首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the Late Mesozoic and Cenozoic, extension was widespread in Eastern China and adjacent areas. The first rifting stage spanned in the Late Jurassic–Early Cretaceous times and covered an area of more than 2 million km2 of NE Asia from the Lake Baikal to the Sikhot-Alin in EW direction and from the Mongol–Okhotsk fold belt to North China in NS direction. This rifting was characterized by intracontinental rifts, volcanic eruptions and transform extension along large-scale strike–slip faults. Based on the magmatic activity, filling sequence of basins, tectonic framework and subsidence analysis of basins, the evolution of this area can be divided into three main developmental phases. The first phase, calc-alkaline volcanics erupted intensely along NNE-trending faults, forming Daxing'anling volcanic belt, NE China. The second phase, Basin and Range type fault basin system bearing coal and oil developed in NE Asia. During the third phase, which was marked by the change from synrifting to thermal subsidence, very thick postrift deposits developed in the Songliao basin (the largest oil basin in NE China).Following uplift and denudation, caused by compressional tectonism in the near end of Cretaceous, a Paleogene rifting stage produced widespread continental rift systems and continental margin basins in Eastern China. These rifted basins were usually filled with several kilometers of alluvial and lacustrine deposits and contain a large amount of fossil fuel resources. Integrated research in most of these rifting basins has shown that the basins are characterized by rapid subsidence, relative high paleo-geothermal history and thinned crust. It is now accepted that the formation of most of these basins was related to a lithospheric extensional regime or dextral transtensional regime. During Neogene time, early Tertiary basins in Eastern China entered a postrifting phase, forming regional downwarping. Basin fills formed in a thermal subsidence period onlapped the fault basin margins and were deposited in a broad downwarped lacustrine depression. At the same time, within plate rifting of the Lake Baikal and Shanxi graben climaxed and spreading of the Japan Sea and South China Sea occurred. Quaternary rifting was marked by basalt eruption and accelerated subsidence in the area of Tertiary rifting. The Okinawa Trough is an active rift involving back-arc extension.Continental rifting and marginal sea opening were clearly developed in various kind of tectonic settings. Three rifting styles, intracontinental rifting within fold belt, intracontinental rifting within craton and continental marginal rifting and spreading, are distinguished on the basis of nature of the basin basement, tectonic location of rifting and relations to large strike–slip faults.Changes of convergence rates of India–Eurasia and Pacific–Eurasia may have caused NW–SE-trending extensional stress field dominating the rifting. Asthenospheric upwelling may have well assisted the rifting process. In this paper, a combination model of interactions between plates and deep process of lithosphere has been proposed to explain the rifting process in East China and adjacent areas.The research on the Late Mesozoic and Cenozoic extensional tectonics of East China and adjacent areas is important because of its utility as an indicator of the dynamic setting and deformational mechanisms involved in stretching Lithosphere. The research also benefits the exploration and development of mineral and energy resources in this area.  相似文献   

2.
以最新的地质 地球物理资料和北黄海盆地构造几何学特征为基础,采用盆地反演模拟与宏观分析相结合的方法,系统解析了北黄海盆地的构造运动学特征。研究表明,北黄海盆地在中、新生代时期经历了水平伸展、水平挤压、相对平移(走滑)以及垂直差异升降等几种运动型式,其中,水平伸展运动和垂直差异升降运动是北黄海盆地构造运动及形成演化的主体。水平伸展运动可以划分为J3-K1、E2和E3三个主要“伸展事件”,并控制着盆地的成盆演化,其南北向伸展强度均东强西弱,东西向最大伸展强度自中生代到新生代由东向西迁移。水平挤压运动主要有晚白垩世和渐新世末-中新世初期两期。相对平移(走滑)运动伴随水平伸展运动和水平挤压运动发生,使多数NNE向、NW向断裂具有相对压扭或张扭平移(走滑)性质,其中尤以NNE向断裂更为明显。垂直差异升降运动具有“幕式”渐进之特点,晚侏罗世、早白垩世、始新世、渐新世以及中新世中晚期以来为沉降期,其中尤以始新世的沉降速率最大,晚白垩世、古新世、中新世早期为抬升剥蚀期;盆地的中、新生代沉降作用具有明显的自东向西迁移规律:东部坳陷以中生代沉降作用最为显著,中部坳陷主沉降期为始新世,而西部坳陷的快速沉降主要发生在始新世,并一直持续到渐新世。  相似文献   

3.
《Geodinamica Acta》2013,26(1-3):83-100
The Magura Basin domain developed in its initial stage as a Jurassic-Early Cretaceous rifted passive margin that faced the eastern parts of the oceanic Alpine Tethys. In the pre- and syn-orogenic evolution of the Magura Basin the following prominent periods can be distinguished: Middle Jurassic-Early Cretaceous syn-rift opening of basins (1) followed by Early Cretaceous post-rift thermal subsidence (2), latest Cretaceous–Paleocene syn-collisional inversion (3), Late Paleocene to Middle Eocene flexural subsidence (4) and Late Eocene - Early Miocene synorogenic closing of the basin (5). The driving forces of tectonic subsidence of the basin were syn-rift and thermal post-rift processes, as well as tectonic loads related to the emplacement of accretionary wedge. This process was initiated at the end of the Paleocene at the Pieniny Klippen Belt (PKB)/Magura Basin boundary and was completed during Late Oligocene in the northern part of the Magura Basin. During Early Miocene the Magura Basin was finally folded, thrusted and uplifted as the Magura Nappe.  相似文献   

4.
The Central European Basin System (CEBS) is composed of a series of subbasins, the largest of which are (1) the Norwegian–Danish Basin (2), the North German Basin extending westward into the southern North Sea and (3) the Polish Basin. A 3D structural model of the CEBS is presented, which integrates the thickness of the crust below the Permian and five layers representing the Permian–Cenozoic sediments. Structural interpretations derived from the 3D model and from backstripping are discussed with respect to published seismic data. The analysis of structural relationships across the CEBS suggests that basin evolution was controlled to a large degree by the presence of major zones of crustal weakness. The NW–SE-striking Tornquist Zone, the Ringkøbing-Fyn High (RFH) and the Elbe Fault System (EFS) provided the borders for the large Permo–Mesozoic basins, which developed along axes parallel to these fault systems. The Tornquist Zone, as the most prominent of these zones, limited the area affected by Permian–Cenozoic subsidence to the north. Movements along the Tornquist Zone, the margins of the Ringkøbing-Fyn High and the Elbe Fault System could have influenced basin initiation. Thermal destabilization of the crust between the major NW–SE-striking fault systems, however, was a second factor controlling the initiation and subsidence in the Permo–Mesozoic basins. In the Triassic, a change of the regional stress field caused the formation of large grabens (Central Graben, Horn Graben, Glückstadt Graben) perpendicular to the Tornquist Zone, the Ringkøbing-Fyn High and the Elbe Fault System. The resulting subsidence pattern can be explained by a superposition of declining thermal subsidence and regional extension. This led to a dissection of the Ringkøbing-Fyn High, resulting in offsets of the older NW–SE elements by the younger N–S elements. In the Late Cretaceous, the NW–SE elements were reactivated during compression, the direction of which was such that it did not favour inversion of N–S elements. A distinct change in subsidence controlling factors led to a shift of the main depocentre to the central North Sea in the Cenozoic. In this last phase, N–S-striking structures in the North Sea and NW–SE-striking structures in The Netherlands are reactivated as subsidence areas which are in line with the direction of present maximum compression. The Moho topography below the CEBS varies over a wide range. Below the N–S-trending Cenozoic depocentre in the North Sea, the crust is only 20 km thick compared to about 30 km below the largest part of the CEBS. The crust is up to 40 km thick below the Ringkøbing-Fyn High and up to 45 km along the Teisseyre–Tornquist Zone. Crustal thickness gradients are present across the Tornquist Zone and across the borders of the Ringkøbing-Fyn High but not across the Elbe Fault System. The N–S-striking structural elements are generally underlain by a thinner crust than the other parts of the CEBS.The main fault systems in the Permian to Cenozoic sediment fill of the CEBS are located above zones in the deeper crust across which a change in geophysical properties as P-wave velocities or gravimetric response is observed. This indicates that these structures served as templates in the crustal memory and that the prerift configuration of the continental crust is a major controlling factor for the subsequent basin evolution.  相似文献   

5.
伊舒地堑早第三纪盆地的结构、充填形式和充填序列以及区域构造格局表明,它属于我国东北部(东部)新生代裂谷系中的一部分,其发育级别低于辽河裂谷盆地带,而优于佳伊地堑北段,为一初始裂谷盆地。该盆地经历了裂谷前隆升剥蚀(晚白垩—古新世)、张裂深陷(始新世)、充填淤积(渐新世)和后期改造(早第三纪末)四个阶段的演化。与我国东部其它新生代裂谷盆地的演化近同时同步。地堑中5000多米厚的早第三纪陆相沉积物具有良好的生储油条件。同时地堑的构造-沉积演化决定了所形成的油气藏具有个体多而细小的特点,在有利的油气聚集区形成复式油田。  相似文献   

6.
赵志刚  王鹏  祁鹏  郭瑞 《地球科学》2016,41(3):546-554
东海盆地处于西太平洋俯冲带前缘,是发育在华南克拉通基底之上的,以晚白垩世-新生代沉积为主的新生代盆地.东海盆地性质是在活动大陆边缘减薄陆壳之上的,由于洋-陆俯冲消减所引起的张裂、拉伸作用而形成的弧后裂谷型盆地,是西太平洋众多“沟-弧-盆”体系的一部分.东海盆地陆架外缘隆起控制着东海盆地的演化过程,该地质单元形成于晚白垩世,是陆缘隆起和增生楔的复合体,中新世后由于菲律宾海板块的活动而解体为现今的钓鱼岛隆褶带和琉球隆起.结合对陆架外缘隆起的研究后认为,东海盆地晚白垩世以来的演化历程具有3大构造阶段,即:第一阶段,古新世-中始新世西部坳陷形成发展期;第二阶段,中始新世-渐新世东部坳陷形成发展期,其中,中晚始新世太平洋板块的转向是东、西部坳陷构造迁移的分界点;第三阶段,中新世-全新世,东海盆地进入到菲律宾板块影响时期,原先的构造格局开始分解.   相似文献   

7.
北黄海盆地构造演化特征分析   总被引:8,自引:0,他引:8  
依据最新油气资源调查资料,在简述北黄海盆地区域构造特征的基础上,重点分析了盆地的沉降史与构造演化特征。研究表明:(1)北黄海盆地的基本沉降曲线型式为7段折线状,其中晚侏罗世、早白垩世、始新世、渐新世、新近纪为曲线下降段,代表盆地5幕较明显的沉降;晚白垩世—古新世以及中新世早期为曲线上升段,反映盆地的抬升剥蚀。(2)盆地沉降作用自中生代至新生代总体由东向西迁移,东部坳陷以中生代沉降作用最为显著,中部坳陷主沉降期为始新世,而西部坳陷的快速沉降主要发生在始新世,并一直持续到渐新世。(3)盆地构造演化大致可划分为中生代断陷盆地、古近纪叠加断陷盆地以及新近纪坳陷盆地等3大发展阶段,其中,中生代断陷盆地发育阶段是北黄海盆地油气勘探研究的重点。  相似文献   

8.
非洲地区盆地演化与油气分布   总被引:2,自引:0,他引:2  
非洲地区盆地整体勘探程度较低,待发现资源量大,是当前油气勘探开发的热点地区之一。非洲板块在显生宙主要经历了冈瓦纳大陆形成、整体运动和裂解3个构造演化阶段,形成多种不同类型的盆地。通过板块构造演化和原型盆地研究及石油地质综合分析,明确了不同类型盆地的构造特征与油气富集规律。北非克拉通边缘盆地形成于古生代早期,受海西运动影响,油气主要富集在挤压背景下形成的大型穹隆构造之中,以古生界含油气系统为主;北非边缘裂谷盆地海西运动之后普遍经历了裂谷和沉降,裂谷期各盆地沉降幅度和沉降中心的差异导致了油气成藏模式和资源潜力的差异;东、西非被动陆缘盆地形成于中生代潘吉亚大陆的解体、大西洋和印度洋张裂的过程中,西非被动陆缘盆地普遍发育含盐地层,形成盐上和盐下两套含油气系统,东非被动陆缘盆地结构差异较大,油气分布主要受盆地结构控制;中西非裂谷系是经历早白垩世、晚白垩世和古近纪3期裂谷作用而形成的陆内裂谷盆地,受晚白垩世非洲板块与欧亚板块碰撞的影响,近东西向展布盆地抬升剧烈,油气主要富集在下白垩统,北西南东向盆地受影响较弱,油气主要富集在上白垩统和古近系之中;新生代东非裂谷系盆地和红海盆地形成时间相对较晚,以新生界含油气系统为主,新生代三角洲盆地中油气分布主要受三角洲砂(扇)体展布和盆地结构所控制。  相似文献   

9.
The study provides a regional seismic interpretation and mapping of the Mesozoic and Cenozoic succession of the Lusitanian Basin and the shelf and slope area off Portugal. The seismic study is compared with previous studies of the Lusitanian Basin. From the Late Triassic to the Cretaceous the study area experienced four rift phases and intermittent periods of tectonic quiescence. The Triassic rifting was concentrated in the central part of the Lusitanian Basin and in the southernmost part of the study area, both as symmetrical grabens and half-grabens. The evolution of half-grabens was particularly prominent in the south. The Triassic fault-controlled subsidence ceased during the latest Late Triassic and was succeeded by regional subsidence during the early Early Jurassic (Hettangian) when deposition of evaporites took place. A second rift phase was initiated in the Early Jurassic, most likely during the Sinemurian–Pliensbachian. This resulted in minor salt movements along the most prominent faults. The second phase was concentrated to the area south of the Nazare Fault Zone and resulted here in the accumulation of a thick Sinemurian–Callovian succession. Following a major hiatus, probably as a result of the opening of the Central Atlantic, resumed deposition occurred during the Late Jurassic. Evidence for Late Jurassic fault-controlled subsidence is widespread over the whole basin. The pattern of Late Jurassic subsidence appears to change across the Nazare Fault Zone. North of the Nazare Fault, fault-controlled subsidence occurred mainly along NNW–SSE-trending faults and to the south of this fault zone a NNE–SSW fault pattern seems to dominate. The Oxfordian rift phase is testified in onlapping of the Oxfordian succession on salt pillows which formed in association with fault activity. The fourth and final rift phase was in the latest Late Jurassic or earliest Early Cretaceous. The Jurassic extensional tectonism resulted in triggering of salt movement and the development of salt structures along fault zones. However, only salt pillow development can be demonstrated. The extensional tectonics ceased during the Early Cretaceous. During most of the Cretaceous, regional subsidence occurred, resulting in the deposition of a uniform Lower and Upper Cretaceous succession. Marked inversion of former normal faults, particularly along NE–SW-trending faults, and development of salt diapirs occurred during the Middle Miocene, probably followed by tectonic pulses during the Late Miocene to present. The inversion was most prominent in the central and southern parts of the study area. In between these two areas affected by structural inversion, fault-controlled subsidence resulted in the formation of the Cenozoic Lower Tagus Basin. Northwest of the Nazare Fault Zone the effect of the compressional tectonic regime quickly dies out and extensional tectonic environment seems to have prevailed. The Miocene compressional stress was mainly oriented NW–SE shifting to more N–S in the southern part.  相似文献   

10.
Integrated studies and revisions of sedimentary basins and associated magmatism in Peru and Bolivia (8–22°S) show that this part of western Gondwana underwent rifting during the Late Permian–Middle Jurassic interval. Rifting started in central Peru in the Late Permian and propagated southwards into Bolivia until the Liassic/Dogger, along an axis that coincides with the present Eastern Cordillera. Southwest of this region, lithospheric thinning developed in the Early Jurassic and culminated in the Middle Jurassic, producing considerable subsidence in the Arequipa basin of southern Peru. This 110-Ma-long interval of lithospheric thinning ended 160 Ma with the onset of Malm–earliest Cretaceous partial rift inversion in the Eastern Cordillera area.The lithospheric heterogeneities inherited from these processes are likely to have largely influenced the distribution and features of younger compressional and/or transpressional deformations. In particular, the Altiplano plateau corresponds to a paleotectonic domain of “normal” lithospheric thickness that was bounded by two elongated areas underlain by thinned lithosphere. The high Eastern Cordillera of Peru and Bolivia results from Late Oligocene–Neogene intense inversion of the easternmost thinned area.  相似文献   

11.
中国近海海域新生代成盆动力机制分析   总被引:1,自引:0,他引:1       下载免费PDF全文
任建业 《地球科学》2018,43(10):3337-3361
中国近海海域发育了渤海湾、东海和南海等10多个新生代富油气沉积盆地,其发育演化过程及动力学背景的异同需要在统一的研究思路和方法下进行系统的总结.以海域盆地油气勘探开发中积累的丰富的地质地球物理资料为基础,详细解释和分析了渤海、东海和南海三大海域新生代盆地的构造地层格架,进一步明确了渤海湾盆地斜向拉分盆地的演化阶段,证实了区域走滑断裂体系对盆地发育的重要控制作用;在东海陆架盆地划分出弧后前陆盆地的演化阶段,认识到区域挤压作用对该盆地的演化过程的重要性;在南海北部深水区发现了大型拆离断层及其所控制的拆离盆地,提出大型拆离断层作用是地壳薄化、地幔剥露和陆缘深水盆地形成演化的主要机制.研究揭示出中国近海海域盆地新生代期间在经历了古新世-中始新世期间分布全区的均一断陷作用之后,从晚始新世开始进入到区域构造的差异性演化阶段,其中渤海湾盆地进入斜向走滑拉分阶段,并持续到渐新世末期,随后是中新世的热沉降和上新世以来的加速沉降过程;东海陆架盆地则进入长期的弧后前陆盆地演化阶段,直到上新世开始才进入区域性的沉降过程;而南海则持续伸展形成深水拆离盆地,并最终在渐新世初期(32 Ma)发生岩石圈裂解,南海洋盆开始扩张,陆缘则进入被动大陆边缘演化阶段.区域板块运动学分析表明,晚始新世发生的全球板块运动重组事件导致了中国近海海域盆地构造的差异性演化.该事件发生之前,中国东部处于欧亚板块和太平洋板块相互作用构建的"双板块"动力体制之下,太平洋板块的俯冲后退作用导致了陆缘弧后伸展,形成了广布中国东部大陆边缘的盆岭式断陷盆地系.该事件之后,中国大陆处于印度板块、欧亚板块、太平洋板块和菲律宾海板块等构建的"多板块体制"之下,印度-欧亚大陆的碰撞、太平洋板块俯冲方向的转变、古南海的俯冲碰撞、菲律宾海板块的楔入及其与太平洋板块向西运移俯冲等产生了更为复杂的板块运动过程和多期次的运动重组事件导致了中国海域盆地成因类型的多样性和构造演化过程的差异性.海域盆地是我国重要的油气生产基地,本文的研究不仅进一步深化了中国海域盆地的形成演化过程和动力机制的认识,而且对于该区的油气勘探和开发也具有重要的实际应用价值.   相似文献   

12.
Contractional structures (large anticlines and synclines, reverse faults and inverted centres of deposition) of assumed Late Cretaceous–Cenozoic age are common in Cretaceous–Tertiary basins of the northwestern European margin. The similarities in style, orientation and timing of these structures are striking. The present detailed analysis of one anticline (the Ormen Lange Dome) of the mid-Norwegian continental shelf indicates that the total contraction is moderate (less than 2–3%), and that the analysed anticline has been growing almost continuously since its initiation in Eocene till Present. Inversion in the Barents Sea started already in the Late Cretaceous. This episode is suggested to be related to far-field effects of active plate-margin processes, and transfer of stresses across the plate as a consequence of the sub Hercynian and Paleocene ‘Laramide' event of the Alpine Orogeny. The development of co-axial structures was facilitated by stress focusing along pre-existing, high-relief N–S- and NE–SW-trending fault complexes. Far-field plate tectonic stresses originating mainly from the Alpine Orogeny seem to have been the most important cause of contractional deformation on the NW European shelf. In addition, ridge push from the North Atlantic spreading may have contributed significantly, particularly during the Neogene.  相似文献   

13.
Large areas of north-east Africa were dominated by regional extension in the Late Phanerozoic. Widespread rifting occurred in the Late Jurassic, with regional extension culminating in the Cretaceous and resulting in the greatest areal extent and degree of interconnection of the west, central and north African rift systems. Basin reactivation continued in the Paleocene and Eocene and new rifts probably formed in the Red Sea and western Kenya. In the Oligocene and Early Miocene, rifts in Kenya, Ethiopia and the Red Sea linked and expanded to form the new east African rift system.This complex history of rifting resulted in failed rift basins with low to high strain geometries, a range of associated volcanism and varying degrees of interaction with older structures. One system, the Red Sea rift, has partially attained active seafloor spreading. From a comparison of these basins, a general model of three-dimensional rift evolution is proposed. Asymmetrical crustal geometries dominated the early phases of these basins, accompanied by low angle normal faulting that has been observed at least locally in outcrop. As rifting progressed, the original fault and basin forms were modified to produce larger, more through-going structures. Some basins were abandoned, others experienced reversals in regional dip and, in general, extension and subsidence became focused along narrower zones near the rift axes. The final transition to oceanic spreading was accomplished in the Red Sea by a change to high angle, planar normal faulting and diffuse dike injection, followed by the organization of an axial magma chamber.  相似文献   

14.
The topographic evolution of the “passive” margins of the North Atlantic during the last 65 Myr is the subject of extensive debate due to inherent limitations of the geological, geomorphological and geophysical methods used for studies of uplift and subsidence. We have compiled a database of sign, time and amplitude (where possible) of topographic changes in the North Atlantic region during the Cenozoic (65–0 Ma). Our compilation is based on published results from reflection seismic studies, AFT (apatite fission track) studies, VR (vitrinite reflectance) trends, maximum burial, sediment supply studies, mass balance calculations and extrapolation of seismic profiles to onshore geomorphological features. The integration of about 200 published results reveal a clear pattern of topographic changes in the North Atlantic region during the Cenozoic: (1) The first major phase of Cenozoic regional uplift occurred in the late Palaeocene–early Eocene (ca 60–50 Ma), probably related to the break-up of the North Atlantic between Europe and Greenland, as indicated by the northward propagation of uplift. It was preceded by middle Palaeocene uplift and over-deepening of some basins of the North Sea and the surrounding areas. (2) A regional increase in subsidence in the offshore marginal areas of Norway, the northern North Sea, the northern British Isles and west Greenland took place in the Eocene (ca 57–35 Ma). (3) The Oligocene and Miocene (35–5 Ma) were characterized by regional tectonic quiescence, with only localised uplift, probably related to changes in plate dynamics. (4) The second major phase of regional uplift that affected all marginal areas of the North Atlantic occurred in the Plio-Pleistocene (5–0 Ma). Its amplitude was enhanced by erosion-driven glacio-isostatic compensation. Despite inconclusive evidence, this phase is likely to be ongoing at present.  相似文献   

15.
The Late Cretaceous–Cenozoic evolution of the eastern North Sea region is investigated by 3D thermo-mechanical modelling. The model quantifies the integrated effects on basin evolution of large-scale lithospheric processes, rheology, strength heterogeneities, tectonics, eustasy, sedimentation and erosion.

The evolution of the area is influenced by a number of factors: (1) thermal subsidence centred in the central North Sea providing accommodation space for thick sediment deposits; (2) 250-m eustatic fall from the Late Cretaceous to present, which causes exhumation of the North Sea Basin margins; (3) varying sediment supply; (4) isostatic adjustments following erosion and sedimentation; (5) Late Cretaceous–early Cenozoic Alpine compressional phases causing tectonic inversion of the Sorgenfrei–Tornquist Zone (STZ) and other weak zones.

The stress field and the lateral variations in lithospheric strength control lithospheric deformation under compression. The lithosphere is relatively weak in areas where Moho is deep and the upper mantle warm and weak. In these areas the lithosphere is thickened during compression producing surface uplift and erosion (e.g., at the Ringkøbing–Fyn High and in the southern part of Sweden). Observed late Cretaceous–early Cenozoic shallow water depths at the Ringkøbing–Fyn High as well as Cenozoic surface uplift in southern Sweden (the South Swedish Dome (SSD)) are explained by this mechanism.

The STZ is a prominent crustal structural weakness zone. Under compression, this zone is inverted and its surface uplifted and eroded. Contemporaneously, marginal depositional troughs develop. Post-compressional relaxation causes a regional uplift of this zone.

The model predicts sediment distributions and paleo-water depths in accordance with observations. Sediment truncation and exhumation at the North Sea Basin margins are explained by fall in global sea level, isostatic adjustments to exhumation, and uplift of the inverted STZ. This underlines the importance of the mechanisms dealt with in this paper for the evolution of intra-cratonic sedimentary basins.  相似文献   


16.
The Late Cretaceous–Cenozoic evolution of the North German Basin has been investigated by 3-D thermomechanical finite element modelling. The model solves the equations of motion of an elasto-visco-plastic continuum representing the continental lithosphere. It includes the variations of stress in time and space, the thermal evolution, surface processes and variations in global sea level.The North German Basin became inverted in the Late Cretaceous–Early Cenozoic. The inversion was most intense in the southern part of the basin, i.e. in the Lower Saxony Basin, the Flechtingen High and the Harz. The lower crustal properties vary across the North German Basin. North of the Elbe Line, the lower crust is dense and has high seismic velocity compared to the lower crust south of the Elbe Line. The lower crust with high density and high velocity is assumed to be strong. Lateral variations in lithospheric strength also arise from lateral variations in Moho depth. In areas where the Moho is deep, the upper mantle is warm and the lithosphere is thereby relatively weak.Compression of the lithosphere causes shortening, thickening and surface uplift of relatively weak areas. Tectonic inversion occurs as zones of preexisting weakness are shortened and thickened in compression. Contemporaneously, the margins of the weak zone subside. Cenozoic subsidence of the northern part of the North German Basin is explained as a combination of thermal subsidence and a small amount of deformation and surface uplift during compression of the stronger crust in the north.The modelled deformation patterns and resulting sediment isopachs correlate with observations from the area. This verifies the usefulness and importance of thermomechanical models in the investigation of intraplate sedimentary basin formation.  相似文献   

17.
J. Golonka   《Tectonophysics》2004,381(1-4):235
Thirteen time interval maps were constructed, which depict the Triassic to Neogene plate tectonic configuration, paleogeography and general lithofacies of the southern margin of Eurasia. The aim of this paper is to provide an outline of the geodynamic evolution and position of the major tectonic elements of the area within a global framework. The Hercynian Orogeny was completed by the collision of Gondwana and Laurussia, whereas the Tethys Ocean formed the embayment between the Eurasian and Gondwanian branches of Pangea. During Late Triassic–Early Jurassic times, several microplates were sutured to the Eurasian margin, closing the Paleotethys Ocean. A Jurassic–Cretaceous north-dipping subduction boundary was developed along this new continental margin south of the Pontides, Transcaucasus and Iranian plates. The subduction zone trench-pulling effect caused rifting, creating the back-arc basin of the Greater Caucasus–proto South Caspian Sea, which achieved its maximum width during the Late Cretaceous. In the western Tethys, separation of Eurasia from Gondwana resulted in the formation of the Ligurian–Penninic–Pieniny–Magura Ocean (Alpine Tethys) as an extension of Middle Atlantic system and a part of the Pangean breakup tectonic system. During Late Jurassic–Early Cretaceous times, the Outer Carpathian rift developed. The opening of the western Black Sea occurred by rifting and drifting of the western–central Pontides away from the Moesian and Scythian platforms of Eurasia during the Early Cretaceous–Cenomanian. The latest Cretaceous–Paleogene was the time of the closure of the Ligurian–Pieniny Ocean. Adria–Alcapa terranes continued their northward movement during Eocene–Early Miocene times. Their oblique collision with the North European plate led to the development of the accretionary wedge of the Outer Carpathians and its foreland basin. The formation of the West Carpathian thrusts was completed by the Miocene. The thrust front was still propagating eastwards in the eastern Carpathians.During the Late Cretaceous, the Lesser Caucasus, Sanandaj–Sirjan and Makran plates were sutured to the Iranian–Afghanistan plates in the Caucasus–Caspian Sea area. A north-dipping subduction zone jumped during Paleogene to the Scythian–Turan Platform. The Shatski terrane moved northward, closing the Greater Caucasus Basin and opening the eastern Black Sea. The South Caspian underwent reorganization during Oligocene–Neogene times. The southwestern part of the South Caspian Basin was reopened, while the northwestern part was gradually reduced in size. The collision of India and the Lut plate with Eurasia caused the deformation of Central Asia and created a system of NW–SE wrench faults. The remnants of Jurassic–Cretaceous back-arc systems, oceanic and attenuated crust, as well as Tertiary oceanic and attenuated crust were locked between adjacent continental plates and orogenic systems.  相似文献   

18.
The break-up of Pangaea after the Variscan Orogeny included rifting extending southwards from the Barents Sea via the Norwegian–Greenland Rift and into the North Sea, and northwards from the Central Atlantic. These two major rift systems interacted to form an approximately 1200-km-wide transfer zone across the British Isles, where a complex network of basins developed during the Mesozoic. Fault patterns were commonly controlled by reactivation of Precambrian, Caledonian and Variscan structures. The two main rift systems were unable to breach this regional transfer zone, where the crust had been thickened by the Caledonian and Variscan orogenies, until the Eocene. Breaching did not occur down the North Sea and through the English Channel because of Alpine contraction in NW Europe. Instead, breaching occurred around the west of Ireland and NW Scotland, so the British Isles remained connected to Europe rather than to the North American Plate.  相似文献   

19.
The Rhine Rift System (RRS) forms part of the European Cenozoic Rift System (ECRIS) and transects the Variscan Orogen, Permo-Carboniferous troughs and Late Permian to Mesozoic thermal sag basins. Crustal and lithospheric thicknesses range in the RRS area between 24–36 km and 50–120 km, respectively. We discuss processes controlling the transformation of the orogenically destabilised Variscan lithosphere into an end-Mesozoic stabilised cratonic lithosphere, as well as its renewed destabilisation during the Cenozoic development of ECRIS. By end-Westphalian times, the major sutures of the Variscan Orogen were associated with 45–60 km deep crustal roots. During the Stephanian-Early Permian, regional exhumation of the Variscides was controlled by their wrench deformation, detachment of subducted lithospheric slabs, asthenospheric upwelling and thermal thinning of the mantle-lithosphere. By late Early Permian times, when asthenospheric temperatures returned to ambient levels, lithospheric thicknesses ranged between 40 km and 80 km, whilst the thickness of the crust was reduced to 28–35 km in response to its regional erosional and local tectonic unroofing and the interaction of mantle-derived melts with its basal parts. Re-equilibration of the lithosphere-asthenosphere system governed the subsidence of Late Permian-Mesozoic thermal sag basins that covered much of the RRS area. By end-Cretaceous times, lithospheric thicknesses had increased to 100–120 km. Paleocene mantle plumes caused renewed thermal weakening of the lithosphere. Starting in the late Eocene, ECRIS evolved in the Pyrenean and Alpine foreland by passive rifting under a collision-related north-directed compressional stress field. Following end-Oligocene consolidation of the Pyrenees, west- and northwest-directed stresses originating in the Alps controlled further development of ECRIS. The RRS remained active until the Present, whilst the southern branch of ECRIS aborted in the early Miocene. Extensional strain across ECRIS amounts to some 7 km. Plume-related thermal thinning of the lithosphere underlies uplift of the Rhenish Massif and Massif Central. Lithospheric folding controlled uplift of the Vosges-Black Forest Arch.  相似文献   

20.
The structural pattern, tectono-sedimentary framework and geodynamic evolution for Mesozoic and Cenozoic deep structures of the Gulf of Tunis (north-eastern Tunisia) are proposed using petroleum well data and a 2-D seismic interpretation. The structural system of the study area is marked by two sets of faults that control the Mesozoic subsidence and inversions during the Paleogene and Neogene times: (i) a NE-SW striking set associated with folds and faults, which have a reverse component; and (ii) a NW–SE striking set active during the Tertiary extension episodes and delineating grabens and subsiding synclines. In order to better characterize the tectono-sedimentary evolution of the Gulf of Tunis structures, seismic data interpretations are compared to stratigraphic and structural data from wells and neighbouring outcrops. The Atlas and external Tell belonged to the southernmost Tethyan margin record a geodynamic evolution including: (i) rifting periods of subsidence and Tethyan oceanic accretions from Triassic until Early Cretaceous: we recognized high subsiding zones (Raja and Carthage domains), less subsiding zones (Gamart domain) and a completely emerged area (Raouad domain); (ii) compressive events during the Cenozoic with relaxation periods of the Oligocene-Aquitanian and Messinian-Early Pliocene. The NW–SE Late Eocene and Tortonian compressive events caused local inversions with sealed and eroded folded structures. During Middle to Late Miocene and Early Pliocene, we have identified depocentre structures corresponding to half-grabens and synclines in the Carthage and Karkouane domains. The north–south contractional events at the end of Early Pliocene and Late Pliocene periods are associated with significant inversion of subsidence and synsedimentary folded structures. Structuring and major tectonic events, recognized in the Gulf of Tunis, are linked to the common geodynamic evolution of the north African and western Mediterranean basins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号