首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we describe the stratigraphy and sediments deposited in Lake Samra that occupied the Dead Sea basin between ∼ 135 and 75 ka. This information is combined with U/Th dating of primary aragonites in order to estimate a relative lake-level curve that serves as a regional paleohydrological monitor. The lake stood at an elevation of ∼ 340 m below mean sea level (MSL) during most of the last interglacial. This level is relatively higher than the average Holocene Dead Sea (∼ 400 ± 30 m below MSL). At ∼ 120 and ∼ 85 ka, Lake Samra rose to ∼ 320 m below MSL while it dropped to levels lower than ∼ 380 m below MSL at ∼ 135 and ∼ 75 ka, reflecting arid conditions in the drainage area. Lowstands are correlated with warm intervals in the Northern Hemisphere, while minor lake rises are probably related to cold episodes during MIS 5b and MIS 5d. Similar climate relationships are documented for the last glacial highstand Lake Lisan and the lowstand Holocene Dead Sea. Yet, the dominance of detrital calcites and precipitation of travertines in the Dead Sea basin during the last interglacial interval suggest intense pluvial conditions and possible contribution of southern sources of wetness to the region.  相似文献   

2.
Relatively few radiometrically dated records are available for the central Mediterranean spanning the marine oxygen isotope stage 6–5 (MIS 6–5) transition and the first part of the Last Interglacial. Two flowstone cores from Tana che Urla Cave (TCU, central Italy), constrained by 19 U/Th ages, preserve an interval of continuous speleothem deposition between ca. 159 and 121 ka. A multiproxy record (δ18O, δ13C, growth rate and petrographic changes) obtained from this flowstone preserves significant regional-scale hydrological changes through the glacial/interglacial transition and multi-centennial variability (interpreted as alternations between wetter and drier periods) within both glacial and interglacial stages. The glacial stage shows a wetter period between ca. 154 and 152 ka, while the early to middle Last Interglacial period shows several drying events at ca. 129, 126 and 122 ka, which can be placed in the wider context of climatic instability emerging from North Atlantic marine and NW European terrestrial records. The TCU record also provides important insights into the evolution of local environmental conditions (i.e. soil development) in response to regional and global-scale climate events.  相似文献   

3.
Direct dating of fossil coral reefs using the U-series chronometer provides an important independent test of the Milankovitch orbital forcing theory of climate change. However, well-dated fossil corals pre-dating the last interglacial period (>130 thousand years ago; ka) are scarce due to, (1) a lack of sampling localities, (2) insufficient analytical precision in U-series dating methods, and (3) diagenesis which acts to violate the assumption of closed-system U-series isotopic decay in fossil corals. Here we present 50 new high-precision U-series age determinations for fossil corals from Henderson Island, an emergent coral atoll in the central South Pacific. U-series age determinations associated with the Marine Isotope Stage (MIS) 9 interglacial and MIS 7.5 interstadial periods are reported. The fossil corals show relatively little open-system U-series behaviour in comparison to other localities with fossil coral reefs formed prior to the last glacial cycle, however, open-system U-series behaviour is still evident in most of the dated corals. In particular, percent-level shifts in the [230Th/238U]act composition are observed, leading to conventional U-series ages that are significantly younger or older than the true sample age. This open-system U-series behaviour is not accounted for by any of the open-system U-series models, indicating that new models should be derived. The new U-series ages reported here support and extend earlier findings reported in Stirling et al. (2001), providing evidence of prolific coral reef development on Henderson Island at ∼320 ka, most likely correlated with MIS 9.3, and subsequent reef development at ∼307 ka during MIS 9.1, while relative sea-level was potentially ∼20 m lower than during MIS 9.3. The U-series ages for additional well-preserved fossil corals are suggestive of minor reef development on Henderson Island during MIS 7.5 (245-230 ka) at 240.3 ± 0.8 and 234.7 ± 1.3 ka. All U-series observations are consistent with the Milankovitch theory of climate change, in terms of the timing of onset and termination of the dated interglacial and interstadial periods. The best preserved samples also suggest that the oceanic 234U/238U during MIS 9 and MIS 7.5 was within five permil of the modern open ocean composition.  相似文献   

4.
The Dead Sea fault (DSF) is one of the most active plate boundaries in the world. Understanding the Quaternary history and sediments of the DSF requires investigation into the Neogene development of this plate boundary. DSF lateral motion preceded significant extension and rift morphology by ~ 10 Ma. Sediments of the Sedom Formation, dated here between 5.0 ± 0.5 Ma and 6.2− 2.1inf Ma, yielded extremely low 10Be concentrations and 26Al is absent. These reflect the antiquity of the sediments, deposited in the Sedom Lagoon, which evolved in a subdued landscape and was connected to the Mediterranean Sea. The base of the overlying Amora Formation, deposited in the terminal Amora Lake which developed under increasing relief that promoted escarpment incision, was dated at 3.3− 0.8+ 0.9 Ma. Burial ages of fluvial sediments within caves (3.4 ± 0.2 Ma and 3.6 ± 0.4 Ma) represent the timing of initial incision. Initial DSF topography coincides with the earliest Red Sea MORB's and the East Anatolian fault initiation. These suggest a change in the relative Arabian–African plate motion. This change introduced the rifting component to the DSF followed by a significant subsidence, margin uplift, and a reorganization of relief and drainage pattern in the region resulting in the topographic framework observed today.  相似文献   

5.
U-series dating can be an effective means to obtain accurate and precise ages on Quaternary carbonates. However, most samples require a correction for U and Th in admixed detritus. This complication is often addressed through generation of U-Th isochrons, requiring analyses of several coeval samples. In addition, presence of water-derived (hydrogenous) Th in the carbonate can cause inaccuracies in isochron ages.This study reports a high-resolution U-series chronology of sediments deposited by Lake Lisan, the last glacial precursor of the Dead Sea. The strategy employed combines multiple measurements from a few stratigraphic heights and fewer analyses from many heights in a single described and measured section. The resulting chronology is based on ages at 22 heights in a ∼40-m-thick section covering the interval of ∼70-14 calendar ka BP. The effects of admixed detritus are evaluated using trace elements. Nearly pure aragonite samples, indicated by very low abundances of insoluble elements such as Nb and Zr, were found to contain hydrogenous Th, which causes the uncorrected U-230Th age of a modern sample to be ∼2.5 ka. Nevertheless, accurate ages have been obtained by correcting for the detrital and aqueous interferences. The resulting ages are in stratigraphic order, and their accuracy is evidenced by consistency of Lisan Formation U-series and 14C ages with the coral-based calendar-radiocarbon age calibration.The U-Th ages provide a context to unravel the limnological history of Lake Lisan. Boundaries between the Lower, Middle, and Upper stratigraphic units correspond to the MIS 4/3 and 3/2 transitions, respectively. During MIS 2 and 4 the lake generally showed a stable two-layer configuration and a positive fresh-water balance, reflected by deposition of laminated aragonite-detritus. Dry intervals during MIS 2 and 4 are indicated by thick gypsum layers and an inferred depositional hiatus, which are temporally associated with Heinrich events H1 at ∼17 ka and H6 at ∼65 ka, respectively. During MIS 3 the lake level was unstable with intermittent dry periods indicated by abundant clastic layers and a significant hiatus between ∼43-49 ka. Clastic layers are associated with Dansgaard-Oeschger events during MIS 3, and indicate lake level declines during abrupt Northern Hemisphere warmings. Overall, the climate of the Eastern Mediterranean region shows a strong linkage to the Northern Hemisphere climate, with increasing lake size and stability during cold periods, and fluctuations and dessication during warmings and Heinrich events.  相似文献   

6.
Recent explorations in Cueva Charles Brewer, a large cave in a sandstone tepui, SE Venezuela, have revealed silica biospeleothems of unprecedented size and diversity. Study of one — a sub-spherical mass of opaline silica — reveals a complex, laminated internal structure consisting of three narrow dark bands alternating with two wider light bands. Uranium-thorium dating has produced 3 stratigraphically correct dates on the light bands from 298 ± 6 (MIS 9) to 390 ± 33 ka (MIS 11). U concentration is only 30-110 ppb. Initial 234U/238U ratios are high and increase over time from 1.8 to 5.3. Growth rate is very low, the fastest, at 0.37 ± 0.23 mm/ka, in MIS 9. Trace element and heavy metal content of the dark bands is distinctly higher than that of the light bands. It is hypothesized that the dark and light bands correlate with drier/glacial and wetter/interglacial periods, respectively, and that this sample probably began to grow in MIS 13. The cave is in a region that straddles a regionally important ecotone: the speleothem isotopic and trace element variations may preserve a useful paleoclimatic signal. This is the first published suite of U-Th dates from a single silica speleothem and the longest Quaternary record for this region.  相似文献   

7.
Speleothem growth requires humid climates sufficiently warm to stimulate soil CO2 production by plants. We compile 283 U/Th dates on 21 stalagmites from six cave systems in the NW coast of Spain to evaluate if there are patterns in stalagmite growth that are evidence of climatic forcing. In the oldest stalagmites, from marine oxygen isotope stage (MIS) 7–5, growth persists through the glacial period. Hiatuses and major reductions in growth rate occur during extreme minima in summer insolation. Stalagmites active during the last interglaciation cease growth at the MIS 5–4 boundary (74 ka), when regional sea-surface temperature cooled significantly. During MIS 3, only two stalagmites grew; rates were highest between 50 and 60 ka during the maximum in summer insolation. One stalagmite grew briefly at 41 ka, 36.5 and 28.6 ka, all during warm phases of the Dansgaard–Oeschger cycles. A pronounced Holocene optimum in stalagmite growth occurs from 9 to 6 ka. The cessation of most growth by 4.1 ka, coincident with broad increases in aridity over the Mediterranean and areas influenced by the North African Monsoon, suggest that regions such as NW Spain, with dominant Atlantic moisture sources, also experienced increased aridity at this time.  相似文献   

8.
Although glacial landscapes have previously been used for the reconstruction of late Quaternary glaciations in the Central Andes, only few data exist for the Eastern Cordillera in Bolivia. Here, we present results from detailed morphostratigraphic mapping and new data of surface exposure dating (SED), optically stimulated luminescence (OSL), and radiocarbon dating (14C) from the Huara Loma Valley, Cordillera de Cochabamba (Bolivia). Discrepancies between individual dating methods could be addressed within the context of a solid geomorphic framework. We identified two major glaciations. The older is not well constrained by the available data, whereas the younger glaciation is subdivided into at least four major glacial stages. Regarding the latter, a first advance dated to ~ 29-25 ka occurred roughly contemporaneous with the onset of the global last glacial maximum (LGM) and was followed by a less extensive (re-)advance around 20-18 ka. The local last glacial maximum (LLGM) in the Huara Loma Valley took place during the humid lateglacial ~ 17-16 ka, followed by several smaller readvances until ~ 10-11 ka, and complete deglaciation at the end of the Early Holocene.  相似文献   

9.
This study presents results from geomorphological mapping and cosmogenic radionuclide dating (10Be) of moraine sequences at Otgon Tenger (3905 m), the highest peak in the Khangai Mountains (central Mongolia). Our findings indicate that glaciers reached their last maximum extent between 40 and 35 ka during Marine Oxygen Isotope Stage (MIS) 3. Large ice advances also occurred during MIS-2 (at ~ 23 and 17–16 ka), but these advances did not exceed the limits reached during MIS-3. The results indicate that climatic conditions during MIS-3, characterized by a cool-wet climate with a greater-than-today input from winter precipitation, generated the most favorable setting for glaciation in the study region. Yet, glacial accumulation also responded positively to the far colder and drier conditions of MIS-2, and again during the last glacial–interglacial transition when precipitation levels increased. Viewed in context of other Pleistocene glacial records from High Asia, the pattern of glaciation in central Mongolia shares some features with records from southern Central Asia and NE-Tibet (i.e. ice maxima during interstadial wet phases), while other features of the Mongolian record (i.e. major ice expansion during the MIS-2 insolation minimum) are more in tune with glacier responses known from Siberia and western Central Asia.  相似文献   

10.
Thirty-one new bulk-sediment U–Th dates are presented, together with an improved δ18O stratigraphy, for ODP Site 1008A on the slopes of the Bahamas Banks. These ages supplement and extend those from previous studies and provide constraints on the timing of sea-level highstands associated with marine isotope stages (MIS) 7 and 9. Ages are screened for reliability based on their initial U and Th isotope ratios, and on the aragonite fraction of the sediment. Twelve ‘reliable’ dates for MIS 7 suggest that its start is concordant with that predicted if climate is forced by northern-hemisphere summer insolation following the theory of Milankovitch. But U–Th and δ18O data indicate the presence of an additional highstand which post-dates the expected end of MIS 7 by up to 10 ka. This event is also seen in coral reconstructions of sea-level. It suggests that sea-level is not responding in any simple way to northern-hemisphere summer insolation, and that tuned chronologies which make such an assumption are in error by ≈10 ka at this time. U–Th dates for MIS 9 also suggest a potential mismatch between the actual timing of sea-level and that predicted by simple mid-latitude northern-hemisphere forcing. Four dates are earlier than that predicted for the start of MIS 9. Although the most extreme of these dates may not be reliable (based on the low-aragonite content of the sediment) the other three appear robust and suggest that full MIS 9 interglacial conditions were established at 343 ka. This is ≈8 ka prior to the date expected if this warm period were driven by northern-hemisphere summer insolation.  相似文献   

11.
Our knowledge about the glaciation history in the Russian Arctic has to a large extent been based on geomorphological mapping supplemented by studies of short stratigraphical sequences found in exposed sections. Here we present new geochronological data from the Polar Ural Mountains along with a high‐resolution sediment record from Bolshoye Shchuchye, the largest and deepest lake in the mountain range. Seismic profiles show that the lake contains a 160‐m‐thick sequence of unconsolidated lacustrine sediments. A well‐dated 24‐m‐long core from the southern end of the lake spans the last 24 cal. ka. From downward extrapolation of sedimentation rates we estimate that sedimentation started about 50–60 ka ago, most likely just after a large glacier had eroded older sediments from the basin. Terrestrial cosmogenic nuclide (TCN) exposure dating (10Be) of boulders and Optically Stimulated Luminescence (OSL) dating of sediments indicate that this part of the Ural Mountains was last covered by a coherent ice‐field complex during Marine Isotope Stage (MIS) 4. A regrowth of the glaciers took place during a late stage of MIS 3, but the central valleys remained ice free until the present. The presence of small‐ and medium‐sized glaciers during MIS 2 is reflected by a sequence of glacial varves and a high sedimentation rate in the lake basin and likewise from 10Be dating of glacial boulders. The maximum extent of the mountain glaciers during MIS 2 was attained prior to 24 cal. ka BP. Some small present‐day glaciers, which are now disappearing completely due to climate warming, were only slightly larger during the Last Glacial Maximum (LGM) as compared to AD 1953. A marked decrease in sedimentation rate around 18–17 cal. ka BP indicates that the glaciers then became smaller and probably disappeared altogether around 15–14 cal. ka BP.  相似文献   

12.
Electron spin resonance (ESR) and 230Th/234U ages of speleothem samples collected from karstic caves located around 3000 m elevation in the Alada?lar Mountain Range (AMR), south-central Turkey, were determined in order to provide new insight and information regarding late Pleistocene climate. ESR ages were validated with the 230Th/234U ages of test samples. The ESR ages of 21 different layers of six speleothem samples were found to range mostly between about 59 and 4 ka, which cover the Marine Oxygen Isotope Stages (MIS) MIS 3 to MIS 1. Among all, only six layers appear to have deposited during MIS 8 and 5. Most of the samples dated were deposited during the late glacial stage (MIS 2). It appears that a cooler climate with a perennial and steady recharge was more conducive to speleothem development rather than a warmer climate with seasonal recharge in the AMR during the late Quaternary. This argument supports previous findings that suggest a two -fold increase in last glacial maximum mean precipitation in Turkey with respect to the present value.  相似文献   

13.
Loess accumulated on a Bull Lake outwash terrace of Marine Oxygen Isotope Stage 6 (MIS 6) age in southern Jackson Hole, Wyoming. The 9 m section displays eight intervals of loess deposition (Loess 1 to Loess 8, oldest), each followed by soil development. Our age-depth model is constrained by thermoluminescence, meteoric 10Be accumulation in soils, and cosmogenic 10Be surface exposure ages. We use particle size, geochemical, mineral-magnetic, and clay mineralogical data to interpret loess sources and pedogenesis. Deposition of MIS 6 loess was followed by a tripartite soil/thin loess complex (Soils 8, 7, and 6) apparently reflecting the large climatic oscillations of MIS 5. Soil 8 (MIS 5e) shows the strongest development. Loess 5 accumulated during a glacial interval (~ 76-69 ka; MIS 4) followed by soil development under conditions wetter and probably colder than present. Deposition of thick Loess 3 (~ 43-51 ka, MIS 3) was followed by soil development comparable with that observed in Soil 1. Loess 1 (MIS 2) accumulated during the Pinedale glaciation and was followed by development of Soil 1 under a semiarid climate. This record of alternating loess deposition and soil development is compatible with the history of Yellowstone vegetation and the glacial flour record from the Sierra Nevada.  相似文献   

14.
Changes in the abundance of selected planktic foraminiferal species and some sedimentological parameters at ODP site 728A were examined to understand the fluctuations in the surface productivity and deep sea oxygenation in the NW Arabian Sea during last ∼540 kyr. The increased relative abundances of high fertility taxa, i.e., Globigerinita glutinata and Globigerina bulloides mainly during interglacial intervals indicate intense upwelling. Strong SW summer monsoon probably increased the upwelling in the western Arabian Sea during interglacial intervals and caused high surface productivities due to the lateral transport of eutrophic waters. Most of the glacial periods (i.e., MIS 2, 4, 6, 8 and 12) are characterized by higher relative abundances of Neogloboquadrina pachyderma and Neogloboquadrina dutertrei associated with Globigerinoides ruber. The more stratified condition and deep mixed layer due to increased NE winter monsoon are mainly responsible for the higher relative abundances of N. pachyderma during glacial periods. Some of the glacial intervals (i.e., MIS 6 and 8) are also characterized by pteropod spikes reflecting deepening of aragonite compensation depth (ACD) and relatively less intense oxygen minimum zone (OMZ) in this region due to deep sea mixing and thermocline ventilation, and relatively less intense surface productivity during winter monsoon. The interglacial periods are largely devoid of pteropod shells indicating more aragonite dissolution due to increased intensity of OMZ in the northwestern Arabian Sea.  相似文献   

15.
在对西天山赛里木湖盆地进行第四纪地质调查与5万填图基础上,发现沿该湖泊的不同湖岸阶地上都不同程度地发育了可指示湖面变化的湖滩岩。水准测量结果表明,典型的湖滩岩最常见于高出现今湖面7.1~9.4 m和33.4~39.4 m的低、高两级湖积台地上。对湖滩岩样品进行岩石学和矿物学研究进一步揭示,湖滩岩主要由内碎屑、藻团块、陆源碎屑、胶结物和填隙物等构成,胶结物主要为亮晶方解石,夹少量文石,表明赛里木湖周边的湖滩岩为典型的方解石胶结砂屑砾屑岩。湖滩岩样品的U系年代测试结果表明,低、高两级台地上的湖滩岩主要形成于距今24.8±1.5 ka至27.6±1.5 ka和55.4±3.8 ka的晚更新世晚期,大致对应末次冰期间冰阶MIS3阶段早期和末期的相对暖湿气候阶段。湖滩岩及其测年结果指示,赛里木湖最近一期最高湖面出现在距今55.4 ka左右末次间冰阶早期,其后由于气候的干旱化,湖面整体处于逐步下降过程,在相对暖湿期间经历了多次湖面相对稳定期并形成湖滩岩。  相似文献   

16.
The High Plateaus of Utah include seven separate mountain ranges that supported glaciers during the Pleistocene. The Fish Lake Plateau, located on the eastern edge of the High Plateaus, preserves evidence of at least two glacial advances. Four cosmogenic 3He exposure ages of boulders in an older moraine range from 79 to 159 ka with a mean age of 129 ± 39 ka and oldest ages of 152 ± 3 and 159 ± 5 ka. These ages suggest deposition during the type Bull Lake glaciation and Marine Oxygen Isotope Stage (MIS) 6. Twenty boulder exposure ages from four different younger moraines indicate a local last glacial maximum (LGM) of ~ 21.1 ka, coincident with the type Pinedale glaciation and MIS 2. Reconstructed Pinedale-age glaciers from the Fish Lake Plateau have equilibrium-line altitudes ranging from 2950 to 3190 m. LGM summer temperature depressions for the Fish Lake Plateau range from −10.7 to −8.2°C, assuming no change in precipitation. Comparison of the Fish Lake summer temperature depressions to a regional dataset suggests that the Fish Lake Plateau may have had a slight increase (~ 1.5× modern) in precipitation during the LGM. A series of submerged ridges in Fish Lake were identified during a bathymetric survey and are likely Bull Lake age moraines.  相似文献   

17.
A sensitivity-corrected Multiple Aliquot Regenerative-dose protocol has been developed for fine-grained quartz OSL dating of Chinese loess. Its reliability has been assessed on the basis of the methodology and by dating reference samples of known age close to the transition from the last interglacial paleosol (S1) to the last glacial loess (L1), which corresponds to the Marine Oxygen Isotope Stage (MIS) 5/4 transition. On the basis of the fine-grained quartz OSL-age estimates for 33 loess samples from the upper part of the Luochuan profile, a detailed chronostratigraphy of continuous dust accumulation in the past 130 ka has been proposed. Changes in the accumulation rate occurred during the last glacial period (MIS 4 to MIS 2); unexpectedly, high accumulation rates were found in the weakly developed L1-2(S) paleosol of the last interstadial (MIS 3), rather than in the classic L1-1 and L1-3 loess of the cold-dry glacial condition (MIS 2 and 4). The OSL ages show some disagreement with the previous numerical chronology for the loess-paleosol sequence based on correlation of variations in grain size with sedimentation rate; the latter method resulted in an almost constant accumulation rate from 72 to 12 ka.  相似文献   

18.
A 30 m-deep drill core from a glacially overdeepened trough in Northern Switzerland recovered a ~180 ka old sedimentary succession that provides new insights into the timing and nature of erosion–sedimentation processes in the Swiss lowlands. The luminescence-dated stratigraphic succession starts at the bottom of the core with laminated carbonate-rich lake sediments reflecting deposition in a proglacial lake between ~180 and 130 ka ago (Marine Isotope Stage MIS 6). Anomalies in geotechnical properties and the occurrence of deformation structures suggest temporary ice contact around 140 ka. Up-core, organic content increases in the lake deposits indicating a warming of climate. These sediments are overlain by a peat deposit characterised by pollen assemblages typical of the late Eemian (MIS 5e). An abrupt transition following this interglacial encompasses a likely hiatus and probably marks a sudden lowering of the water level. The peat unit is overlain by deposits of a cold unproductive lake dated to late MIS 5 and MIS 4, which do not show any direct influence from glaciers. An upper peat unit, the so-called «Mammoth peat», previously encountered in construction pits, interrupts this cold lacustrine phase and marks more temperate climatic conditions between 60 and 45 ka (MIS 3). In the upper part of the core, a succession of fluvial and alluvial deposits documents the Late Glacial and Holocene sedimentation in the basin. The sedimentary succession at Wehntal confirms that the glaciation during MIS 6 did not apparently cause the overdeepening of the valley, as the lacustrine basin fill covering most of MIS 6 is still preserved. Consequently, erosion of the basin is most likely linked to an older glaciation. This study shows that new dating techniques combined with palaeoenvironmental interpretations of sediments from such overdeepened troughs provide valuable insights into the past glacial history.  相似文献   

19.
At least five Middle to Late Pleistocene advances of the northern Cordilleran Ice Sheet are preserved at Silver Creek, on the northeastern edge of the St Elias Mountains in southwest Yukon, Canada. Silver Creek is located 100 km up‐ice of the Marine Isotope Stage (MIS) 2 McConnell glacial limit of the St Elias lobe. This site contains ~3 km of nearly continuous lateral exposure of glacial and non‐glacial sediments, including multiple tills separated by thick gravel, loess and tilted lake beds. Infrared‐stimulated luminescence (IRSL) and AMS radiocarbon dating constrain the glacial deposits to MIS 2, 4, either MIS 6 or mid‐MIS 7, and two older Middle Pleistocene advances. This chronology and the tilt of the lake beds suggest Pleistocene uplift rates of up to 1.9 mm a?1 along the Denali Fault since MIS 7. The non‐glacial sediment consists of sand, gravel, loess and organic beds from MIS 7, MIS 3 and the early Holocene. The MIS 3 deposits date to between 30–36 14C ka BP, making Silver Creek one of the few well‐constrained MIS 3‐aged sites in Yukon. This confirms that ice receded close to modern limits in MIS 3. Pollen and macrofossil analyses show that a meadow‐tundra to steppe‐tundra mosaic with abundant herbs and forbs and few shrubs or trees, dominated the environment at this time. The stratigraphy at Silver Creek provides a palaeoclimatic record since at least MIS 8 and comprises the oldest direct record of Pleistocene glaciation in southwest Yukon.  相似文献   

20.
We use 10Be surface exposure dating to construct a high-resolution chronology of glacial fluctuations in the Sierra Nevada, California. Most previous studies focused on individual glaciated valleys, whereas our study compares chronologies developed throughout the range to identify regional patterns in the timing of glacier response to major climate changes. Sites throughout the range indicate Last Glacial Maximum retreat at 18.8 ± 1.9 ka (2σ) that suggests rather consistent changes in atmospheric variables, e.g., temperature and precipitation, throughout the range. The penultimate glacial retreat occurred at ca 145 ka. Our data suggest that the Sierra Nevada landscape is dominated by glacial features deposited during marine isotope stage (MIS) 2 and MIS 6. Deposits of previously recognized glaciations between circa 25 and 140 ka, e.g., MIS 4, Tenaya, early Tahoe, cannot be unequivocally identified. The timing of Sierra Nevada glacial retreat correlates well with other regional paleoclimate proxies in the Sierra Nevada, but differs significantly from paleoclimate proxies in other regions. Our dating results indicate that the onset of LGM retreat occurred several thousand years earlier in the Sierra Nevada than some glacial records in the western US.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号