首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 673 毫秒
1.
Sources of Tsunami and Tsunamigenic Earthquakes in Subduction Zones   总被引:1,自引:0,他引:1  
—We classified tsunamigenic earthquakes in subduction zones into three types earth quakes at the plate interface (typical interplate events), earthquakes at the outer rise, within the subducting slab or overlying crust (intraplate events), and "tsunami earthquakes" that generate considerably larger tsunamis than expected from seismic waves. The depth range of a typical interplate earthquake source is 10–40km, controlled by temperature and other geological parameters. The slip distribution varies both with depth and along-strike. Recent examples show very different temporal change of slip distribution in the Aleutians and the Japan trench. The tsunamigenic coseismic slip of the 1957 Aleutian earthquake was concentrated on an asperity located in the western half of an aftershock zone 1200km long. This asperity ruptured again in the 1986 Andreanof Islands and 1996 Delarof Islands earthquakes. By contrast, the source of the 1994 Sanriku-oki earthquake corresponds to the low slip region of the previous interplate event, the 1968 Tokachi-oki earthquake. Tsunamis from intraplate earthquakes within the subducting slab can be at least as large as those from interplate earthquakes; tsunami hazard assessments must include such events. Similarity in macroseismic data from two southern Kuril earthquakes illustrates difficulty in distinguishing interplate and slab events on the basis of historical data such as felt reports and tsunami heights. Most moment release of tsunami earthquakes occurs in a narrow region near the trench, and the concentrated slip is responsible for the large tsunami. Numerical modeling of the 1996 Peru earthquake confirms this model, which has been proposed for other tsunami earthquakes, including 1896 Sanriku, 1946 Aleutian and 1992 Nicaragua.  相似文献   

2.
An interpretation of the parameters of earthquake sources is proposed for the two large earthquakes in the Rat Islands of February 4, 1965 (M W = 8.7), and November 17, 2003 (M W = 7.7–7.8), based on the analysis of focal mechanisms, the manifestation of aftershocks, and the specific features of the geological structure of the island slope of the Rat Islands. The source of the earthquake of 1965 is a reverse fault of longitudinal strike, with a length of ~350 km. It is located in the lower part of the Aleutian Terrace and probably is genetically connected with the development of the Rat submarine ridge. The westward boundary of the earthquake source is determined by the Heck Canyon structures, and the eastward boundary is determined by the end of Rat Ridge in the region of λ ~ 179°E–179.5°E. The source of the earthquake of 2003 is a steep E-W reverse fault extending for about 100 km. It is located in the eastern part of the Rat Islands, higher on the slope than the source of the earthquake of 1965. The westward end of the earthquake source is determined by Rat Canyon structures, and the eastward end is an abrupt change in isobaths in the region of λ ~ 179°E. According to the aftershock hypocenters, the depth of occurrence of the reverse fault could reach ~60 km. According to our interpretation, on the southern slope of the Rat and Near islands, there is a complex system of seismogenic faults that is caused by tectonic development of different structural elements. The dominant types of faults here are reverse faults, as in other island arcs. During earthquakes, reverse faults oriented along the island arc and also faults that intersect it exhibit themselves. The reverse faults of northeastern strike that intersect the arc characterize the type of tectonic motions in a series of canyons of the western part of the Aleutian Islands.  相似文献   

3.
The paper addresses the interpretation of the location, type, and size of the source for the earth-quake of March 11, 2011. The source—a subvertical reverse fault trending in the azimuth of ∼25° along the island arc—is located in the middle part of the Pacific slope of Honshu Island, between 38°–38.5°N and 35.5°N. The length of the source, about 350 km, approximately corresponds to a magnitude ∼8.7 earthquake. In the north, the source is bounded by a sublatitudinal reverse fault, which generated an earthquake with magnitude 7.2–7.5 in 1978. On this segment of the Pacific slope of Honshu Island, there are probably another one or a few other large seismic sources, which are still latent. They are longitudinal reverse faults, which are comparable in scale with the source of the March, 2011 earthquake. The recurrence period of the maximal earthquakes in such sources is more than 1000 years.  相似文献   

4.
An interpretation of the occurrence conditions and source parameters is proposed for the catastrophic earthquake of December 26, 2004, in the northwestern part of the Sunda island arc. The interpretation is based on the analysis of spatial distributions of aftershock epicenters and regions subjected to destructive tsunamis, seismicity manifestations in the NW part of the Sunda island arc in the past century, and locations of large tsunami sources of historical earthquakes off the Sumatra Island coast. The source parameters of the December 26, 2004, earthquake are compared with the reliably established main characteristics of sources of the largest tsunamigenic earthquakes in island arcs of the Pacific Ocean. According to the proposed interpretation, the December 26, 2004, earthquake source is a steep reverse fault striking NW and dipping toward the Indian Ocean. The source, ~450 km long, is located in front of the NW termination of Sumatra Island, in the southern part of the Nicobar Islands. Possible positions and sizes of large potential seismic sources in the NW part of the Sunda island arc are suggested.  相似文献   

5.
An interpretation of the type, size, and interrelations of sources is proposed for the three large Aleutian earthquakes of March 9, 1957, May 7, 1986, and June 10, 1996, which occurred in structures of the Andreanof Islands. According to our interpretation, the earthquakes were caused by steep reverse faults confined to different structural units of the southern slope of the Andreanof Islands and oriented along the strike of these structures. An E-W reverse fault that generated the largest earthquake of 1957 is located within the Aleutian Terrace and genetically appears to be associated with the development of the submarine Hawley Ridge. The western and eastern boundaries of this source are structurally well expressed by the Adak Canyon in the west (~177°W) and an abrupt change in isobaths in the east (~173°W). The character of the boundaries is reflected in the focal mechanisms. The source of the earthquake of 1957 extends for about 300 km, which agrees well with modern estimates of its magnitude (M w = 8.6). Because the earthquake of 1957 caused, due to its high strength, seismic activation of adjacent areas of the Aleutian island arc, its aftershock zone appreciably exceeded in size the earthquake source. Reverse faults that activated the seismic sources of the earthquakes of 1986 and 1996 were located within the southern slope of the Andreanof Islands, higher than the Aleutian Terrace, outside the seismic source of the 1957 earthquake. The boundaries of these sources are also well expressed in structures and focal mechanisms. According to our estimate, the length of the 1986 earthquake source does not exceed 130–140 km, which does not contradict its magnitude (M w = 8). The length of the 1996 earthquake source is ~100 km, which also agrees with the magnitude of the earthquake (M w = 7.8).  相似文献   

6.
Parameters of the focal mechanisms of earthquakes, as well as their relations to the characteristics of seismicity and geological structure are analyzed in the regions of the Komandorskie Islands in the west of the Aleutian arc, the Fox Islands, and the Alaska Peninsula coast in the east of the arc. Different types of ruptures are revealed in the western and eastern parts of the Aleutian arc. The leading type of ruptures at the southern slope of the Komandorskie Islands is steep reverse faults crossing the arc at azimuths from submeridional to northeastern. A similar type of rupture occurs in abundance on the Rat Islands and is predominant on the Near Islands. Steep strike-slips with small components of the normal or reverse fault manifest themselves at the northern side of the block uplift of the Komandorskie Islands. Seismogenic ruptures in the region of the Komandorskie Islands do not contradict geological data on the rupture tectonics on Medny and Bering islands. At the southern slope of the Fox Islands, as well as in the Andreanof Islands, steep reverse faults striking longitudinally (along the arc) with the dip toward the deep-sea trench are the predominant type of seismogenic ruptures. This type of seismogenic ruptures is the leading type for the structures of island arcs with present-day volcanism; an example is the Kurile-Kamchatka island. Different types of predominant seismogenic ruptures in the western and eastern parts of the Aleutian island arc probably reflect different stages of the tectonic development of these regions of the arc. Possible positions and sizes of sources of the largest historical earthquakes in the eastern part of the Aleutian island arc are considered  相似文献   

7.
The interpretation of the nature and parameters of the source for the earthquake that occurred in Sumatra on December 26, 2004 is suggested. Our study relies on a variety of data on the geological structure of the region, long-term seismicity, spatial distribution of the foreshocks and aftershocks, and focal mechanisms; and the pattern of shaking and tsunami, regularities in the occurrence of the earthquakes, and the genetic relationship between the seismic and geological parameters inherent in various types of seismogenic zones including island arcs. The source of the Sumatran earthquake is a steep reverse fault striking parallel to the island arc and dipping towards the ocean. The length of the fault is ~450 km, and its probable bedding depth is ~70–100 km. The magnitude of this seismic event corresponding to the length of its source is 8.9–9.0. The vertical displacement in the source probably reached 9–13 m. The fault is located near the inner boundary of the Aceh Depression between the epicenter of the earthquake and the northern tip of the depression. The strike-slip and strike-slip reverse the faults cutting the island arc form the northern and southern borders of the source. The location and source parameters in the suggested interpretation account quite well for the observed pattern of shaking and tsunami. The Aceh Depression and its environs probably also host other seismic sources in the form of large reverse faults. The Sumatran earthquake, which was the culmination of the seismogenic activation of the Andaman-Sumatra island arc in the beginning of XXI century, is a typical tsunamigenic island-arc earthquake. By its characteristics, this event is an analogue to the M W = 9 Kamchatka earthquake of November 4, 1952. The spatial distribution of the epicenters and the focal mechanisms of the aftershocks indicate that the repeated shocks during the Sumatran event were caused by the activation of a complex system of geological structures in various parts of the island arc and Andaman Sea instead of the slips on a single rupture (a subduction thrust about 1200–1300 km in length).  相似文献   

8.
利用2010~2016年阳江地区小震资料,对围绕广东阳江6.4级地震发震构造的NEE走向平冈断层的西南段及NW走向的程村断层展布的密集地震,经双差定位方法重新进行震源位置的修定,获得了1411个精定位震源资料。依据成丛地震发生在断层附近的原则,采用模拟退火算法及高斯-牛顿算法相结合的方式,较精确地获得了2个断层面的详细参数:即平冈断层西南段走向258°、倾角85°、倾向NW,与6.4级地震的震源机制解结果十分一致,断层长度约15km并穿过了其西南端海域抵达了对岸;程村断层走向331°、倾角88°、倾向NE,长度约28km,较已有结果更长、走向也朝NE向偏转了约15°。2条陡直断层近乎垂直相交于近海,在构造应力作用下均以走滑错动为主。  相似文献   

9.
The spatiotemporal manifestations of seismicity in the Andaman-Sumatra island arc are studied using the instrumental data for 1900–2010. The data on the largest tsunamigenic earthquakes of the 18th–19th centuries were also taken into account. The epicenters of the earthquakes are established to cluster in some areas; their possible relation to the structural features of the island arc is considered. A distinctive feature of seismicity in the region of the Andaman Sea is the presence of compact swarms of numerous earthquakes occurring during short intervals of time. The distribution of the earthquakes by the depth of their hypocenters in different segments of the island arc is investigated. The focal mechanisms of the earthquakes are analyzed using the centroid-moment-tensor (CMT) determinations over the period of 1980–2004, and the characteristic features of their parameters in different segments of the Andaman-Sumatra island arc are formulated. The focal parameters of the earthquakes determined by CMT and the moment-tensor-solution (MTS) are compared; the possible uncertainty in the estimates of the focal mechanisms is assessed. The pattern of the spatiotemporal manifestations of the Andaman-Sumatra earthquakes and their focal mechanisms are compared to the data on the Kuril-Kamchatka and the Aleutian island arcs previously studied by the authors. The results of analyzing the long-term seismicity and focal mechanisms in the Andaman-Sumatra island arc provide a necessary basis for the further thorough investigation of the geological conditions and source parameters of the major Sumatra earthquakes of 2000–2010.  相似文献   

10.
Breakthrough point source model, extended earthquake source model is used to calculate more seismic source parameters in this paper. We express seismic source using higher degree moment tensors, to reduce a large number terms originally presenting in higher degree moment tensor representation, Haskell rupture model is used. We inverted the source parameters of Mani earthquake in Tibet using broad-band body wave of 32 stations of Global Seismograph Network (GSN), the results show that it is a strike-slip fault, rupture direction is 75° , rupture duration is 19 s, the fault plan is f =77° , d =88° , l =0° , the auxiliary plane is f =347° , d =90° , l =178° , and the fault dimension is 47 km′ 28 km. These results will give new quantitative data for earth dynamics and have practical meaning for seismic source tomography research.  相似文献   

11.
The relation between tsunamis and sea-bottom deformations associated with the Kurile Islands earthquake of 1969 and the Tokachi-Oki earthquake of 1968 is studied on the basis of a fairly complete set of seismological and tsunami data. The seismic results are included in the calculation of static crustal deformations. The calculated deformations are compared with the tsunami source area as obtained by the inverse refraction diagram, the first motion of tsunami waves, and the height of the sea-level disturbance at the source. It is found that such deformations as predicted by the seismic results can quantitatively explain the source parameters of tsunamis. These findings strongly favor the idea that tsunamis are generated by tectonic deformations rather than by large submarine landslides and slumps. This conclusion is supported by additional analyses for the 1964 Niigata, 1944 Tonankai, 1933 Sanriku earthquakes. For the 1946 Nankaido earthquake, the source deformation responsible for the tsunami generation is of much greater magnitude than that for seismic waves.  相似文献   

12.
The October 21, 1766 earthquake is the most widely felt event in the seismic history of Trinidad and Venezuela. Previous works diverged on the interpretation of the historical data available for this event. They associated the earthquake either with the Lesser Antilles subduction zone, with strike-slip motion along El Pilar fault, or with intraplate deformation at the edge of Guyana shield. Isoseismal areas are proposed after a new search and analysis of primary and secondary sources of historical information. Two of the largest earthquakes of the twentieth century which occurred in the region, the 1968 (M S 6.4, h = 103 km), and the 1997 (M W 6.9, h = 25 km) events, for which both intensity data and instrumentally determined source parameters are available, are used to calibrate the isoseismal areas and to interpret them in terms of source depth and magnitude. It is concluded that the large extent of intensity values higher than V is diagnostic of the depth (85 ± 20 km) of the 1766 source, and of local amplifications of ground motion due to soft soil conditions and to strong contrasts of impedance at the edge of Guyana shield. It is proposed that the event occurred either in slab, or close to the bottom lithospheric interface between the Caribbean and South American plates (∼11°N; ∼62.5°W). The value of the magnitude is estimated at 6.5 < M S < 7.5 depending on the source depth and on the decay of ground motion as a function of distance. Deep and intermediate depth earthquakes can induce important casualties in Trinidad, Venezuela, and Guyana, possibly more damaging than those induced by shallower earthquakes along the strike of El Pilar Fault.  相似文献   

13.
We present the geophysical evidences on the role of fluids for generation of the lower crustal Jabalpur earthquake (21 May 1997, mb 6.0, Mw 5.8), in the mid-continental fracture zone of the Indian Peninsular Shield. With a focal depth of 35 km, it indicates a high angled (< 62 enclosed with maximum principal stress direction) reverse fault with small component of left-lateral strike slip in the lower crust. The Son-Narmada-Tapti (SONATA) magalineament, during the past two centuries, has experienced about 25 moderate to strong earthquakes; two of which namely the Son Valley (1927, M 6.5) and Jabalpur (21 May 1997) were disastrous. Historical earthquakes and recent earthquake swarms indicate a moderate to high seismicity in SONATA belt that is due to high strain accumulation, flexuring of the crust and neotectonic movements of the faults in the rift zones. By analyzing geophysical parameters such as Zero-Free air-based (ZFb) gravity anomalies (∼ −10 to –30 mGals), heat flow values (45–47 mWm−2), magneto-telluric values (1- Ohm m), strain rate (1.5 × 10−8) and failure stress conditions, we identify plausible causative factors for the occurrence of lower crustal earthquake in this region Fluids, due to dehydration of serpentinite in the lower crust, are suggested to be present in the earthquake source zone. The estimated pore-fluid factor for the Jabalpur earthquake (λ v ) is 0.95. The diffusion of pore-pressure relaxation, represented as pressure perturbation generated by coseismic stress change was seen in the form of swarm activity two years prior to the Jabalpur earthquake. We suggest the existence of a deep pre-fractured zone with low shear stress (τ = 15–18 MPa) that indicates the presence of fluid filled fractured mafic material in the felsic crust, in critical state of unstable failure condition, and also fluid driven migration of swarm activity before the Jabalpur earthquake.  相似文献   

14.
Operational prediction of near-field tsunamis in all existing Tsunami Warning Systems (TWSs) is based on fast determination of the position and size of submarine earthquakes. Exceedance of earthquake magnitude above some established threshold value, which can vary over different tsunamigenic zones, results in issuing a warning signal. Usually, a warning message has several (from 2 to 5) grades reflecting the degree of tsunami danger and sometimes contains expected wave heights at the coast. Current operational methodology is based on two main assumptions: (1) submarine earthquakes above some threshold magnitude can generate dangerous tsunamis and (2) the height of a resultant tsunami is, in general, proportional to the earthquake magnitude. While both assumptions are physically reasonable and generally correct, statistics of issued warnings are far from being satisfactory. For the last 55 years, up to 75% of warnings for regional tsunamis have turned out to be false, while each TWS has had at least a few cases of missing dangerous tsunamis. This paper presents the results of investigating the actual dependence of tsunami intensity on earthquake magnitude as it can be retrieved from historical observations and discusses the degree of correspondence of the above assumptions to real observations. Tsunami intensity, based on the Soloviev-Imamura scale is used as a measure of tsunami “size”. Its correlation with the M s and M w magnitudes is investigated based on historical data available for the instrumental period of observations (from 1900 to present).  相似文献   

15.
Iran is located in one of the seismically active regions of the world. Due to the high probability of earthquakes throughout the country and the potential for tsunami inundation along the coasts and offshore, comprehensive studies on the interaction of these natural phenomena are necessary. In this study, the most conservative scenarios are determined for possible earthquakes within the Khark zone (Persian Gulf) based on experimental relations between the fault length, magnitude and displacement, which are parameters for determining tsunamigenic sources. Subsequently, the maximum height of tsunami waves are calculated based on the specifications of the seismic source and its distance from the shore as well as the coastal slope. A zoning map of tsunami hazard is finally presented.  相似文献   

16.
1933年叠溪发生7?级强震,关于此次地震的发震构造存在较大争议,有些学者认为NW向松坪沟断裂是此次地震的发震构造,另有学者认为近NS向岷江断裂南段才是这次地震的发震构造。本文根据成丛小震发生在大震断层面附近的原则,利用1990-2014年精定位小震目录,根据万永革等(2008)提出的震源断层面拟合方法,反演了叠溪地震震源断层走向、倾角和位置。断层走向和倾角分别是172.8°和82.9°,倾向偏向西。本文结果更支持岷江断裂南段为叠溪地震发震构造这一结论。  相似文献   

17.
The source parameters of the Bohai Sea earthquake, July 18, 1969 and Yongshan, Yunnan earthquake, May 11, 1974 were determined by full — wave theory synthetic seismograms of teleseismic P waves. P+pP+sP wereform were calculated with WKBJ approximation and real integral paths. One — dimensional unilateral, finite propagation source was also considered. By trail — and — error in comparing the theoretical seismograms with the observational ones of WWSSN stations, the source parameters were obtained as follow: for Bohai earthquake, φ=195°, δ=85°, λ=65°,M o=0.9×1019Nm,L=59.9km.V R=3.5km/s, ∧ R =160°; for Yongshan earthquake, φ=240°, δ=80°, ∧=150°,M o=1.3×1018Nm,L=48.8km,V R=3km/s, ∧ R =−10°, where φ is strike, δ dip angle, λ slip angle,M o seismic moment,L rupture length,V R rupture propagation speed. As III type fractures the faulting propagated along the fault planes, and ∧ R is the angle from the strike to the propagation direction. Yongshan earthquake showed complexity in its focal process, having four sub—ruptures during the first 60 seconds. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,13, 1–8, 1991.  相似文献   

18.
Source model of Noto-Hanto-Oki earthquake tsunami of 7 February 1993   总被引:1,自引:0,他引:1  
A source model was discussed for a small tsunami accompanied by the Noto-Hanto-Oki earthquake (M s 6.6), striking Japan on 7 February, 1994. Assuming a fault model under the sea bottom, we estimated the focal parameters jointly, using synthesized tsunami source spectra as well as the tsunami numerical simulation. The fault proposed by this study consists of a plane sized 15×15 km, dipping N47°W with the dip angle of 42°, which is almost pure reverse fault (slip angle 87°) with a dislocation of 1 meter. The numerical simulation shows that the shallow sea in the source region caused a comparatively long recurring tsunami (the periods are 12–18 minutes) in spite of its small size. The model fault is corresponding to an aftershock area of this earthquake.  相似文献   

19.
The seismogenic fault and the dynamic mechanism of the Ning’er, Yunnan Province MS6.4 earthquake of June 3, 2007 are studied on the basis of the observation data of the surface fissures, sand blow and water eruption, land-slide and collapse associated with the earthquake, incorporating with the data of geologic structures, focal mecha-nism solutions and aftershock distribution for the earthquake area. The observation of the surface fissures reveals that the Banhai segment of the NW-trending Ning’er fault is dominated by right-lateral strike-slip, while the NNE-trending fault is dominated by left-lateral strike-slip. The seismo-geologic hazards are concentrated mainly within a 330°-extending zone of 13.5 km in length and 4 km in width. The major axis of the isoseismal is also oriented in 330° direction, and the major axis of the seismic intensity VIII area is 13.5 km long. The focal mechanism solutions indicate that the NW-trending nodal plane of the Ning’er MS6.4 earthquake is dominated by right-lateral slip, while the NE-trending nodal plane is dominated by left-lateral slip. The preferred distribution orientation of the aftershocks of MS≥2 is 330°, and the focal depths are within the range of 3~12 km, predominantly within 3~10 km. The distribution of the aftershocks is consistent with the distribution zone of the seismo-geologic hazards. All the above-mentioned data indicate that the Banhai segment of the Ning’er fault is the seismogenic fault of this earthquake. Moreover, the driving force of the Ning’er earthquake is discussed in the light of the active block theory. It is believed that the northward pushing of the Indian plate has caused the eastward slipping of the Qinghai-Tibetan Plateau, which has been transformed into the southeastern-southernward squeezing of the southwest Yunnan region. As a result, the NW-trending faults in the vicinity of the Ning’er area are dominated by right-lateral strike-slip, while the NE-trending faults are dominated by left-lateral strike-slip. This tectonic  相似文献   

20.
Tsunami is one of the most devastating natural coastal disasters. Most of large tsunamis are generated by submarine earthquakes occurring in subduction zones. Tsunamis can also be triggered by volcano eruptions and large landslides. There are many records about "sea-overflow" in Chinese ancient books, which are not proved to be tsunamis. Tectonics and historical records analysis are import to forecast and prevention of tsunami. Consider the tectonic environment of the China sea, the possibility of huge damage caused by the offshore tsunami is very small. And the impact of the ocean tsunami on the Bohai sea, the Yellow sea, and the East China sea is also small. But in the South China Sea, the Manila subduction zone has been identified as a high hazardous tsunamigenic earthquake source region. No earthquake larger than MW7.6 has been recorded in the past 100a in this region, suggesting a high probability for larger earthquakes in the future. If a tsunamigenic earthquake were to occur in this region in the near future, a tragedy with the magnitude similar to the 2004 Indian Ocean tsunami could repeat itself. In this paper, based on tectonics and historical records analysis, we have demonstrated that potential for a strong future earthquake along the Manila subduction zone is real. Using a numerical model, we have also shown that most countries in the South China Sea will be affected by the tsunamis generated by the future earthquake. For China, it implies that the maximum wave height over 4.0 meter on China mainland, especially the Pearl River Estuary. But the island, local relief maybe influence the maximum wave. But it takes nearly 3 hours to attack China mainland, if there is the operational tsunami warning system in place in this region, should be greatly reduced losses. And the simulated results are conformable to historical records. It indicates that the tsunami hazards from Manila trench to China mainland worthy of our attention and prevention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号