magnetic reconnection in a strong magnetic field. These shocks convert magnetic energy into kinetic energy and heat, and we find that for typical flare conditions about f of the conversion occurs in the subshock while the remaining 1/3 occurs in the foreshock. We also find that no stable, steady-state solutions exist for radiative slow shocks unless the temperature in the radiative region downstream of the subshock falls below 105 K. These results suggest that about 2/3 of the magnetic energy released in flare loops is released at the top of the loop, while the remaining 1/3 is released in the legs of the loop.  相似文献   

6.
Supernovae launch spherical shocks into the circumstellar medium (CSM). These shocks have high Mach numbers and may be radiative. We have created similar shocks in the laboratory by focusing laser pulses onto the tip of a solid pin surrounded by ambient gas; ablated material from the pin rapidly expands and launches a shock through the surrounding gas. Laser pulses were typically 5 ns in duration with ablative energies ranging from 1–150 J. Shocks in ambient gas pressures of ~1 kPa were observed at spatial scales of up to 5 cm using optical cameras with schlieren. Emission spectroscopy data were obtained to infer electron temperatures (< 10 eV). In this experiment we have observed a new phenomena; at the edge of the radiatively heated gas ahead of the shock, a second shock forms. The two expanding shocks are simultaneously visible for a time, until the original shock stalls from running into the heated gas. The second shock remains visible and continues to expand. A minimum condition for the formation of the second shock is that the original shock is super-critical, i.e., the temperature distribution ahead of the original shock has an inflexion point. In a non-radiative control experiment the second shock does not form. We hypothesize that a second shock could form in the astrophysical case, possibly in radiative supernova remnants such as SN1993J, or in shock-CSM interaction.  相似文献   

7.
Supersonic plasma jets are ubiquitous in astrophysics. Our study focus on the jets emanated from Herbig-Haro (HH) objects. They have velocities of a few hundred km/s and are extending over the distances more than a parsec. Interaction of the jets with surrounding matter produces two specific structures in the jet head: the bow shock and the Mach disk. The radiative cooling of these shocks affects strongly the jet dynamics. A tool to understand the physics of these jets is the laboratory experiment. A supersonic jet interaction with surrounding plasma was studied on the PALS laser facility. A collimated high-Z plasma jet with a velocity exceeding 400 km/s was generated and propagated over a few millimeters length. Here we report on study the effect of radiative cooling on the head jet structure with a 2D radiative hydrodynamic code. The simulation results demonstrated the scalability of the experimental observations to the HH jets.  相似文献   

8.
We discuss a special case of formation of axisymmetric shocks in the accretion flow of ideal gas on to a Schwarzschild black hole: when the total energy of the flow is negative. The result of our analysis enlarges the parameter space for which these steady shocks are exhibited in the accretion of gas rotating around relativistic stellar objects. Since Keplerian discs have negative total energy, we guess that, in this energy range, the production of the shock phenomenon might be easier than in the case of positive energy. So our outcome reinforces the view that sub-Keplerian flows of matter may significantly affect the physics of the high energy radiation emission from black hole candidates. We give a simple procedure to obtain analytically the position of the shocks. The comparison of the analytical results with the data of one-dimensional (1D) and two-dimensional (2D) axisymmetric numerical simulations confirms that the shocks form and are stable.  相似文献   

9.
We introduce a new Rigid-Field Hydrodynamics approach to modelling the magnetospheres of massive stars in the limit of very strong magnetic fields. Treating the field lines as effectively rigid, we develop hydrodynamical equations describing the one-dimensional flow along each, subject to pressure, radiative, gravitational and centrifugal forces. We solve these equations numerically for a large ensemble of field lines to build up a three-dimensional time-dependent simulation of a model star with parameters similar to the archetypal Bp star σ Ori E. Since the flow along each field line can be solved independently of other field lines, the computational cost of this approach is a fraction of an equivalent magnetohydrodynamical treatment.
The simulations confirm many of the predictions of previous analytical and numerical studies. Collisions between wind streams from opposing magnetic hemispheres lead to strong shock heating. The post-shock plasma cools initially via X-ray emission, and eventually accumulates into a warped, rigidly rotating disc defined by the locus of minima of the effective (gravitational plus centrifugal) potential. However, a number of novel results also emerge. For field lines extending far from the star, the rapid area divergence enhances the radiative acceleration of the wind, resulting in high shock velocities (up to  ∼3000 km s−1  ) and hard X-rays. Moreover, the release of centrifugal potential energy continues to heat the wind plasma after the shocks, up to temperatures around twice those achieved at the shocks themselves. Finally, in some circumstances the cool plasma in the accumulating disc can oscillate about its equilibrium position, possibly due to radiative cooling instabilities in the adjacent post-shock regions.  相似文献   

10.
We suggest a model that explains the stratification peculiarities of the [O III] and Hα line emission from some of the ring nebulae around Wolf-Rayet stars. These peculiarities lie in the fact that the [O III] line emission regions are farther from the central star than the Hα regions, with the distance between them reaching several tenths of a parsec. We show that the radiative shock produced by a Wolf-Rayet stellar wind and propagating with a velocity of ~100 km s?1 cannot explain such large distances between these regions due to the low velocity of the gas outflow from the shock front. The suggested model takes into account the fact that the shock produced by a Wolf-Rayet stellar wind propagates in a two-phase medium: a rarefied medium and dense compact clouds. The gas downstream of a fast shock traveling in a rarefied gas compresses the clouds. Slow radiative shocks are generated in the clouds; these shocks heat the latter to temperatures at which ions of doubly ionized oxygen are formed. The clouds cool down, radiating in the lines of this ion, to temperatures at which Balmer line emission begins. The distance between the [O III] and Hα line emission regions is determined by the cooling time of the clouds downstream of the slow shock and by the velocity of the fast shock. Using the ring nebula NGC 6888 as an example, we show that the gas downstream of the fast shock must be at the phase of adiabatic expansion rather than deceleration with radiative cooling, as assumed previously.  相似文献   

11.
The two major sources of collisionless shocks in the solar wind are interplanetary coronal mass ejections (ICMEs) and stream interaction regions (SIRs). Previous studies show that some SIR-associated shocks form between Venus and Earth while most form beyond 1 AU. Here we examine the high-resolution magnetometer records from Helios 1 and 2 obtained between 0.28 and 1 AU and from MESSENGER obtained between 0.3 and 0.7 AU to further refine our understanding as to where, and in what context, shocks are formed in the inner solar system. From Helios data (Helios 1 from 1974 to 1981 and Helios 2 from 1976 to 1980), we find there were only a few shocks observed inside the orbit of Venus with the closest shock to the Sun at 0.29 AU. We find that there is a strong correlation between shock occurrence and solar activity as measured by the sunspot number. Most of the shocks inside of the orbit of Venus appear to be associated with ICMEs. Even the ICME-associated shocks are quite weak inside the orbit of Venus. By comparing MESSENGER and STEREO results, from 2007 to 2009, we find that in the deep solar minimum, SIR-driven shocks began to form at about 0.4 AU and increased in number with heliocentric distance.  相似文献   

12.
This review focuses on physics of the cooling zones behind radiative shocks and the emission line diagnostics that can be used to infer physical conditions and mass loss rates in jets from young stars. Spatial separations of the cooling zones from the shock fronts, now resolvable with HST, and recent evidence for C-shocks have greatly increased our understanding of how shocks in outflows interact with the surrounding medium and with other material within the flow. By combining multiple epoch HST images, one can create `movies' of flows like those produced from numerical codes, and learn what kinds of instabilities develop within these systems.  相似文献   

13.
This paper presents some recent measurements on radiative shocks generated in a xenon gas cell using high power laser. We show new results on temperature and electronic density, and on radial expansion of the shock at various initial conditions (laser energy and gas pressure). The data obtained are compared with one-dimensional and two-dimensional hydro simulations.  相似文献   

14.
We use moment formalism of relativistic radiation hydrodynamics to obtain equations of motion of radial jets and solve them using polytropic equation of state of the relativistic gas. We consider curved space-time around black holes and obtain jets with moderately relativistic terminal speeds. In addition, the radiation field from the accretion disc, is able to induce internal shocks in the jet close to the horizon. Under combined effect of thermal as well as radiative driving, terminal speeds up to 0.75 (units of light speed) are obtained.  相似文献   

15.
We analyse the non-linear propagation and dissipation of axisymmetric waves in accretion discs using the ZEUS-2D hydrodynamics code. The waves are numerically resolved in the vertical and radial directions. Both vertically isothermal and thermally stratified accretion discs are considered. The waves are generated by means of resonant forcing, and several forms of forcing are considered. Compressional motions are taken to be locally adiabatic  ( γ =5/3)  . Prior to non-linear dissipation, the numerical results are in excellent agreement with the linear theory of wave channelling in predicting the types of modes that are excited, the energy flux by carried by each mode, and the vertical wave energy distribution as a function of radius. In all cases, waves are excited that propagate on both sides of the resonance (inwards and outwards). For vertically isothermal discs, non-linear dissipation occurs primarily through shocks that result from the classical steepening of acoustic waves. For discs that are substantially thermally stratified, wave channelling is the primary mechanism for shock generation. Wave channelling boosts the Mach number of the wave by vertically confining the wave to a small cool region at the base of the disc atmosphere. In general, outwardly propagating waves with Mach numbers near resonance  ℳr≳0.01  undergo shocks within a distance of order the resonance radius.  相似文献   

16.
A wide variety of objects in the universe drive supersonic outflows through the interstellar medium which is often highly clumpy. These inhomogeneities affect the morphology of the shocks that are generated. The hydrodynamics are difficult to model as the problem is inherently 3D and the clumps are subject to a variety of fluid instabilities as they are accelerated and destroyed by the shock. Over the last two years, we have been carrying out experiments at the University of Rochester’s Omega laser to address the interaction of a dense-plasma jet with a localised density perturbation. More recently, we have turned our attention to the interaction of a shock wave with a spherical particle. We use a 1.6-mm diameter, 1.2-mm length Omega hohlraum to drive a composite plastic ablator (which includes bromine to prevent M-band radiation from preheating the experiment). The ablator acts as a “piston” driving a shock into 0.3 g?cm?3 foam containing a 0.5-mm diameter sapphire sphere. We radiograph along two orthogonal lines of sight, using nickel or zinc pinhole-apertured X-ray backlighters, to study the subsequent hydrodynamics. We present initial experimental results and two-dimensional simulations of the experiment.  相似文献   

17.
T. G. Forbes 《Solar physics》1988,117(1):97-121
Shock waves produced by impulsively driven reconnection may be important during flares or during the emergence of magnetic flux from the photosphere into the corona. Here we investigate such shock waves by carrying out numerical experiments using two-dimensional magneto-hydrodynamics. The results of the numerical experiments imply that there are three different categories of shocks associated with impulsively driven reconnection: (1) fast-mode, blast waves which rapidly propagate away from the reconnection site; (2) slow-mode, Petschek shocks which are attached to the reconnection site; and (3) fast-mode, termination shocks which terminate the plasma jets flowing out from the reconnection site. Fast-mode blast waves are a common feature of many flare models, but the Petschek shocks and jet termination shocks are specific to reconnection models. These two different types of reconnection shocks might contribute to chromospheric ablation and energetic particle acceleration in flares.  相似文献   

18.
We investigate the hydrodynamics of accretion channelled by a dipolar magnetic field (funnel flows). We consider situations in which the electrons and ions in the flow cannot maintain thermal equilibrium [two-temperature (2T) effects] due to strong radiative loss, and determine the effects on the keV X-ray properties of the systems. We apply this model to investigate the accretion shocks of white dwarfs in magnetic cataclysmic variables (mCVs). We have found that the incorporation of 2T effects could harden the keV X-rays. Also, the dipolar model yields harder X-ray spectra than the standard planar model if white dwarf is sufficiently massive  (≳1 M)  . When fitting observed keV X-ray spectra of mCVs, the inclusion of 2T hydrodynamics and a dipolar accretion geometry lowers estimates for white dwarf masses when compared with masses inferred from models excluding these effects. We find mass reductions ≲9 per cent in the most massive cases.  相似文献   

19.
This paper presents an overview of numerical simulation studies of fast collisionless shocks and compares these simulation results with observations of the Earth's bow shock and theoretical works. Especially, we review the structure and stationarity of the supercritical quasi-perpendicular shocks. In situ observations indicate that these shocks are generally quasi-stationary whereas full particle simulations as well as hybrid simulations often present a strong nonstationary behavior, a shock self-reformation. The simulation results, along with theoretical and observational works, suggest that the classical models of the quasi-stationary structure generated by reflected protons or by dispersive whistlers are not generally applicable for the supercritical quasi-perpendicular shocks and other phenomena are to be included into the model to ensure the observed quasi-stationarity: The role of a small scale turbulence and shock ripples is investigated. The downstream turbulence and the electron dynamics in the quasi-perpendicular shocks are also discussed.  相似文献   

20.
Using a time-dependent multifluid, magnetohydrodynamic code, we calculated the structure of steady perpendicular and oblique C-type shocks in dusty plasmas. We included relevant processes to describe mass transfer between the different fluids, radiative cooling by emission lines and grain charging, and studied the effect of single- and multiple-sized grains on the shock structure. Our models are the first of oblique fast-mode molecular shocks in which such a rigorous treatment of the dust grain dynamics has been combined with a self-consistent calculation of the thermal and ionization structures including appropriate microphysics. At low densities, the grains do not play any significant rôle in the shock dynamics. At high densities, the ionization fraction is sufficiently low that dust grains are important charge and current carriers and, thus, determine the shock structure. We find that the magnetic field in the shock front has a significant rotation out of the initial upstream plane. This is most pronounced for single-sized grains and small angles of the shock normal with the magnetic field. Our results are similar to previous studies of steady C-type shocks showing that our method is efficient, rigorous and robust. Unlike the method employed in the previous most detailed treatment of dust in steady oblique fast-mode shocks, ours allow a reliable calculation even when chemical or other conditions deviate from local statistical equilibrium. We are also able to model transient phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号