首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
中国东部及邻区早白垩世裂陷盆地构造演化阶段   总被引:60,自引:0,他引:60  
张岳桥  赵越  董树文  杨农 《地学前缘》2004,11(3):123-133
早白垩世是中国东部及邻区强烈的伸展裂陷和岩石圈减薄时期。根据裂陷盆地几何形态特征和展布型式 ,将早白垩世裂陷盆地分为泛裂陷型 (燕山—松辽断陷盆地群、蒙古断陷盆地群等 )、狭窄型 (沂沭裂谷系、伊兰—伊通裂谷带 )和菱形状型 (胶莱盆地、三江盆地、鸡西盆地等 ) 3种类型。通过综合分析和对比不同类型裂陷盆地沉积序列和构造演化历史 ,结合郯庐断裂带和秦岭—大别造山带白垩纪构造演化历史的研究成果 ,区分了中国东部早白垩世 2个显著不同的引张裂陷阶段和一个构造挤压反转阶段。早白垩世早期引张裂陷阶段 ( 1 4 0~ 1 2 0Ma)形成了宽广展布的燕山—松辽断陷盆地系和蒙古断陷盆地系 ,沿郯庐断裂带发生右旋走滑活动 ,控制了断裂带西侧南华北伸展走滑盆地和东侧胶莱、三江等和沿敦—密断裂带走滑拉分盆地的发育 ;早白垩世中期引张裂陷阶段 ( 1 2 0~ 1 0 0Ma) ,沿郯庐断裂带中、北段发生裂谷作用 ,形成沂沭裂谷系和伊兰—伊通裂谷带 ;早白垩世晚期 ( 1 0 0~ 90Ma)在区域NW SE向挤压应力场作用下 ,所有早白垩世裂陷盆地发生不同程度的构造反转 ,沿郯庐断裂发生强烈的左旋走滑运动。最后指出 ,太平洋古板块向东亚大陆边缘俯冲诱发的大陆岩石圈底侵作用、拆沉作用、地幔底辟和对流 ,以及来自西部块体  相似文献   

2.
东北亚断陷盆地系与北美西部盆岭省伸展作用对比   总被引:2,自引:0,他引:2  
与北美西部盆岭省相比,东北亚新陷盆地系是一独具有特色的大陆裂陷作用区,该断陷盆地系发育于晚中生代期间,以巨大的规模,复杂的动力学背景和伴有一套大陆边缘扩张型火山岩组合为特征。东北亚断陷盆地系发育于宽裂陷作用背景之下,盆地拉伸率较低,但沉降较深,蕴藏有巨大的能源资源,是我国东部重要的煤和油气探领域。  相似文献   

3.
In order to better understand the Mesozoic tectonic evolution of Southeast China Block (SECB in short), this paper describes geological features of Mesozoic basins that are widely distributed in the SECB. The analyzed data are derived from a regional geological investigation on various Mesozoic basins and a recently compiled 1:1,500,000 geological map of Mesozoic–Cenozoic basins. Two types of basin are distinguished according to their tectonic settings, namely, the post-orogenic basin (Type I) and the intracontinental extensional basin (Type II); the latter includes the graben and the half-graben or faulted-depression basins. Our studies suggest that the formation of these basins connects with the evolution of geotectonics of the SECB. The post-orogenic basin (Type I) was formed in areas from the piedmont to the intraland during the interval from Late Triassic to Early Jurassic; and the formation of the intracontinental extensional basin (Type II) connects with an intracontinental crustal thinning setting in the Late Mesozoic. The graben basin was generated during the Middle Jurassic and is associated with a bimodal volcanic eruption; and the half-graben or faulted-depression basin, filled mainly by the rhyolite, tuff and sedimentary rocks during Early Cretaceous, is occupied by the Late Cretaceous–Paleogene red-colored terrestrial clastic rocks. We noticed that the modern outcrops of numerous granites and basins occur in a similar level, and the Mesozoic granitic bodies contact with the adjacent basins by large normal faults, suggesting that the modern landforms between granites and basins were yielded by the late crustal movement. The modern basin and range framework was settled down in the Cretaceous. Abundant sedimentary structures are found in the various basins, from that the deposited environments and paleo-currents are concluded; during the Late Triassic–Early Jurassic time, the source areas were situated to the north and northeast sides of the outcrop region. In this paper, we present the study results on one geological and geographical separating unit and two separating fault zones. The Wuyi orogenic belt is a Late Mesozoic paleo-geographically separating unit, the Ganjiang fault zone behaves as the western boundary of Early Cretaceous volcanic rocks, and the Zhenghe–Dapu fault zone separates the SE-China Coastal Late Mesozoic volcanic-sedimentary basins and the Wuyi orogenic belt. Finally, we discuss the geodynamic mechanisms forming various basins, proposing a three-stage model of the Mesozoic sedimentary evolution.  相似文献   

4.
地壳的拆离作用与华北克拉通破坏:晚中生代伸展构造约束   总被引:19,自引:0,他引:19  
伸展条件下的地壳拆离作用是岩石圈减薄的重要浅部构造响应。晚中生代时期的伸展构造(包括拆离断层、变质核杂岩构造和断陷盆地)在华北、华南、东北和东蒙古及贝加尔地区普遍发育,它们切过上部地壳(断陷盆地)、中、上地壳(拆离断层)或中部地壳(变质核杂岩)。地壳拆离作用具有运动学极性(NWW或SEE)、几何学宏观(区域)对称与微观(局部)不对称性、遍布全区但不均匀性,以及形成时间的跨越性(140~60Ma)等特点,并使得地壳和岩石圈发生显著的减薄。本文研究揭示出现今岩石圈厚度变化与晚中生代伸展构造的发育程度和分布之间并没有必然的联系。其变化的基本规律是,除新生代裂陷发育区岩石圈厚度明显较小且厚度有迅速变化外,从华北向贝加尔地区总体的变化趋势是逐渐加厚,也即东亚地区岩石圈具有楔形形态。晚中生代时期的地壳(或地幔)拆离作用伴随着广泛的岩石圈减薄作用,区域岩石圈同时遭受到一定程度的减薄和破坏,华北克拉通在这一时期的破坏仅仅是区域岩石圈减薄在华北的具体体现。  相似文献   

5.
西南三江构造体系突出表现为以昌都-兰坪-思茅地块为中轴的不对称走滑对冲构造,次为与走滑断裂相伴的伸展滑脱、走滑拉分盆地构造体系,再次为块体内部的近北东、北西向走滑断裂系。西南三江造山带构造体系演化分为挤压收缩变形、走滑深熔热隆、走滑剪切伸展、走滑剥蚀隆升等4个阶段。自晚白垩世开始,印度板块与欧亚板块碰撞,西南三江造山带对冲体构造体系初始形成。自渐新世开始,印度板块持续向北楔入欧亚大陆,印度板块与扬子克拉通构成力偶,两者相向、相对运动,挤压与剪切特提斯大洋缝合带及两大陆边缘弧盆系等地质体,西南三江造山带对冲体构造体系进一步发展,近南北向剪切走滑构造体系形成,构造方向也由近东西转为近南北向。而与近南北向主走滑断裂带之相伴的伸展滑脱构造、拉分盆地,块体内部近北东、北西“X”型剪切走滑断裂同时相伴形成。这样,就形成了西南三江造山带大规模的对冲、走滑、旋转及其伴生的伸展、拉分盆地构造的构造体系。  相似文献   

6.
李述靖  吕古贤 《现代地质》2021,35(5):1260-1266
汾渭地堑系位于我国东部阴山与秦岭纬向带之间,自北向南,由集宁、怀来、大同、蔚县、忻州、太原、晋中、汾渭、天水、礼县、西和、成县等10余个NE向斜列的新生代断陷盆地组成,它们呈“S”形展布,反映华北地块在新生代时期发生了顺时针旋转,使古老地块发生裂解,可称之为“S”型旋转拉分构造体系。这个构造体系对中国东部构造格局和构造发展有广泛和深远的影响,强烈改造了秦岭—大别山纬向构造带和江南地块北缘的构造格局,使新华夏系形成分段特征,启动了华北地块伸展构造发展模式,影响所及直达琉球海沟。无独有偶,亚洲中部俄罗斯、蒙古境内有贝加尔地堑系,由反“S”形分布的新生代断陷盆地组成,它们也发育于古老结晶地块之中,可与之对比,是逆时针旋转的反“S”型旋转拉分构造体系。说明它们是同一类型的旋转构造型式,是古老地块裂解的一种方式。  相似文献   

7.
北祁连盆地群位于青藏高原北部,长期处于欧亚大陆的边缘活动带,对构造运动有着敏感的反应,各次构造运动在该区都有表现。现今北祁连盆地群经历多次构造运动的改造,先后经历了早古生代大陆裂谷阶段、晚古生代稳定陆内沉积盆地阶段、中生代的板内变形阶段和伸展断陷阶段、新生代挤压变形与前陆盆地发育阶段,是各个时期盆地叠合的产物。  相似文献   

8.
安徽沿江中新生代盆地位于大别山造山带南缘,为先挤压、后伸展形成的叠合盆地,是探讨扬子板块陆内深俯冲—大别山造山带隆起与中、下扬子盆地沉降的耦合关系的理想场所。在早中生代,大别山为华南和华北大陆碰撞造山带,华南地壳向深处俯冲并承受超高压变质作用,超高压变质岩不断向上折返,沿江坳陷具有前陆盆地性质,盆地充填有晚三叠世—中侏罗世磨拉石层序;在晚中生代,在中国东部整体的拉张背景下,大别山变质带完全折返上隆,处于变质核杂岩隆升状态,而沿江坳陷具有裂陷盆地性质,充填有晚侏罗世—早白垩世、晚白垩世—古近纪两个红色碎屑构造层序,起因于地壳拆沉而产生的均衡隆升和伸展断陷的构造耦合。  相似文献   

9.
Cathy Busby   《Tectonophysics》2004,392(1-4):241
Mesozoic rocks of the Baja California Peninsula form one of the most areally extensive, best-exposed, longest-lived (160 my), least-tectonized and least-metamorphosed convergent-margin basin complexes in the world. This convergent margin shows an evolutionary trend that may be typical of arc systems facing large ocean basins: a progression from highly extensional (phase 1) through mildly extensional (phase 2) to compressional (phase 3) strain regimes. This trend is largely due to the progressively decreasing age of lithosphere that is subducted, which causes a gradual decrease in slab dip angle (and concomitant increase in coupling between lower and upper plates), as well as progressive inboard migration of the arc axis.This paper emphasizes the usefulness of sedimentary and volcanic basin analysis for reconstructing the tectonic evolution of a convergent continental margin. Phase 1 consists of Late Triassic to Late Jurassic oceanic intra-arc to backarc basins that were isolated from continental sediment sources. New, progressively widening basins were created by arc rifting and sea floor spreading, and these were largely filled with progradational backarc arc-apron deposits that record the growth of adjacent volcanoes up to and above sea level. Inboard migration of the backarc spreading center ultimately results in renewed arc rifting, producing an influx of silicic pyroclastics to the backarc basin. Rifting succeeds in conversion of the active backarc basin into a remnant backarc basin, which is blanketed by epiclastic sands.Phase 1 oceanic arc–backarc terranes were amalgamated by Late Jurassic sinistral strike slip faults. They form the forearc substrate for phase 2, indicating inboard migration of the arc axis due to decrease in slab dip. Phase 2 consists of Early Cretaceous extensional fringing arc basins adjacent to a continent. Phase 2 forearc basins consist of grabens that stepped downward toward the trench, filled with coarse-grained slope apron deposits. Phase 2 intra-arc basins show a cycle of (1) arc extension, characterized by intermediate to silicic explosive and effusive volcanism, culminating in caldera-forming silicic ignimbrite eruptions, followed by (2) arc rifting, characterized by widespread dike swarms and extensive mafic lavas and hyaloclastites. This extensional-rifting cycle was followed by mid-Cretaceous backarc basin closure and thrusting of the fringing arc beneath the edge of the continent, caused by a decrease in slab dip as well as a possible increase in convergence rate.Phase 2 fringing arc terranes form the substrate for phase 3, which consists of a Late Cretaceous high-standing, compressional continental arc that migrated inboard with time. Strongly coupled subduction resulted in accretion of blueschist metamorphic rocks, with development of a broad residual forearc basin behind the growing accretionary wedge, and development of extensional forearc (trench–slope) basins atop the gravitationally collapsing accretionary wedge. Inboard of this, ongoing phase 3 strongly coupled subduction, together with oblique convergence, resulted in development of forearc strike-slip basins upon arc basement.The modern Earth is strongly biased toward long-lived arc–trench systems, which are compressional; therefore, evolutionary models for convergent margins must be constructed from well-preserved ancient examples like Baja California. This convergent margin is typical of many others, where the early to middle stages of convergence (phases 1 and 2) create nonsubductable arc–ophiolite terranes (and their basin fills) in the upper plate. These become accreted to the continental margin in the late stage of convergence (phase 3), resulting in significant continental growth.  相似文献   

10.
Songliao Basin, the largest Mesozoic intracontinental nonmarine basin in eastern China, initiated during the latest Jurassic as a backarc extensional basin; rifting failed and thermal cooling controlled subsidence through the early Late Cretaceous. Integrating 2-D and 3D reflection seismic and borehole data with regional geological studies, we interpret sedimentary sequence and structural patterns of the Coniacian-Maastrichtian fill of Songliao Basin as defining a retroforeland basin system developed after 88 Ma (marked by the T11 unconformity in the basin), including (1) significant increase in the thickness of the Nenjiang Formation eastward towards orogenic highlands of the Zhangguangcai Range and the convergent continental margin; (2) a shift of detrital provenance in the basin from north to southeast; and (3) propagation of E-W shortened structures, increasing eastward in amplitude, frequency, and degree of inversion toward the orogen. During latest Cretaceous, foreland basin fill progressively deformed, as the foredeep evolved to a wedge-top tectonic setting, marked by the basin-wide T04 unconformity within the upper Nenjiang Formation at 81.6 Ma. Much of the basin was brought into the orogenic wedge and eroded by the end of the Cretaceous. Late Jurassic/Early Cretaceous backarc rifting of uncratonized basement comprised of accreted terranes likely facilitated and localized the foreland. Synrift normal faults reactivated and extensively inverted as thrust faults are prominent in the eastern 1/3 of the basin, whereas folds developed above detachments in shaley early post-rift strata dominate the western 2/3 of the basin. Songliao foreland development likely was driven by changing plate dynamics and collision along the Pacific margin after 88 Ma.  相似文献   

11.
南海大陆边缘盆地由于边界条件的差异,不仅形成了不同类型的陆缘盆地,如离散型、走滑伸展型和伸展挠曲复合型,而且这些盆地构造演化存在明显的非同步性。这些陆缘破裂过程与南海扩张作用过程呈现明显不一致性。研究表明,南海扩张时期南海南、北大陆边缘均形成了一系列裂陷盆地,然而,南海南部、北部大陆边缘盆地裂陷作用结束时间不同,北部大陆边缘盆地裂陷作用结束于23 Ma或21 Ma,而南部大陆边缘盆地裂陷作用结束于15.5 Ma,显然北部大陆边缘盆地裂陷结束时间明显早于南部大陆边缘盆地。南海扩张停止后,南海南、北部陆缘仍表现出明显差异,北部陆缘仍以伸展作用为主,晚中新世以来出现快速沉降幕,而南海南部陆缘则以挤压作用为主,且其挤压时间及强度呈现南早北晚的特点,即南部曾母盆地明显早于南薇西盆地和北康盆地。南海南、北大陆边缘盆地形成演化的差异性,特别是构造转型差异变化,为新生代南海扩张的迁移性提供了有力的佐证,可以推断南海不同期次海盆扩张可能存在向南的突然跃迁。因此,本次研究梳理出的南海不同陆缘盆地张裂伸展的非同步性可为南海洋盆扩张演化过程解释提供新的证据。  相似文献   

12.
伸展型盆地是与地壳和岩石圈伸展、减薄作用有关的一类裂陷盆地,包含了重要的沉积矿产和能源资源。综合近年来国内外伸展型盆地的研究,包括大西洋被动大陆边缘、澳大利亚被动边缘以及中国大陆东部的新生代盆地,发现不论是被动边缘还是会聚板块背景下的伸展型盆地,其裂后阶段盆地的沉降过程都不是简单的仅仅由岩石圈的热作用所控制的均匀缓慢的沉降过程,而是呈现多幕式的、快速沉降的特征,反映了盆地裂后演化阶段周缘板块的构造活动及其深部岩石圈的动力因素的控制作用。文章正是从这一角度出发,简述了近年来国内外一些典型的伸展盆地区裂后期快速沉降的研究进展情况,并结合琼东南盆地裂后期沉降演化特征的定量模拟研究,对幕式快速沉降的动力学机制进行了探讨。  相似文献   

13.
The east margin of the Siberian craton is a typical passive margin with a thick succession of sedimentary rocks ranging in age from Mesoproterozoic to Tertiary. Several zones with distinct structural styles are recognized and reflect an eastward-migrating depocenter. Mesozoic orogeny was preceded by several Mesoproterozoic to Paleozoic tectonic events. In the South Verkhoyansk, the most intense pre-Mesozoic event, 1000–950 Ma rifting, affected the margin of the Siberian craton and formed half-graben basins, bounded by listric normal faults. Neoproterozoic compressional structures occurred locally, whereas extensional structures, related to latest Neoproterozoic–early Paleozoic rifting events, have yet to be identified. Devonian rifting is recognized throughout the eastern margin of the Siberian craton and is represented by numerous normal faults and local half-graben basins.Estimated shortening associated with Mesozoic compression shows that the inner parts of ancient rifts are now hidden beneath late Paleozoic–Mesozoic siliciclastics of the Verkhoyansk Complex and that only the outer parts are exposed in frontal ranges of the Verkhoyansk thrust-and-fold belt. Mesoproterozoic to Paleozoic structures had various impacts on the Mesozoic compressional structures. Rifting at 1000–950 Ma formed extensional detachment and normal faults that were reactivated as thrusts characteristic of the Verkhoyansk foreland. Younger Neoproterozoic compressional structures do not display any evidence for Mesozoic reactivation. Several initially east-dipping Late Devonian normal faults were passively rotated during Mesozoic orogenesis and are now recognized as west-dipping thrusts, but without significant reactivation displacement along fault surfaces.  相似文献   

14.
中国东部中—新生代大陆构造的形成与演化   总被引:14,自引:7,他引:7       下载免费PDF全文
20世纪60年代提出的"威尔逊旋回"以关闭洋盆两侧板块的碰撞作为板块运动旋回的终结,然而板块构造学说"登陆"20多年来的实践说明这种认识是不全面的。大陆弥散而宽广的陆内变形说明洋盆闭合两侧板块的碰撞并未终止板内构造作用。古亚洲大陆形成后中国东部中—新生代广泛发育的板内构造变形、岩浆活动、克拉通内盆地的形成都和古亚洲大陆南、北,印度洋和北冰洋洋脊的持续扩张、西太平洋和菲律宾洋壳的俯冲相关。本文拟厘清中国东部中—新生代大陆构造形成与演化的重大事件、构造性质、形成背景及其时空展布:(1)晚海西—印支期古特提斯洋关闭陆块拼合碰撞古亚洲大陆雏形形成;(2)晚侏罗—早白垩世蒙古—鄂霍茨克海闭合,陆-陆碰撞古亚洲大陆形成,挤压逆冲推覆构造在陆内变形中形成高潮,西太平洋伊佐奈岐洋壳板块的斜俯冲叠加了自东而西的影响;(3)早白垩世晚期—古近纪加厚地壳-岩石圈减薄、转型,陆内伸展变形达到高潮,大陆克拉通泛盆地、准平原化;(4)始新世晚期—早中新世(40~23 Ma)太平洋板块运动转向对东亚大陆NWW向的挤压和印度洋脊扩张印—澳板块对古亚洲南部陆-陆碰撞挤压的叠加,形成中国东部新生的构造地貌;(5)中-上新世—早更新世受东亚—西太平洋巨型裂谷系和印度洋中脊扩张的叠加影响,中国东部岩石圈地幔隆升、地壳减薄,陆缘、陆内伸展变形相继形成边缘海、岛弧、裂谷型盆地和剥蚀高原地貌;(6)早更新世晚期(0.9~0.8 Ma)—晚更新世末(0.01 Ma)中国东部大陆构造地貌基本形成。  相似文献   

15.
中国中、上扬子区石炭纪古构造沉积盆地类型   总被引:2,自引:0,他引:2       下载免费PDF全文
中、上扬子区石炭纪继承了加里东运动后的构造格局,滇中前寒武纪基底隆起区——康滇古陆(Ⅰ_1~1)不断向东扩大,与滇东早奥陶世后隆起区(Ⅰ_1~2)归拼。由于川中早志留后隆起区(Ⅰ_1~8)徐徐上升,它把川东鄂西泥盆世后隆起区(Ⅰ_1~(11))、以及武当、大洪山(Ⅰ_1~4)、湘西武陵山(Ⅱ_1~5)、雪峰山(Ⅱ_1~6)前寒武基底隆起区基本连在一起,从而使中、上扬子地块上的“中、上扬子古陆”雏形大致形成。晚泥盆世扬子古陆北缘被动大陆边缘盆地等与石炭纪早期基本相仿。湘、桂交界处,以龙胜-永福断裂为界,其西南为右江张性被动大陆  相似文献   

16.
Cenozoic continental rifting in southern East Siberia and northern Mongolia has been associated with subsidence and broadening of rift basins at the account of their mountain borders. This neotectonic trend is, however, superposed with continuous or periodic tectonic inversions in which the basin floor may uplift while marginal fault steps and saddles between basins may subside. Cenozoic geomorphic inversions are expressed in changes of river flow out of Lake Baikal.  相似文献   

17.
Models for the Tertiary evolution of SE Asia fall into two main types: a pure escape tectonics model with no proto-South China Sea, and subduction of proto-South China Sea oceanic crust beneath Borneo. A related problem is which, if any, of the main strike–slip faults (Mae Ping, Three Pagodas and Aliao Shan–Red River (ASRR)) cross Sundaland to the NW Borneo margin to facilitate continental extrusion? Recent results investigating strike–slip faults, rift basins, and metamorphic core complexes are reviewed and a revised tectonic model for SE Asia proposed. Key points of the new model include: (1) The ASRR shear zone was mainly active in the Eocene–Oligocene in order to link with extension in the South China Sea. The ASRR was less active during the Miocene (tens of kilometres of sinistral displacement), with minor amounts of South China Sea spreading centre extension transferred to the ASRR shear zone. (2) At least three important regions of metamorphic core complex development affected Indochina from the Oligocene–Miocene (Mogok gneiss belt; Doi Inthanon and Doi Suthep; around the ASRR shear zone). Hence, Paleogene crustal thickening, buoyancy-driven crustal collapse, and lower crustal flow are important elements of the Tertiary evolution of Indochina. (3) Subduction of a proto-South China Sea oceanic crust during the Eocene–Early Miocene is necessary to explain the geological evolution of NW Borneo and must be built into any model for the region. (4) The Eocene–Oligocene collision of NE India with Burma activated extrusion tectonics along the Three Pagodas, Mae Ping, Ranong and Klong Marui faults and right lateral motion along the Sumatran subduction zone. (5) The only strike–slip fault link to the NW Borneo margin occurred along the trend of the ASRR fault system, which passes along strike into a right lateral transform system including the Baram line.  相似文献   

18.
中国大陆东部晚中生代构造活化及其演化过程   总被引:13,自引:2,他引:11  
与中生代中期造山型构造活化不同.晚中生代期间,中国大陆东部的构造活化表现为规模宏大的断陷盆地系、变质核杂岩、花岗岩浆侵位、火山岩喷发以及沿大型走滑断层的转换伸展为特征的大陆裂陷作用。根据岩浆活动、盆地的充填记录,构造格架和盆地的沉降史分析,可以将裂陷作用划分为两个大的阶段,即由兴安岭群火山喷发为代表的第一阶段和以巴彦花群含煤、油碎屑岩系为代表的断陷盆地形成阶段。盆地沉降史回剥研究表明,裂陷作用第二阶段断陷盆地的发育受控于次一级的幕式构造作用过程。此外.对晚中生代裂陷作用的动力学背景的探讨需要阐明岩石圈的深部过程和构造应力场的反转这个两个重要的问题。  相似文献   

19.
The East Asian geological setting has a long duration related to the superconvergence of the Paleo‐Asian, Tethyan and Paleo‐Pacific tectonic domains. The Triassic Indosinian Movement contributed to an unified passive continental margin in East Asia. The later ophiolites and I‐type granites associated with subduction of the Paleo‐Pacific Plate in the Late Triassic, suggest a transition from passive to active continental margins. With the presence of the ongoing westward migration of the Paleo‐Pacific Subduction Zone, the sinistral transpressional stress field could play an important role in the intraplate deformation in East Asia during the Late Triassic to Middle Jurassic, being characterized by the transition from the E‐W‐trending structural system controlled by the Tethys and Paleo‐Asian oceans to the NE‐trending structural system caused by the Paleo‐Pacific Ocean subduction. The continuously westward migration of the subduction zones resulted in the transpressional stress field in East Asia marked by the emergence of the Eastern North China Plateau and the formation of the Andean‐type active continental margin from late Late Jurassic to Early Cretaceous (160‐135 Ma), accompanied by the development of a small amount of adakites. In the Late Cretaceous (135‐90 Ma), due to the eastward retreat of the Paleo‐Pacific Subduction Zone, the regional stress field was replaced from sinistral transpression to transtension. Since a large amount of late‐stage adakites and metamorphic core complexes developed, the Andean‐type active continental margin was destroyed and the Eastern North China Plateau started to collapse. In the Late Cretaceous, the extension in East Asia gradually decreased the eastward retreat of the Paleo‐Pacific subduction zones. Futhermore, a significant topographic inversion had taken place during the Cenozoic that resulted from a rapid uplift of the Tibet Plateau resulting from the India‐Eurasian collision and the formation of the Bohai Bay Basin and other basins in the East Asian continental margin. The inversion caused a remarkable eastward migration of deformation, basin formation and magmatism. Meanwhile, the basins that mainly developed in the Paleogene resulted in a three‐step topography which typically appears to drop eastward in altitude. In the Neogene, the basins underwent a rapid subsidence in some depressions after basin‐controlled faulting, as well as the intracontinental extensional events in East Asia, and are likely to be a contribution to the uplift of the Tibetan Plateau.  相似文献   

20.
Triassic to Lower Cretaceous continental sedimentary basins occur in eastern Australia, but the tectonic and structural evolution of these basins is not fully understood. Using gridded aeromagnetic data, seismic reflection data and field observations, we conducted a structural analysis aimed at characterising major faults and deformation style in these sedimentary basins. Our results show evidence for two alternating episodes of rifting during the Triassic. An earlier episode of rifting, which took place in the Early Triassic to early Late Triassic, is inferred based on synsedimentary normal faults in the Nymboida Coal Measures and the boundary West Ipswich Fault System in the Esk Trough. This phase of rifting was followed by a contractional event that resulted in tilting, folding, and thrust faulting. Evidence of synsedimentary normal faults and bimodal volcanism indicates that another rifting phase occurred during the Late Triassic and resulted in the development of the Ipswich Basin. From the latest Late Triassic to the Early Cretaceous, the accumulation of continental sediments in the Clarence-Moreton Basin was accompanied by subsidence. We suggest that the alternating rifting episodes and contraction were ultimately controlled by plate boundary migration and switches between trench retreat and advance during the Triassic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号