首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Oxygen isotope fractionation between coexisting minerals in slowly cooled rocks conveys information about their cooling history. By using the fast grain boundary (FGB) model to simulate closed-system diffusive ex- change of oxygen isotopes between coexisting minerals, I show that the apparent equilibrium temperatures (Tae) by the mineral pair with the largest isotopic fractionation (PLIF) always lies between the closure temperatures (To) of those two minerals. Therefore, when the rate of oxygen diffusion and hence Tc for the PLIF chance to be comparable (such as in the case of quartz and magnetite), Tae will serve as a good approximation of To regardless of variation in mineral proportions. The specialty of the PLIF in constraining Tac within their Tc range can be generalized to other stable isotope systems and element partitioning. By approximating Tc with Tac and inverting Dodson's equation, the cooling rate of plutonic or metamorphic rocks can be inferred.  相似文献   

2.
To evaluate the potential of (U–Th)/He geochronometry and thermochronometry of zircon, we measured He diffusion characteristics in zircons from a range of quickly and slowly cooled samples, (U–Th)/He ages of zircons from the quickly cooled Fish Canyon Tuff, and age-paleodepth relationships for samples from 15 to 18 km thick crustal section of the Gold Butte block, Nevada. (U–Th)/He ages of zircons from the Fish Canyon Tuff are consistent with accepted ages for this tuff, indicating that the method can provide accurate ages for quickly cooled samples. Temperature-dependent He release from zircon is not consistent with thermally activated volume diffusion from a single domain. Instead, in most samples apparent He diffusivity decreases and activation energy (Ea) increases as cycled step-heating experiments proceed. This pattern may indicate a range of diffusion domains with distinct sizes and possibly other characteristics. Alternatively, it may be the result of ongoing annealing of radiation damage during the experiment. From these data, we tentatively suggest that the minimum Ea for He diffusion in zircon is about 44 kcal/mol, and the minimum closure temperature (Tc, for a cooling rate of 10 °C/myr) is about 190 °C. Age–paleodepth relationships from the Gold Butte block suggest that the base of the zircon He partial retention zone is at pre-exhumation depths of about 9.5–11 km. Together with constraints from other thermochronometers and a geothermal gradient derived from them in this location, the age–depth profile suggests a He Tc of about 200 °C for zircon, in reasonable agreement with our interpretation of the laboratory measurements. A major unresolved question is how and when radiation damage effects become significant for He loss from this mineral.  相似文献   

3.
We have determined Cr diffusion coefficients (D) in orthopyroxene parallel to the a-, b-, and c-axial directions as a function temperature at f(O2) corresponding to those of the wüstite-iron (WI) buffer. Diffusion is found to be significantly anisotropic with D(//c) > D(//b) > D(//a), conforming to an earlier theoretical prediction. Increase of f(O2) from WI buffer conditions to 4.5 log unit above the buffer at 950 and 1050 °C leads to decrease of D(Cr) by a factor of two to three, possibly suggesting significant contribution from an interstitial diffusion mechanism. We have used the diffusion data to calculate the closure temperatures (Tc) of the Mn-Cr decay system in orthopyroxene as a function of initial temperature (T0), grain size (a) and cooling rate for spherical and plane sheet geometries. We also present graphical relations that permit retrieval of cooling rates from knowledge of the resetting of Mn-Cr ages in orthopyroxene during cooling, T0 and a. Application of these relations to the Mn-Cr age data of the cumulate eucrite Serra de Magé yields a Tc of 830-980 °C, and cooling rates of 2-27 °C/Myr at Tc and ∼1-13 °C/Myr at 500 °C. It is shown that the cooling of Serra de Magé to the closure temperature of the Mn-Cr system took place at its original site in the parent body, and thus implies a thickness for the eucrite crust in the commonly accepted HED parent body, Vesta, of greater than 30 km. This thickness of the eucrite crust is compatible only with a model of relatively olivine-poor bulk mineralogy in which olivine constitutes 19.7% of the total asteroidal mass.  相似文献   

4.
(U-Th)/He chronometry of zircon has a wide range of potential applications including thermochronometry, provided the temperature sensitivity (e.g., closure temperature) of the system be accurately constrained. We have examined the characteristics of He loss from zircon in a series of step-heating diffusion experiments, and compared zircon (U-Th)/He ages with other thermochronometric constraints from plutonic rocks. Diffusion experiments on zircons with varying ages and U-Th contents yield Arrhenius relationships which, after about 5% He release, indicate Ea = 163-173 kJ/mol (39-41 kcal/mol), and D0 = 0.09-1.5 cm2/s, with an average Ea of 169 ± 3.8 kJ/mol (40.4 ± 0.9 kcal/mol) and average D0 of 0.46+0.87−0.30 cm2/s. The experiments also suggest a correspondence between diffusion domain size and grain size. For effective grain radius of 60 μm and cooling rate of 10°C/myr, the diffusion data yield closure temperatures, Tc, of 171-196°C, with an average of 183°C. The early stages of step heating experiments show complications in the form of decreasing apparent diffusivity with successive heating steps, but these are essentially absent in later stages, after about 5-10% He release. These effects are independent of radiation dosage and are also unlikely to be due to intracrystalline He zonation. Regardless of the physical origin, this non-Arrhenius behavior is similar to predictions based on degassing of multiple diffusion domains, with only a small proportion (<2-4%) of gas residing in domains with a lower diffusivity than the bulk zircon crystal. Thus the features of zircon responsible for these non-Arrhenius trends in the early stages of diffusion experiments would have a negligible effect on the bulk thermal sensitivity and closure temperature of a zircon crystal.We have also measured single-grain zircon (U-Th)/He ages and obtained 40Ar/39Ar ages for several minerals, including K-feldspar, for a suite of slowly cooled samples with other thermochronologic constraints. Zircon He ages from most samples have 1 σ reproducibilities of about 1-5%, and agree well with K-feldspar 40Ar/39Ar multidomain cooling models for sample-specific closure temperatures (170-189°C). One sample has a relatively poor reproducibility of ∼24%, however, and a mean that falls to older ages than predicted by the K-feldspar model. Microimaging shows that trace element zonation of a variety of styles is most pronounced in this sample, which probably leads to poor reproducibility via inaccurate α-ejection corrections. We present preliminary results of a new method for characterizing U-Th zonation in dated grains by laser-ablation, which significantly improves zircon He age accuracy.In summary, the zircon (U-Th)/He thermochronometer has a closure temperature of 170-190°C for typical plutonic cooling rates and crystal sizes, it is not significantly affected by radiation damage except in relatively rare cases of high radiation dosage with long-term low-temperature histories, and most ages agree well with constraints provided by K-spar 40Ar/39Ar cooling models. In some cases, intracrystalline U-Th zonation can result in inaccurate ages, but depth-profiling characterization of zonation in dated grains can significantly improve accuracy and precision of single-grain ages.  相似文献   

5.
An apatite fission track (AFT) study of crystalline basement in the central Gawler Craton reveals apparent ages in the range of ca 430–58 Ma. The majority of samples underwent protracted monotonic cooling related to regional Paleozoic exhumation, consistent with long-term crustal stability as expected for cratonic interiors. However, multiple samples show evidence of Late Cretaceous–early Paleogene reheating, indicating a more dynamic low-temperature history. Inverse time–temperature modelling of AFT data indicates varying degrees of thermal overprinting between ~60 and 110°C, with substantially overprinted and negligibly overprinted samples in close proximity (<1 km). Time–temperature histories for samples that experienced thermal overprinting reveal localised Late Cretaceous–early Paleogene (ca 100–50 Ma) heating that is significantly younger than the Paleozoic–early Mesozoic exhumation recorded regionally. The highly localised nature and non-systematic patterns of overprinting combined with the lack of major Mesozoic or Cenozoic fault structures are not consistent with a regional thermal event associated with substantial reburial and later exhumation. Rather, localised reheating was most likely caused by heated groundwater from the once-overlying Mesozoic Eromanga Basin aquifer system, whose modern discharge margin (~400 km north of the study area) is marked by thermal mound springs that produce fluids with temperatures up to 100°C. Only basement rocks in close proximity to fluid pathways in the overlying aquifer would have recorded reheating, resulting in the observed sporadic distribution of partially overprinted samples. Thermal history modelling indicates rejuvenated apatite grains cooled to near-surface temperatures in the latest Cretaceous–Paleogene. This was likely in response to local removal of the overlying Eromanga Basin aquifer unit due to a relatively minor degree of exhumation (≤1 km) recorded regionally, which consequently disrupted the anomalous heating mechanism. These results show that the flow of heated groundwater is a feasible reheating mechanism for low-temperature thermochronometers, resulting in cooling patterns that may become decoupled from exhumation in cratonic interiors.  相似文献   

6.
We have determined the Nd3+ diffusion kinetics in natural enstatite crystals as a function of temperature, f(O2) and crystallographic direction at 1 bar pressure and applied these data to several terrestrial and planetary problems. The diffusion is found to be anisotropic with the diffusion parallel to the c-axial direction being significantly greater than that parallel to a- and b-axis. Also, D(//a) is likely to be somewhat greater than D(//b). Diffusion experiments parallel to the b-axial direction as a function of f(O2) do not show a significant dependence of D(Nd3+) on f(O2) within the range defined by the IW buffer and 1.5 log unit above the WM buffer. The observed diffusion anisotropy and weak f(O2) effect on D(Nd3+) may be understood by considering the crystal structure of enstatite and the likely diffusion pathways. Using the experimental data for D(Nd3+), we calculated the closure temperature of the Sm-Nd geochronological system in enstatite during cooling as a function of cooling rate, grain size and geometry, initial (peak) temperature and diffusion direction. We have also evaluated the approximate domain of validity of closure temperatures calculated on the basis of an infinite plane sheet model for finite plane sheets showing anisotropic diffusion. These results provide a quantitative framework for the interpretation of Sm-Nd mineral ages of orthopyroxene in planetary samples. We discuss the implications of our experimental data to the problems of melting and subsolidus cooling of mantle rocks, and the resetting of Sm-Nd mineral ages in mesosiderites. It is found that a cooling model proposed earlier [Ganguly J., Yang H., Ghose S., 1994. Thermal history of mesosiderites: Quantitative constraints from compositional zoning and Fe-Mg ordering in orthopyroxene. Geochim. Cosmochim. Acta 58, 2711-2723] could lead to the observed ∼90 Ma difference between the U-Pb age and Sm-Nd mineral age for mesosiderites, thus obviating the need for a model of resetting of the Sm-Nd mineral age by an “impulsive disturbance” [Prinzhoffer A, Papanastassiou D.A, Wasserburg G.J., 1992. Samarium-neodymium evolution of meteorites. Geochim. Cosmochim. Acta 56, 797-815].  相似文献   

7.
New Hornblende K-Ar and 39Ar-40Ar and mica Rb-Sr and K-Ar ages are used to place specific timemarks on a well-constrained pressure-temperature path for the late Alpine metamorphism in the Western Tauern Window. After identification of excess 40Ar, the closure behavior of Ar in hornblende is compared with that of Sr and Ar in phengite and biotite. Samples were collected in three locations, whose maximum temperatures were 570° C (Zemmgrund), 550° C (Pfitscher Joch), and 500–540° C (Landshuter Hütte).The average undisturbed age sequence found is: Phengite Rb-Sr (20 Ma)>hornblende K-Ar (18 Ma)>phengite K-Ar (15 Ma)>biotite Rb-Sr, K-Ar (13.3 Ma)>apatite FT (7 Ma). Except for the phengite Rb-Sr age, the significance of which is debatable, all ages are cooling ages. No compositional effects are seen for closure in biotite. Additionally, Rb-Sr phengite ages from shearzones possibly indicate continuous shearing from 20 to 15 Ma, with reservations regarding the validity of the initial Sr correction and possible variations of the closure temperatures. The obviously lower closure temperature (T c) for Ar in these hornblendes than for Sr in the unsheared phengites indicates that the T c sequence in the Western Tauern Window is different from those observed in other terrains. In spite of this discrepancy, valuable geological conclusions can be drawn if the application of closure temperatures is limited to this restricted area with similar T, P and : (1) All ages of samples located on equal metamorphic isotherms decrease from east to west by about 1 Ma which is the result of a westward tilting of the Tauern Window during uplift. (2) In a PT-path, the undisturbed cooling ages yield constantly decreasing uplift rates from 3.6 mm/a to 0.1 mm/a. (3) Use of recently published diffusion data for Ar in hornblende (T c=520° C) and biotite (T c=320° C) suggests an extrapolated phengite closure temperature for Sr at 550° C. This suggests that the prograde thermal metamorphism at this tectonic level of the Tauern Window lasted until some 20 Ma ago.  相似文献   

8.
The elucidation of thermal histories by geochronological and isotopic means is based fundamentally on solid-state diffusion and the concept of closure temperatures. Because diffusion is thermally activated, an analytical solution of the closure temperature (T c *) can only be obtained if the diffusion coefficient D of the diffusion process is measured at two or more different temperatures. If the diffusion coefficient is known at only one temperature, however, the true closure temperature (T c *) cannot be calculated analytically because there exist an infinite number of possible (apparent) closure temperatures ( c ) which can be generated by this single datum. By introducing further empirical constraints to limit the range of possible closure temperatures, however, mathematical analysis of a modified form of the closure temperature equation shows that it is possible to make both qualitative and quantitative estimates of T c * given knowledge of only one diffusion coefficient D M measured at one temperature T M . Qualitative constraints of the true closure temperature T c * are obtained from the shapes of curves on a graph of the apparent T c ( c ) vs. activation energy E, in which each curve is based on a single diffusion coefficient measurement D M at temperature T M . Using a realistic range of E, the concavity of the curve shows whether T M is less than, approximately equal to, or greater than T c *. Quantitative estimates are obtained by considering two dimensionless parameters [ln êRT^ c vs. T c */T M ] derived from these curves. When these parameters are plotted for known argon diffusion data and for a given diffusion size and cooling rate, it is found that the resultant curves are almost identical for all of the commonly dated K–Ar minerals – biotite, phlogopite, muscovite, hornblende and orthoclase – in spite of differences in their diffusion parameters. A common curve for Ar diffusion can be derived by least-squares fitting of all the Ar diffusion data and provides a way of predicting a “model” closure temperature T cm from a single diffusion coefficient D M at temperature T M . Preliminary diffusion data for a labradorite lead to a T cm of 507 ± 17 °C and a corresponding activation energy of about 65 kcal/mol, given a grain size of 200 μm and a cooling rate of 5 °C/Ma. Curves for He diffusion in silicates (augite, quartz and sanidine) also overlap to a significant degree, both among themselves and with the Ar model curve, suggesting that a single model curve may be a good representation of noble gas closure temperatures in silicates. An analogous model curve for a selection of 18O data can also be constructed, but this curve differs from the Ar model curve. A single model curve for cationic species does not appear to exist, however, suggesting that chemical bonding relationships between the ionic size/charge and crystal structure may influence the closure temperatures of diffusing cations. An indication of the degree of overlap among the various curves for Ar, He, 18O and cations is also obtained by considering the dimensionless parameter E/RT c *; for the noble gases and 18O, E/RT c * values for the respective minerals are very similar, whereas for cations, there is significant dispersion. Given these constraints, this may be a potential method of estimating closure temperatures for certain diffusing species when there are limited diffusion data. Received: 1 July 1999 / Accepted: 24 March 2000  相似文献   

9.
Rapid Pb-Pb dating of natural rutile crystals by laser ablation multiple-collector inductively coupled plasma mass spectrometry (LA-MC-ICPMS) is investigated as a tool for constraining geological temperature-time histories. LA-MC-ICPMS was used to analyse Pb isotopes in rutile from granulite-facies rocks from the Reynolds Range, Northern Territory, Australia. The resultant ages were compared with previous U-Pb zircon and monazite age determinations and new mica (muscovite, phlogopite, and biotite) Rb-Sr ages from the same metamorphic terrane. Rutile crystals ranging in size from 3.5 to 0.05 mm with ?20 ppm Pb were ablated with a 300-25 μm diameter laser beam. Crystals larger than 0.5 mm yielded sufficiently precise 206Pb/204Pb and 207Pb/204Pb ratios to correct for the presence of common Pb, and individual rutile crystals often exhibited sufficient Pb isotopic heterogeneity to allow isochron calculations to be performed on replicate analyses of a single crystal. The mean of 12 isochron ages is 1544 ± 8 Ma (2 SD), with isochron ages for single crystals having uncertainties as low as ±1.3 Myr (2 SD). The 207Pb-206Pb ages calculated without correction for common Pb are typically <0.5% higher than the common-Pb-corrected isochron ages reflecting the very minor amounts of common Pb present in the rutile. The LA-MC-ICPMS method described samples only the outer 0.1-0.2 mm of the rutile crystals, resulting in a grain size-independent apparent closure temperature (Tc) for Pb diffusion in rutile that is less than the Tc of monazite ?0.1 mm in diameter, but significantly higher than the Rb-Sr system in muscovite (550 °C), phlogopite (435 °C) and biotite (400 °C). Even small rutile crystals are extremely resistant to isotopic resetting. For the established slow cooling rate of ca. 3 °C/Myr, the Tc for Pb diffusion in the analysed rutile is ca. 630 °C. This is in excellent agreement with recent experimental results that indicate that rutile has a higher Tc than previously thought (ca. 600-640 °C for rutile 0.1-0.2 mm diameter cooled at 3 °C/Myr; near 600 °C [Cherniak D.J., 2000. Pb diffusion in rutile. Contrib. Mineral. Petrol. 139, 198-207], versus 400 °C [Mezger, K., Hanson G.N., Bohlen S.R., 1989a. High precision U-Pb ages of metamorphic rutile: applications to the cooling history of high-grade terranes. Earth Planet. Sci. Lett. 96, 106-118.] for 1 °C/Myr), and with current Tc estimates for monazite and other high temperature geochronometers, which have been revised upwards in recent years. The new rutile ages, together with the other geochronological data from the region, support the interpretation that the Reynolds Range underwent prolonged slow cooling on a conductive geotherm, under nearly steady-state conditions. Slow cooling at ca. 3 °C/Myr persisted for at least 40 Myr followed the peak of high-T/low-P metamorphism to granulite-facies conditions, and probably continued at ca. 2-3 °C/Myr for ca. 200 Myr overall.  相似文献   

10.
《Journal of Structural Geology》1999,21(8-9):1255-1265
Isotope diffusion in a mineral is strongly temperature dependent but is also a function of grain size. Deformation must, therefore, be an important consideration in the interpretation of isotopic data because it provides a means of modifying grain size and shape. We illustrate the range of different deformation mechanisms common in micas and use simple models to investigate the relationship between these and isotope diffusion. We consider three different thermal scenarios with deformation taking place during: (a) the prograde heating path, (b) at the closure temperature of the deforming mineral, and (c) at temperatures significantly below the closure temperature. We have modelled these simple systems using a finite difference algorithm that simulates argon diffusion profiles and bulk ages. This modelling illustrates that obtaining deformation ages is critically dependent on an understanding and recognition of the different deformation mechanisms that have affected the sample. In the cases where deformation causes a change in grain size, it is important to characterise both the temperature at which deformation takes place and the closure temperature of grains formed during the deformation. The development of grains with Tc greater than the deformation temperature may record a deformation age. Examples of this condition include: (i) neocrystallisation; (ii) grain size reduction occurring at temperatures below Tc (of the reduced grain size) where the deformation mechanism has reset the grains; and (iii) deformation-induced grain coarsening.  相似文献   

11.
We present a multi‐chronometric approach for reconstructing deep‐time thermal histories using southern Baffin Island as a case study. This continuous thermal history begins with the Palaeoproterozoic Trans‐Hudson Orogeny and is derived from inverse and forward models that integrate thermochronometers spanning some 500°C: new apatite U–Pb ages and K‐feldspar 40Ar/39Ar multi‐diffusion domain data, published (U–Th)/He zircon ages and new multi‐kinetic fission‐track results. Integration of data from a wider temperature range reduces ambiguities in thermal‐history modelling and permits us to constrain the timing of geological processes including, extended post‐orogenic cooling, enhanced later Proterozoic cooling, and then episodic burial and exhumation in the Palaeozoic–Mesozoic.  相似文献   

12.
Lateral motion of material relative to the regional thermal and kinematic frameworks is important in the interpretation of thermochronology in convergent orogens. Although cooling ages in denuded settings are commonly linked to exhumation, such data are not related to instantaneous behavior but rather to an integration of the exhumation rates experienced between the thermochronological ‘closure’ at depth and subsequent exposure at the surface. The short spatial wavelength variation of thermal structure and denudation rate typical of orogenic regions thus renders thermochronometers sensitive to lateral motion during exhumation. The significance of this lateral motion varies in proportion with closure temperature, which controls the depth at which isotopic closure occurs, and hence, the range of time and length scales over which such data integrate sample histories. Different chronometers thus vary in the fundamental aspects of the orogenic character to which they are sensitive. Isotopic systems with high closure temperature are more sensitive to exhumation paths and the variation in denudation and thermal structure across a region, while those of lower closure temperature constrain shorter-term behaviour and more local conditions.Discounting lateral motion through an orogenic region and interpreting cooling ages purely in terms of vertical exhumation can produce ambiguous results because variation in the cooling rate can result from either change in kinematics over time or the translation of samples through spatially varying conditions. Resolving this ambiguity requires explicit consideration of the physical and thermal framework experienced by samples during their exhumation. This can be best achieved through numerical simulations coupling kinematic deformation to thermal evolution. Such an approach allows the thermochronological implications of different kinematic scenarios to be tested, and thus provides an important means of assessing the contribution of lateral motion to orogenic evolution.  相似文献   

13.
Multipath diffusion in geochronology   总被引:5,自引:0,他引:5  
Recent developments in microanalytical tools such as the ion and laser microprobe have revealed spatial distributions of radiogenic isotopes in minerals which cannot be explained by a simple volume diffusion mechanism. Although it is known that diffusion of a substance along extended defects (such as dislocations, exsolution lamellae, micropores, microfractures, fission tracks, etc.), which may serve as high-diffusivity pathways in a crystal, can significantly influence the bulk diffusivity of a mineral, this has largely been ignored in the field of geochronology. A general numerical model has been developed, which solves coupled multipath diffusion equations that describe the simultaneous diffusion of a solute species through both the crystal lattice (via volume diffusion) and high-diffusivity pathways (via short-circuit diffusion) under non-steady state conditions. Addition of a radioactive source term to the appropriate equations further allows for the modelling of integrated cooling ages and closure temperatures, and has direct pertinence to geochronological and thermochronologial studies. Three key criteria can be used to distinguish multipath diffusion mechanisms from volume diffusion mechanisms: (a) non-Fickian concentration profiles, (b) enhanced solute diffusivity with increasing mineral grain size, and (c) a lack of any correlation between closure temperatures (and cooling ages) and larger grain sizes. With multipath diffusion, the effective diffusion dimension a for certain minerals appears to remain on the order of the grain size, and the model can adequately explain observed increases in the bulk diffusion coefficient D b with a in the hydrothermal bomb data of previous Ar diffusion studies. Arrhenius diagrams of a multipath diffusion D b vs 1/T will consist of curves that have a kink in them, reflecting a continuous change in the relative importance of the different diffusion mechanisms with temperature. The most important consequence of multipath diffusion is that the overall bulk diffusion coefficient D b of a diffusing species can be enhanced significantly above its volume diffusion coefficient D v . As a result, integrated ages and effective closure temperatures (T c ) can be much lower than those predicted assuming only a volume diffusion mechanism, to the extent that minerals normally characterized by low volume-diffusion T c may potentially have older integrated ages that minerals normally associated with higher volume-diffusion T c .  相似文献   

14.
Cooling rates have been determined for basaltic glasses from different depths of the submarine section of the drill core recovered in the 1999 phase of Hawaii Scientific Drilling Project (HSDP2). The glasses include degassed blocky hyaloclastite clasts and undegassed pillow rims. The degassed glassy clasts were generated in subaerial or shallow submarine environments, during explosive interactions between lava and seawater, before eventual deposition under water. The volatile contents of the glassy pillow rims are consistent with eruption and quenching in water several hundred metres deep. The cooling rates have been calculated from the calorimetric properties of the glass across the glass transition. The heat capacity (cp) of each sample was measured during several cycles of heating from room temperature to temperatures above their glass transition using a differential scanning calorimeter (DSC). Their compositions did not change during the thermal treatment, a prerequisite for successful cp measurements, although the glasses with higher H2O contents became more opaque and their mid-IR spectra changed. Each cp-T path exhibits the now classic features of the glass transition; glassy and liquid states separated by a hysteresis marking the transition. After experiencing the same experimental thermal history the glass transition occurs at lower temperatures in glasses with higher H2O contents. Except for one sample, the cp-T path measured on initial heating also releases energy stored during the natural quench, which is not recovered during subsequent experimental cooling. The energy stored in the HSDP2 glasses is much less than that observed in hyperquenched natural and synthetic glasses. Even so, the Tool-Narayanaswamy enthalpy relaxation geospeedometer, usually used to determine the cooling rates in volcanic glasses, is unable to deal with this energy release. For those samples that exhibit this feature an alternative method, developed for hyperquenched glasses, is applied. This uses the energy released to calculate Tf, from which the cooling rate is calculated. The degassed blocky hyaloclastite clasts exhibit cooling rates 0.1-72.2 K s−1, while the undegassed pillow rims span 0.2-46.4 K s−1. The fastest cooling rates are consistent with the cooling of lava bodies in seawater. The wide variation for both types of glass could reflect quenching at different distances from the basalt-seawater interface. However, for the degassed hyaloclastite clasts the range could indicate that the clasts were generated by different processes operating during the explosive interaction between lava and seawater in the littoral zone. In the undegassed pillow lavas, glassy rims may have been reheated, giving rise to more complex, slower, thermal histories, as a result of latent heat released during the crystallisation of pillow interiors, or flow replenishment. Both types of glass may also have experienced reheating from succeeding flows or deposits. Compared to deep-sea limu o Pele hyaloclastite fragments, whose hyperquench rates indicate simultaneous cooling and fragmentation, the shallow blocky hyaloclastite clasts may have formed during post-cooling brittle fragmentation.  相似文献   

15.
The Qilian–Qaidam orogenic belt at the northern edge of the Tibetan Plateau has received increasing attention as it recorded a complete history from continental breakup to opening and closure of ocean basin, and to the ultimate continental collision in the time period from the Neoproterozoic to the Paleozoic. Determining a geochronological framework of the initiation and termination of the fossil Qilian Ocean subduction in the North Qilian orogenic belt plays an essential role in understanding the whole tectonic process. Dating the high-pressure metamorphic rocks in the North Qilian orogenic belt, such as blueschist and eclogite, is the key in this respect. A blueschist from the southern North Qilian orogenic belt was investigated with a combined metamorphic PT and U–Pb, Lu–Hf, and Sm–Nd multichronometric approaches. Pseudosection modeling indicates that the blueschist was metamorphosed under peak PT conditions of 1.4–1.6 GPa and 530–550 °C. Zircon U–Pb ages show no constraints on the metamorphism due to the lack of metamorphic growth of zircon. Lu–Hf and Sm–Nd ages of 466.3 ± 2.0 Ma and 462.2 ± 5.6 Ma were obtained for the blueschist, which is generally consistent with the U–Pb zircon ages of 467–489 Ma for adjacent eclogites. Lutetium and Sm zoning profiles in garnet indicate that the Lu–Hf and Sm–Nd ages are biased toward the formation of the garnet inner rim. The ages are thus interpreted to reflect the time of blueschist-facies metamorphism. Previous 40Ar/39Ar ages of phengitic muscovite from blueschist/eclogite in this area likely represent a cooling age due to the higher peak metamorphic temperature than the argon retention temperature. The differences of peak metamorphic conditions and metamorphic ages between the eclogites and adjacent blueschists indicate that this region likely comprises different tectonic slices, which had distinct PT histories and underwent high-pressure metamorphism at different times. The initial opening of the Qilian Ocean could trace back to the early Paleozoic, and the ultimate closure of the Qilian Ocean was no earlier than c. 466 Ma.  相似文献   

16.
Thermochronology has revolutionized our understanding of the establishment and evolution of lithospheric thermal structure. However, many potential benefits provided by the application of diffusion theory to thermochronology have yet to be fully exploited. This study uses apatite (Tc = 450-550 °C) and titanite (Tc = 550-650 °C) U-Pb ID-TIMS thermochronology at the single- to sub-grain scale to separate the variable effects of volume diffusion of Pb from metamorphic (over)growth above and below the Tc of a mineral. Data are presented from two ca. 3227 Ma tonalite samples from north and south of the Barberton Greenstone Belt (BGB), southern Africa. Two distinct populations of apatite from a sample north of the BGB record fast cooling followed by metamorphic growth ∼10 Myr later. Both apatite and titanite dates from south of the BGB show a strong correlation with the grain size and record 100 Myr of post-emplacement cooling. Complex core-rim zoning observed in cathodoluminescence images of apatite is interpreted to reflect metamorphic overgrowth above the Tc. The age and topology of grain size versus date curves from titanite and apatite are used in combination with a finite-difference numerical model to show that slow, non-linear, cooling and not thermal resetting is responsible for the observed distribution. The thermal histories from either side of the BGB are very different and provide unique insight into the BGB’s tectonic evolution: a ∼70 Myr period of apparent stability after ca. 3.2 Ga terrane assembly was followed by fast exhumation south of the BGB that led to lower-crustal melting and intrusion of granitic batholiths ca. 3.14-3.10 Ga.  相似文献   

17.
We reconstructed annual mean temperature (Tann) trends from three radiocarbon-dated Holocene pollen stratigraphies from lake sediments in Estonia, northern Europe. The reconstructions were carried out using a North-European pollen-climate calibration model based on weighted averaging partial least-squares regression. The cross-validated prediction error of the model is 0.89°C and the coefficient of determination between observed modern Tann values and those predicted by the model is 0.88. In the reconstruction, the Holocene thermal maximum (HTM) is distinguishable at 8000-4500 cal yr B.P., with the expansion of thermophilous tree species and Tann on average 2.5°C higher than at present. The pollen-stratigraphical data reflect progressively warmer and drier summers during the HTM. Analogously with the modern decadal-scale climatic variability in North Europe, we interpret this as an indication of increasing climatic continentality due to the intensification of anticyclonic circulation and meridional air flow. Post-HTM cooling started abruptly at around 4500 cal yr B.P. All three reconstructions show a transient (ca. 300 years) cooling of 1.5-2.0°C at 8600-8000 cal yr B.P. We tentatively correlate this cold event with the North-Atlantic “8.2 ka event” at 8400-8000 cal yr B.P. Provided that the 8.2 ka event was caused by freshening of the North-Atlantic surface water, our data provide evidence of the climatic and vegetational responsiveness of the boundary of the temperate and boreal zones to the weakening of the North-Atlantic thermohaline circulation and the zonal energy transport over Europe. No other cold events of comparable magnitude are indicated during the last 8000 years.  相似文献   

18.
Under rare conditions, reworked cratons and their margins preserve the orogenic roots of ancient mountain-building events. However, based on the preservation of high-temperature (~?800?°C), middle and lower crustal metamorphic assemblages, present day exposure of these terrains is not simply a result of protracted denudation, but also must reflect a multifaceted exhumational history. In situ analysis within thin section preserves the textural setting of target minerals that can be used as thermochronometers such as U-Pb of zircon, monazite, titanite and apatite, and Sm-Nd of apatite. In situ analyses of these chronometers has the potential to provide critical timing constraints on exhumation processes related to decompression, melting and cooling across large metamorphic terrains. The Repulse Bay block of the Rae craton preserves a large composite amphibolite–granulite area (50,000 km2) of Archean orthogneiss, migmatite, and slivers of Proterozoic metasediments that underwent high-grade metamorphism, partial melting, ductile flow and finally exhumation during the Paleoproterozoic Trans-Hudson Orogeny. The granulite domain preserves dry granitoid assemblages, whereas the amphibolite domain is dominated by hydrated migmatites and orthogneiss. Metasediments occur in both domains and preserve mineral assemblages that are consistent with having undergone tectonometamorphic conditions of ~?9 kbar/800?°C during burial. U-Pb thermochronometers document identical cooling histories of the granulite and amphibolite domains through the U-Pb closure temperatures of titanite (~?650?°C) and apatite (~?450?°C). This suggests that melt-loss from the underlying granulite domain and melt-gain to the amphibolite domain prior to cooling through 650?°C are a controlling factor of the metamorphic assemblages across the composite granulite–amphibolite terrains such as the Repulse Bay block, rather than significant differences in burial history, cooling history, and/or reorganization of the crust.  相似文献   

19.
Plagioclase is not only the most abundant mineral in the Earth’s crust, but is present in almost all terrestrial tectonic settings and is widespread in most extraterrestrial material. Applying the K-Ar system to this common mineral would provide a powerful tool for quantifying thermal histories in a wide variety of settings. Nonetheless, plagioclase has rarely been used for thermochronometry, largely due to difficulties in simultaneously acquiring precise geochronologic data and quantifying argon diffusion kinetics from a mineral with low-K concentration. Here we describe an analytical technique that generates high-precision 40Ar/39Ar data and quantifies Ar diffusion kinetics of low-K minerals. We present results of five diffusion experiments conducted on single crystals of plagioclase from the Bushveld Complex, South Africa. The observed diffusion kinetics yield internally consistent thermochronological constraints, indicating that plagioclase is a reliable thermochronometer. Individual grains have activation energies of 155-178 kJ/mol and ln(D0/a2) varies between 3.5 and 6.5. These diffusion parameters correspond to closure temperatures of 225-300 °C, for a 10 °C/Ma cooling rate. Age spectra generally conform to single-domain diffusive loss profiles, suggesting that grain-scale diffusion dominates argon transport in this fairly simple plagioclase. Conjointly examining several single-grain analyses enables us to distinguish episodic reheating from slow cooling and indicates that the Bushveld Complex cooled rapidly and monotonically from magmatic temperature to <300 °C over 3 Ma, followed by protracted cooling to ambient crustal temperatures of 150-200 °C over ∼600 Ma.  相似文献   

20.
Alpine metamorphism, related to the development of a metamorphic core complex during Cretaceous orogenic events, has been recognized in the Veporic unit, Western Carpathians (Slovakia). Three metamorphic zones have been distinguished in the metapelites: 1, chloritoid + chlorite + garnet; 2, garnet + staurolite + chlorite; 3, staurolite + biotite + kyanite. The isograds separating the metamorphic zones have been modelled by discontinuous reactions in the system K2O–FeO–MgO–Al2O3–SiO2–H2O (KFMASH). The isograds are roughly parallel to the north‐east‐dipping foliation related to extensional updoming along low‐angle normal faults. Thermobarometric data document increasing PT conditions from c. 500 °C and 7–8 kbar to c. 620 °C and 9–10 kbar, reflecting a coherent metamorphic field gradient from greenschist to middle amphibolite facies. 40Ar/39Ar data obtained by high spatial resolution in situ ultraviolet (UV) laser ablation of white micas from the rock slabs constrain the timing of cooling and exhumation in the Late Cretaceous. Mean dates are between 77 and 72 Ma; however, individual white mica grains record a range of apparent 40Ar/39Ar ages indicating that cooling below the blocking temperature for argon diffusion was not instantaneous. The reconstructed metamorphic PTt path is ‘clockwise’, reflecting post‐burial decompression and cooling during a single Alpine orogenic cycle. The presented data suggest that the Veporic unit evolved as a metamorphic core complex during the Cretaceous growth of the Western Carpathian orogenic wedge. Metamorphism was related to collisional crustal shortening and stacking, following closure of the Meliata Ocean. Exhumation was accomplished by synorogenic (orogen‐parallel) extension and unroofing in an overall compressive regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号