首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recent papers in the geodetic literature promote the reduction of gravity for geoid determination according to the Helmert condensation technique where the entire reduction is made in place before downward continuation. The alternative approach, primarily developed by Moritz, uses two evaluation points, one at the Earths surface, the other on the (co-)geoid, for the direct topographic effect. Both approaches are theoretically legitimate and the derivations in each case make use of the planar approximation and a Lipschitz condition on height. Each method is re-formulated from first principles, yielding equations for the direct effect that contain only the spherical approximation. It is shown that neither method relies on a linear relationship between gravity anomalies and height (as claimed by some). Numerical tests, however, show that the practical implementations of these two approaches yield significant differences. Computational tests were performed in three areas of the USA, using 1×1 grids of gravity data and 30×30 grids of height data to compute the gravimetric geoid undulation, and GPS/leveled heights to compute the geometric geoid undulation. Using the latter as a control, analyses of the gravimetric undulations indicate that while in areas with smooth terrain no substantial differences occur between the gravity reduction methods, the Moritz–Pellinen (MP) approach is clearly superior to the Vanicek–Martinec (VM) approach in areas of rugged terrain. In theory, downward continuation is a significant aspect of either approach. Numerically, however, based on the test data, neither approach benefited by including this effect in the areas having smooth terrain. On the other hand, in the rugged, mountainous area, the gravimetric geoid based on the VM approach was improved slightly, but with the MP approach it suffered significantly. The latter is attributed to an inability to model the downward continuation of the Bouguer anomaly accurately in rugged terrain. Applying the higher-order, more accurate gravity reduction formulas, instead of their corresponding planar and linear approximations, yielded no improvement in the accuracy of the gravimetric geoid undulation based on the available data.  相似文献   

2.
Two water tube clinometers are installed in a deep mine in Lohja, Finland. One, lying in an E-W direction, is 177 m long and the other, lying in a N-S direction, is 62 m long. These instruments are used for tidal records and research. Because the station was on the zone of totality of the 1990 solar eclipse, the instruments offered a suitable tool for investigating whether there was any shielding effect on the direction of the vertical. During the eclipse, the resolution of the instruments was increased to 0.00001 and 0.00004, respectively. p ]Recordings and data evaluation are discussed, and the results obtained show that no gravitational shielding was found at the level of the above accuracy.  相似文献   

3.
Summary The least-squares collocation method has been used for the computation of a geoid solution in central Spain, combining a geopotential model complete to degree and order 360, gravity anomalies and topographic information. The area has been divided in two 1°× 1° blocks and predictions have been done in each block with gravity data spacing about 5 × 5 within each block, extended 1/2°. Topographic effects have been calculated from 6 × 9 heights using an RTM reduction with a reference terrain model of 30 × 30 mean heights.  相似文献   

4.
The treatment of the permanent tidal deformation of the Earth in GPS computation has been an almost unmentioned topic in the GPS literature. However, the ever increasing accuracy and the need to combine the GPS based coordinates with other methods requires a consistent way to handle the tides. Our survey shows that both the ITRF-xx coordinates and the GPS based coordinates are nowadays reduced to a non-tidal crust, conventionally defined using physically meaningless parameters. We propose to use instead the zero-crust concept which corresponds to concepts already accepted in the resolution of IAG in 1983 for gravimetric works.  相似文献   

5.
Summary The first order horizontal control network of Saudi Arabia, which is a purely terrestrial network established in early 1970's by EDM traversing, is analyzed for distortions. The analysis is based on comparisons of the terrestrial network positions with those obtained from a 22 point GPS network uniformly covering the country. An analysis of the discrepancies in slant ranges obtained from the two networks indicates that the terrestrial network scale is smaller than that of the GPS network by about 1.68 parts per million (ppm). The scale appears to change with position suggesting some small systematic distortion of the terrestrial network relative to the GPS network. A similar analysis of the discrepancies in horizontal distance, azimuth and zenith distance also points to some non-uniformities, albeit small ones, in the terrestrial network. The discrepancies appear to be position-dependent and hence non-random in character. The maxima of the magnitudes are 2.5 ppm, 0.4 and 2.7 respectively for the discrepancies in horizontal scale, azimuth and zenith distance.  相似文献   

6.
Minimization and estimation of geoid undulation errors   总被引:2,自引:1,他引:1  
The objective of this paper is to minimize the geoid undulation errors by focusing on the contribution of the global geopotential model and regional gravity anomalies, and to estimate the accuracy of the predicted gravimetric geoid.The geopotential model's contribution is improved by (a) tailoring it using the regional gravity anomalies and (b) introducing a weighting function to the geopotential coefficients. The tailoring and the weighting function reduced the difference (1) between the geopotential model and the GPS/levelling-derived geoid undulations in British Columbia by about 55% and more than 10%, respectively.Geoid undulations computed in an area of 40° by 120° by Stokes' integral with different kernel functions are analyzed. The use of the approximated kernels results in about 25 cm () and 190 cm (maximum) geoid errors. As compared with the geoid derived by GPS/levelling, the gravimetric geoid gives relative differences of about 0.3 to 1.4 ppm in flat areas, and 1 to 2.5 ppm in mountainous areas for distances of 30 to 200 km, while the absolute difference (1) is about 5 cm and 20 cm, respectively.A optimal Wiener filter is introduced for filtering of the gravity anomaly noise, and the performance is investigated by numerical examples. The internal accuracy of the gravimetric geoid is studied by propagating the errors of the gravity anomalies and the geopotential coefficients into the geoid undulations. Numerical computations indicate that the propagated geoid errors can reasonably reflect the differences between the gravimetric and GPS/levelling-derived geoid undulations in flat areas, such as Alberta, and is over optimistic in the Rocky Mountains of British Columbia.Paper presented at the IAG General Meeting, Beijing, China, August 8–13, 1993.  相似文献   

7.
Summary Riemann polar/normal coordinates are the constituents to generate the oblique azimuthal projection of geodesic type, here applied to the reference ellipsoid of revolution (biaxial ellipsoid).Firstly we constitute a minimal atlas of the biaxial ellipsoid built on {ellipsoidal longitude, ellipsoidal latitude} and {metalongitude, metalatitude}. TheDarboux equations of a 1-dimensional submanifold (curve) in a 2-dimensional manifold (biaxial ellipsoid) are reviewed, in particular to represent geodetic curvature, geodetic torsion and normal curvature in terms of elements of the first and second fundamental form as well as theChristoffel symbols. The notion of ageodesic anda geodesic circle is given and illustrated by two examples. The system of twosecond order ordinary differential equations of ageodesic (Lagrange portrait) is presented in contrast to the system of twothird order ordinary differential equations of ageodesic circle (Proofs are collected inAppendix A andB). A precise definition of theRiemann mapping/mapping of geodesics into the local tangent space/tangent plane has been found.Secondly we computeRiemann polar/normal coordinates for the biaxial ellipsoid, both in theLagrange portrait (Legendre series) and in theHamilton portrait (Lie series).Thirdly we have succeeded in a detailed deformation analysis/Tissot distortion analysis of theRiemann mapping. The eigenvalues — the eigenvectors of the Cauchy-Green deformation tensor by means of ageneral eigenvalue-eigenvector problem have been computed inTable 3.1 andTable 3.2 (1, 2 = 1) illustrated inFigures 3.1, 3.2 and3.3. Table 3.3 contains the representation ofmaximum angular distortion of theRiemann mapping. Fourthly an elaborate global distortion analysis with respect toconformal Gau-Krüger, parallel Soldner andgeodesic Riemann coordinates based upon theAiry total deformation (energy) measure is presented in a corollary and numerically tested inTable 4.1. In a local strip [-l E,l E] = [-2°, +2°], [b S,b N] = [-2°, +2°]Riemann normal coordinates generate the smallest distortion, next are theparallel Soldner coordinates; the largest distortion by far is met by theconformal Gau-Krüger coordinates. Thus it can be concluded that for mapping of local areas of the biaxial ellipsoid surface the oblique azimuthal projection of geodesic type/Riemann polar/normal coordinates has to be favored with respect to others.  相似文献   

8.
A new theory for high-resolution regional geoid computation without applying Stokess formula is presented. Operationally, it uses various types of gravity functionals, namely data of type gravity potential (gravimetric leveling), vertical derivatives of the gravity potential (modulus of gravity intensity from gravimetric surveys), horizontal derivatives of the gravity potential (vertical deflections from astrogeodetic observations) or higher-order derivatives such as gravity gradients. Its algorithmic version can be described as follows: (1) Remove the effect of a very high degree/order potential reference field at the point of measurement (POM), in particular GPS positioned, either on the Earths surface or in its external space. (2) Remove the centrifugal potential and its higher-order derivatives at the POM. (3) Remove the gravitational field of topographic masses (terrain effect) in a zone of influence of radius r. A proper choice of such a radius of influence is 2r=4×104 km/n, where n is the highest degree of the harmonic expansion. (cf. Nyquist frequency). This third remove step aims at generating a harmonic gravitational field outside a reference ellipsoid, which is an equipotential surface of a reference potential field. (4) The residual gravitational functionals are downward continued to the reference ellipsoid by means of the inverse solution of the ellipsoidal Dirichlet boundary-value problem based upon the ellipsoidal Abel–Poisson kernel. As a discretized integral equation of the first kind, downward continuation is Phillips–Tikhonov regularized by an optimal choice of the regularization factor. (5) Restore the effect of a very high degree/order potential reference field at the corresponding point to the POM on the reference ellipsoid. (6) Restore the centrifugal potential and its higher-order derivatives at the ellipsoidal corresponding point to the POM. (7) Restore the gravitational field of topographic masses ( terrain effect) at the ellipsoidal corresponding point to the POM. (8) Convert the gravitational potential on the reference ellipsoid to geoidal undulations by means of the ellipsoidal Bruns formula. A large-scale application of the new concept of geoid computation is made for the Iran geoid. According to the numerical investigations based on the applied methodology, a new geoid solution for Iran with an accuracy of a few centimeters is achieved.Acknowledgments. The project of high-resolution geoid computation of Iran has been support by National Cartographic Center (NCC) of Iran. The University of Tehran, via grant number 621/3/602, supported the computation of a global geoid solution for Iran. Their support is gratefully acknowledged. A. Ardalan would like to thank Mr. Y. Hatam, and Mr. K. Ghazavi from NCC and Mr. M. Sharifi, Mr. A. Safari, and Mr. M. Motagh from the University of Tehran for their support in data gathering and computations. The authors would like to thank the comments and corrections made by the four reviewers and the editor of the paper, Professor Will Featherstone. Their comments helped us to correct the mistakes and improve the paper.  相似文献   

9.
Geoid determination in Turkey (TG-91)   总被引:1,自引:0,他引:1  
It is considered that precise geoid determination is one of the main current geodetic problems in Turkey since GPS defined coordinates require geoidal heights in practice. In order to determine the geoid by least squares collocation (LSC) the area covering Turkey was divided into 114 blocks of size 1° × 1°. LSC approximation to the geoid based upon the tailored geopotential model GPM2-T1 is constructed within each block. The model GPM2-T1 complete to degree and order 200 has been developed by tailoring of the model GPM2 to mean free-air anomalies and mean heights of one degree blocks in Turkey. Terrain effect reduced point gravity data spaced 5 × 5 within each block which the sides extended 0°.5 were used in LSC. Residual terrain model (RTM) depends on point heights at 15×20 griding and 5×5 and 15×15 mean heights has been carried out in terrain effect reduction. Indirect effect of RTM on geoid is also taken into account. The geoid, called Turkish Geoid 1991 (TG-91), referenced to GRS-80 ellipsoid has been computed at 3 × 3 griding nodes within each block. The quality of the TG-91 is also evaluated by comparing computed and GPS derived geoidal height differences, and 2.1 – 2.6 ppm accuracy for average baseline lenght of 45 km is obtained.  相似文献   

10.
Summary A local model of the geoid in NE Italy and its section along the Venice ground track of the ERS-1 satellite of the European Space Agency is presented. The observational data consist of geoid undulations determined with a network of 25 stations of known orthometric (by spirit leveling) and ellipsoidal (by GPS differential survey) and of 13 deflections of the vertical measured at sites of the network for which, besides the ellipsoidal (WGS84) coordinates, also astronomic coordinates were known. The network covers an area of 1×1 degrees and is tied to a vertical and horizontal datum: one vertex of the network is the tide gauge of Punta Salute, in Venice, providing a tie to a mean sea level; a second vertex is the site for mobile laser systems at Monte Venda, on the Euganei Hills, for which geocentric coordinates resulted from the analysis of several LAGEOS passes.The interpolation algorithm used to map sparse and heterogeneous data to a regular grid of geoid undulations is based on least squares collocation and the autocorrelation function of the geoid undulations is modeled by a third order Markov process on flat earth. The algorithm has been applied to the observed undulations and deflections of the vertical after subtraction of the corresponding predictions made on the basis of the OSU91A global geoid model of the Ohio State University, complete to degree and order 360. The locally improved geoid results by adding back, at the nodes of a regular grid, the predictions of the global field to the least squares interpolated values. Comparison of the model values with the raw data at the observing stations indicates that the mean discrepancy is virtually zero with a root mean square dispersion of 8 cm, assuming that the ellipsoidal heights and vertical deflections data are affected by a random error of 3 cm and 0.5 respectively. The corrections resulting from the local data and added to the background 360×360 global model are described by a smooth surface with excursions from the reference surface not larger than ±30 cm.  相似文献   

11.
D. Gambis 《Journal of Geodesy》2004,78(4-5):295-303
Earth orientation parameters (EOPs) provide the transformation between the International Terrestrial Reference Frame (ITRF) and the International Celestial Reference Frame (ICRF). The different EOP series computed at the Earth Orientation Centre at the Paris Observatory are obtained from the combination of individual EOP series derived from the various space-geodetic techniques. These individual EOP series contain systematic errors, generally limited to biases and drifts, which introduce inconsistencies between EOPs and the terrestrial and celestial frames. The objectives of this paper are first to present the various combined EOP solutions made available at the EOP Centre for the different users, and second to present analyses concerning the long-term consistency of the EOP system with respect to both terrestrial and celestial reference frames. It appears that the present accuracy in the EOP combined IERS C04 series, which is at the level of 200 as for pole components and 20 s for UT1, does not match its internal precision, respectively 100 as and 5 s, because of propagation errors in the realization of the two reference frames. Rigorous combination methods based on a simultaneous estimation of station coordinates and EOPs, which are now being implemented within the International Earth Rotation Service (IERS), are likely to solve this problem in the future.  相似文献   

12.
A simple statistical approach has been applied to the repeated electro-optical distance measurements (EDM) of 1,358 lines in the Tohoku district of Japan to obtain knowledge about the precision of EDM and the possible accumulation of strain. The average time interval between measurements is about seven or eight years. It is shown that the whole data of the difference between distance measurements repeated over a given lineD are interpreted in terms of EDM errors comprising distance proportional systematic errors and standard errors expressed by the usual form . The rate of horizontal deformation must therefore be much smaller than the strain rates of about 0.7 0.8 ppm over 7 to 8 years which have been hitherto expected.  相似文献   

13.
This study makes an initial comparison of three GPS-like constellations. Starting with a simplified constellation of 25 GPS satellites as a reference, GPS(25), we determine what kinematic positioning improvements would result from a constellation comprising a Hi component of 16 GPS satellites (at roughly 16.8 earth radii) coupled with a Lo component of 49 GPS satellites (at roughly 2.1 earth radii). We also include a GPS constellation of 49 GPS satellites, GPS(49), which comprises orbits like the GPS(25) constellation. The GPS(49) and the Hi(16)/Lo(49) constellations have semi-major axes selected so that they have exactly the same average number of satellites above 7.5 degrees elevation (averaged over 24 hours). What motivated this study was a need to measure the benefits, to precision differential kinematic positioning methods (i.e., RTK), which result from the higher Doppler shifts (hence speedier integrated Doppler) generated by the Lo component. Quicker initial convergence was anticipated, of course.  相似文献   

14.
A new, high-resolution and high-precision geoid has been computed for the whole of Canada and part of the U.S., ranging from 35°N to about 90°N in latitude and 210°E to 320°E in longitude. The OSU91A geopotential model complete to degree and order 360 was combined with a 5 × 5 mean gravity anomaly grid and 1km × 1km topographical information to generate the geoid file. The remove-restore technique was adopted for the computation of terrain effects by Helmert's condensation reduction. The contribution of the local gravity data to the geoid was computed strictly by the 1D-FFT technique, which allows for the evaluation of the discrete spherical Stokes integral without any approximation, parallel by parallel. The indirect effects of up to second order were considered. The internal precision of the geoid, i.e. the contribution of the gravity data and the model coefficients noise, was also evaluated through error propagation by FFT. In a relative sense, these errors seem to agree quite well with the external errors and show clearly the weak areas of the geoid which are mostly due to insufficient gravity data coverage. Comparison of the gravimetric geoid with the GPS/levelling-derived geoidal heights of eight local GPS networks with a total of about 900 stations shows that the absolute agreement with respect to the GPS/levelling datum is generally better than 10 cm RMS and the relative agreement ranges, in most cases, from 4 to 1 ppm over short distances of about 20 to 100km, 1 to 0.5 ppm over distances of about 100 to 200 km, and 0.5 to 0.1 ppm for baselines of 200 to over 1000 km. Other existing geoids, such as UNB90, GEOID90 and GSD91, were also included in the comparison, showing that the new geoid achieves the best agreement with the GPS/levelling data.Presented at theIAG General Meeting, Beijing, P.R. China, Aug. 6–13, 1993  相似文献   

15.
The Scripps Orbit and Permanent Array Center (SOPAC) has completed development for the UNAVCO community of first-generation GPS Seamless Archive (GSAC) software. The GSAC is a virtual archive composed of an assembly of agencies and investigators exchanging information about their respective GPS-related data holdings in a well defined, cohesive manner. The superset of this published information is collected and ingested into centralized databases administered currently by two data brokers (Retailers), who make the data available to the public in a seamless manner. There are three user interfaces available: the interactive GSAC Wizard, a command-line Unix-style executable called gsac-client, and a front door HTTP service called the GSAC Retailer Service Interface. Each user interface provides access to the data collections of 6 different GPS archives (GSAC Wholesalers) in North America. Together these archives have published more than 2 million GPS data files pertaining to over 10,000 different geodetic monuments. These datasets are composed in large part of data collected by US scientists and their collaborators over the period 1986 to the present in Western North America and other tectonically active regions around the globe, as well as the holdings of two IGS global data centers. In this article, we describe how the three GSAC user interfaces provide the community a powerful set of tools for seamlessly mining information and collecting data files from a distributed network of GPS archives.The GPS Toolbox is a column dedicated to highlighting algorithms and source code utilized by GPS Engineers and scientists. If you have an interesting program or software package you would like to share with our readers, please pass it along; e-mail it to us at gps-toolbox@ngs.noaa.gov. To comment on any of the source code discussed here, or to download source code, visit our website at . This column is edited by Stephen Hilla, National Geodetic Survey, NOAA, Silver Spring, Maryland, and Mike Craymer, Geodetic Survey Division, Natural Resources Canada, Ottawa, Ontario, Canada.  相似文献   

16.
Harmonic maps     
Harmonic maps are generated as a certain class of optimal map projections. For instance, if the distortion energy over a meridian strip of the International Reference Ellipsoid is minimized, we are led to the Laplace–Beltrami vector-valued partial differential equation. Harmonic functions x(L,B), y(L,B) given as functions of ellipsoidal surface parameters of Gauss ellipsoidal longitude L and Gauss ellipsoidal latitude B, as well as x(,q), y(,q) given as functions of relative isometric longitude =LL0 and relative isometric latitude q=QQ0 gauged to a vector-valued boundary condition of special symmetry are constructed. The easting and northing {x(b,),y(b,)} of the new harmonic map is then given. Distortion energy analysis of the new harmonic map is presented, as well as case studies for (1) B[–40°,+40°], L[–31°,+49°], B0= ±30°, L0=9° and (2) B[46°,56°], L{[4.5°, 7.5°]; [7.5°, 10.5°]; [10.5°,13.5°]; [13.5°,16.5°]}, B0= 51°, L0 {6°,9°,12°,15°}.  相似文献   

17.
    
Baardas reliability measures for outliers, as well as sensitivity and separability measures for deformations, are functions of the lower bound of the non-centrality parameter (LBNP). This parameter, which is taken from Baardas well-known nomograms, is actually a non-centrality parameter of the cumulative distribution function (CDF) of the non-central 2-distribution yielding a complementary probability of the desired power of the test, i.e. probability of Type II error. It is investigated how the LBNP can be computed for desired probabilities (power of the test and significance level) and known degrees of freedom. Two recursive algorithms, namely bisection and the Newton algorithm, were applied to compute the LBNP after the definition of a stable and accurate algorithm for the computation of the corresponding CDF. Despite the fact that the recursive algorithms ensure some desired accuracy, it is presented numerically that the Newton algorithm has a faster convergence to the solution than the bisection algorithm.  相似文献   

18.
Productivity convergence and spatial dependence among Spanish regions   总被引:3,自引:0,他引:3  
This paper estimates the evolution of labor productivity disparities among 48 Spanish regions over 1980–1996 according to the concepts of - and -convergence. The results of -convergence emphasize the importance of including the impact of neighboring locations productivity and a disaggregate analysis at a sectoral level. In order to measure the narrowing of inequalities, we examine -convergence and reveal that convergence occurs in aggregate labor productivity but not in productivities per sector. The reason comes from a transfer of resources from agriculture towards more productive sectors that has been more pronounced in the poor regions than in the rich ones.The author would like to thank Julie Le Gallo, an anonymous referee, and the participants of the 50th North American Meetings of the RSAI and of the 43rd Annual Meeting of the WRSA for their valuable comments. This paper won the first place the 2004 Tiebout Prize competition, which was awarded at the WRSA meeting, Hawaii, USA, February 26–28.  相似文献   

19.
The solutions of four ellipsoidal approximations for the gravimetric geoid are reviewed: those of Molodenskii et al., Moritz, Martinec and Grafarend, and Fei and Sideris. The numerical results from synthetic tests indicate that Martinec and Grafarends solution is the most accurate, while the other three solutions contain an approximation error which is characterized by the first-degree surface spherical harmonic. Furthermore, the first 20 degrees of the geopotential harmonic series contribute approximately 90% of the ellipsoidal correction. The determination of a geoid model from the generalized Stokes scheme can accurately account for the ellipsoidal effect to overcome the first-degree surface spherical harmonic error regardless of the solution used.  相似文献   

20.
In a modern application of Stokes formula for geoid determination, regional terrestrial gravity is combined with long-wavelength gravity information supplied by an Earth gravity model. Usually, several corrections must be added to gravity to be consistent with Stokes formula. In contrast, here all such corrections are applied directly to the approximate geoid height determined from the surface gravity anomalies. In this way, a more efficient workload is obtained. As an example, in applications of the direct and first and second indirect topographic effects significant long-wavelength contributions must be considered, all of which are time consuming to compute. By adding all three effects to produce a combined geoid effect, these long-wavelength features largely cancel. The computational scheme, including two least squares modifications of Stokes formula, is outlined, and the specific advantages of this technique, compared to traditional gravity reduction prior to Stokes integration, are summarised in the conclusions and final remarks. AcknowledgementsThis paper was written whilst the author was a visiting scientist at Curtin University of Technology, Perth, Australia. The hospitality and fruitful discussions with Professor W. Featherstone and his colleagues are gratefully acknowledged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号