首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 213 毫秒
1.
Sample 73235 is one of several aphanitic impact melt breccias collected by the Apollo 17 mission at stations 2 and 3 on the slopes of the South Massif. This study presents a detailed investigation of internal structures and U-Pb ages of large zircon grains from this breccia sample. New data combined with the results of previous studies of zircon grains from the same location indicate that most zircon clasts in breccias from stations 2 and 3 formed during multiple magmatic events between 4.37 and 4.31 Ga, although the oldest zircon crystallized at about 4.42 Ga and the youngest at 4.21 Ga. In addition, zircons from the aphanitic breccias record several impact events prior to the ∼3.9 Ga Late Heavy Bombardment. The results indicate that the zircons probably crystallized at different locations within the Procellarum KREEEP Terrane and were later excavated and modified by several impacts and delivered to the same locality within separate ejecta blankets. This locality became a source of material that formed the aphanitic impact melt breccias of the South Massif during a ∼3.9 Ga impact. However, the zircons, showing old impact features, are not modified by this ∼3.9 Ga impact event suggesting that (i) this common source area was located at the periphery of excavation cavity, and (ii) the > 3.9 Ga ages recorded by the zircon grains could date large (basin-forming) events as significant as major later (∼3.9 Ga) collisions such as Imbrium and Serenitatis.  相似文献   

2.
Zircon and titanite were investigated in impactites of the Gardnos structure, a crater formed in Sveconorwegian (ca. 1 Ga) crust, which was then overridden in the Devonian by Caledonian nappes. Observed deformation features in zircons are granular texture, planar microstructures, and likely the incorporation of organic carbon during impact causing black staining of the zircon grains. The grains were studied by scanning electron microscopy (SEM) and cathode luminescence (CL) and dated by U-Pb isotope dilution - thermo-ionization mass spectrometry (ID-TIMS). Zircon grains without impact related features have U-Pb data showing moderate discordance (5-13%) and indicating formation ages mostly in the range of 1600-1000 Ma, except detrital zircon ages as old as >2481 Ma, reflecting the diversity of target rocks in the area. Titanite with concordant ages of 995-999 Ma dates metamorphism during final juxtaposition of the Telemarkia on the Idefjorden terrane to the east. Zircon grains with demonstrated or presumed shock features yield highly discordant (14-40%) U-Pb data, with a majority of them plotting along an array with a lower intercept of about 340 Ma reflecting the influence of the Caledonian orogeny and recent Pb-loss. One zircon grain was totally reset at 379 Ma during late Caledonian metamorphism, which also caused local growth of new titanite. A specific group of zircon grains yields data with relatively high discordance for moderate U contents, and five of these analyses, including that of a grain with proven granular or aggregate texture, fit a discordia line with an upper intercept of 546 ± 5 Ma. These features are interpreted as indicating zircon break-down to an amorphous state during impact, with subsequent recrystallization into microcrystalline aggregates causing extensive to complete Pb loss. We further suggest that their crystallinity prevented Pb loss during the Caledonian orogeny, while the small subgrain size and increasing metamictisation allowed more recent disturbances. We thus interpret the 546 Ma age as the approximate time of impact.  相似文献   

3.
In order to improve our understanding of impact history and surface geology on the Moon, we obtained 40Ar-39Ar incremental heating age data and major + trace element compositions of anorthositic and melt breccia clasts from Apollo 16 feldspathic fragmental breccias 67016 and 67455. These breccias represent the Descartes terrain, a regional unit often proposed to be ejecta from the nearby Nectaris basin. The goal of this work is to better constrain the emplacement age and provenance of the Descartes breccias.Four anorthositic clasts from 67016 yielded well-defined 40Ar-39Ar plateau ages ranging from 3842 ± 19 to 3875 ± 20 Ma. Replicate analyses of these clasts all agree within measurement error, with only slight evidence for either inheritance or younger disturbance. In contrast, fragment-laden melt breccia clasts from 67016 yielded apparent plateau ages of 4.0-4.2 Ga with indications of even older material (to 4.5 Ga) in the high-T fractions. Argon release spectra of the 67455 clasts are more variable with evidence for reheating at 2.0-2.5 Ga. We obtained plateau ages of 3801 ± 29 to 4012 ± 21 Ma for three anorthositic clasts, and 3987 ± 21 Ma for one melt breccia clast. The anorthositic clasts from these breccias and fragments extracted from North Ray crater regolith (Maurer et al., 1978) define a combined age of 3866 ± 9 Ma, which we interpret as the assembly age of the feldspathic fragmental breccia unit sampled at North Ray crater. Systematic variations in diagnostic trace element ratios (Sr/Ba, Ti/Sm, Sc/Sm) with incompatible element abundances show that ferroan anorthositic rocks and KREEP-bearing lithologies contributed to the clast population.The Descartes breccias likely were deposited as a coherent lithologic unit in a single event. Their regional distribution suggests emplacement as basin ejecta. An assembly age of 3866 ± 9 Ma would be identical with the accepted age of the Imbrium basin, and trace element compositions are consistent with a provenance in the Procellarum-KREEP Terrane. The combination of age and provenance constraints points toward deposition of the Descartes breccias as ejecta from the Imbrium basin rather than Nectaris. Diffusion modeling shows that the older apparent plateau ages of the melt brecia clasts plausibly result from incomplete degassing of ancient crust during emplacement of the Descartes breccias. Heating steps in the melt breccia clasts that approach the primary crystallization ages of lunar anorthosites show that earlier impact events did not completely outgas the upper crust.  相似文献   

4.
Analyses of zircon grains from the Queureuilh Quaternary tephras (pumice) provide new information about their pre-eruptive history. U-Pb dating was performed in situ using two methods: SHRIMP and LA-MC-ICPMS equipped with a multi-ion counting system. Both methods provided reliable 207Pb/206Pb and 206Pb/238U ratios as well as U and Th abundances required for U-Pb Concordia intercept age determination, after initial 230Th disequilibrium correction. The new LA-MC-ICPMS method was validated by dating a reference zircon (61.308B) and zircons from a phonolitic lava dated independently with the two techniques. A time resolution of about 20 kyr for 1 Ma zircon crystals was achieved for both methods.The clear euhedral zircon population from Queureuilh tephras is quite complex from several points of view: (1) some grains are reddish or yellowish while others are colorless; (2) the U and Th composition changes by more than an order of magnitude and Th/U is generally high (∼1-2); (3) there are three discrete ages recorded at 2.35 ± 0.04, 1.017 ± 0.008 and 0.640 ± 0.010 Ma.From the previously determined 40Ar/39Ar age at 0.571 ± 0.060 Ma [Duffell H. (1999) Contribution géochronologique à la stratigraphie volcanique du Massif des Monts Dore par la méthode 40Ar/39Ar. D.E.A. Univ. Clermont-Ferrand, 56 p.], the discontinuous zircon age populations, the color of the grains and their composition, we favor the following model as explanation: The oldest, less numerous group of reddish zircons represents xenocrystic grains resulting from assimilation of the local material during magma ascent. A primitive magma chamber, perhaps deep in crustal level, was formed at 1.0 Ma. The related magma, previously characterized by high Th/U ratio (2.2 ± 1.1), underwent rejuvenation during ascent to a new chamber at shallow depth and/or during injection of more mafic magmas. During this stage, at 0.64 Ma, the colorless zircon grains of lower Th/U ratio (1.3 ± 0.5) crystallized. This last stage defined the magma residence time of 70 kyr prior to eruption dated by the 40Ar/39Ar method. However, if the primitive magma is considered, the magma residence time as a whole from this first stage reached 446 kyr.In the light of the complex history of such magmas, which commonly involves recycling of zircon grains that precipitated tens to hundreds of kyr earlier than eruptions, the use of Zr concentration in geochemical modeling of whole rock compositional data can be problematic.  相似文献   

5.
In the eastern Himalayan syntaxis, the southern Lhasa terrane is dominated by middle- to high-grade metamorphic rocks (Nyingchi Complex), which are intruded by felsic melts. U-Pb zircon dating and zircon Hf isotopic composition of these metamorphic and magmatic rocks provide important constraints on the tectono-thermal evolution of the Lhasa terrane during convergent process between Indian and Asian continents. U-Pb zircon data for an orthogneiss intruding the Nyingchi Complex yield a protolith magma crystallization age of 83.4 ± 1.2 Ma, with metamorphic ages of 65-46 Ma. This orthogneiss is characterized by positive εHf (t) values of + 8.3 and young Hf model ages of ~ 0.6 Ga, indicating a derivation primarily from a depleted-mantle or juvenile crustal source. Zircons from a quartz diorite yield a magma crystallization age of 63.1 ± 0.6 Ma, with εHf (t) values of − 8.2 to − 2.7, suggesting that this magma was sourced from partial melting of older crustal materials. Zircon cores from a foliated biotite granite show ages ranging from 347 to 2690 Ma, with age peaks at 347-403 Ma, 461-648 Ma and 1013-1183 Ma; their zircon εHf (t) values range from − 30.6 to + 6.9. Both the U-Pb ages and Hf isotopic composition of the zircon cores are similar to those of detrital zircons from the Nyingchi Complex paragneiss, implying that the granite was derived from anatexis of the Nyingchi Complex metasediments. The zircon rims from the granite indicate crustal anatexis at 64.4 ± 0.7 Ma and subsequent metamorphism at 55.1 ± 1.3 and 41.4 ± 2.3 Ma. Our results suggest that the late Cretaceous magmatism in the southern Lhasa terrane resulted from Neo-Tethys oceanic slab subduction and we infer that Paleocene crustal anatexis and metamorphism were related to the thermal perturbation caused by rollback of the northward subducted Neo-Tethyan oceanic slab.  相似文献   

6.
In situ U-Pb SHRIMP analysis of hydrothermal monazite virtually free of Th and poor in U (<0.2 ppm Th, 40-103 ppm U) from the world-class Llallagua tin porphyry deposit in Bolivia defines a mineralization age of 23.4 ± 2.2 Ma (MSWD 0.48) confirming earlier K-Ar sericite alteration age data. These ages are, however, in contrast with a weighted mean single crystal 207Pb/206Pb evaporation age of 39.3 ± 6.0 Ma, and a related Pb-Pb inverse isochron age of 42.4 ± 4.0 Ma (MSWD 0.66) on zircon from a post-porphyry dike, as well as with an earlier single crystal Sm-Nd apatite isochron age.Our data points to a significant time gap between emplacement of the ore-hosting porphyry intrusion (magmatism) and its hydrothermal overprint (tin mineralization), suggesting long-lived magmatic-hydrothermal activity in this part of the Andean back-arc crust. The decoupling of porphyry magmatism and hydrothermal activity may explain the unusual occurrence of relatively little fractionated felsic rocks together with extensive tin mineralization.Our study demonstrates the usefulness of the application of the U-Pb SHRIMP method to direct age determination of ore mineralization using Th-poor hydrothermal monazite even when dealing with geological young events. The common assumption of synchronous magmatism and hydrothermal ore formation in porphyry systems may not always be warranted.  相似文献   

7.
New single-grain and within-grain U-Pb zircon ages from the central Tauern Window help sorting out the time dimension among the various Variscan and pre-Variscan basement components that were strongly overprinted by Alpine orogeny. Single-grain isotope dilution (ID-TIMS) U-Pb zircon geochronology of three Basisamphibolit samples yield protolith formation ages of 351±2, 349±1 and 343±1 Ma. Laser ablation ICP-MS and ID-TIMS U-Pb detrital zircon dating of the Biotitporphyroblastenschiefer constrained the maximum time of sedimentation to between 362±6 Ma and 368±17 Ma. Paragneisses from the Zwölferzug yield maximum sedimentation ages from 345±5 Ma (ion microprobe data) to 358±10 Ma. Zircons from gabbroic clasts and detrital zircons from a meta-agglomerate from the Habach Phyllite give an upper intercept age of 536±8 Ma and a near-concordant age of 506±9 Ma, respectively. Hence, apart from the Habach Phyllite, the maximum sedimentation ages of the metasediments investigated range from Upper Devonian to Lower Carboniferous. Consequently, the Basisamphibolit, the Biotitporphyroblastenschiefer, and the paragneisses of the Zwölferzug form parts of the Variscan basement series. The Basisamphibolit (351-343 Ma) is distinct both in space and time of formation from the Zwölferzug garnet amphibolite (c. 486 Ma), which forms part of the pre-Variscan basement.  相似文献   

8.
High precision U-Pb zircon ages for Mesozoic igneous rocks from Hong Kong   总被引:1,自引:0,他引:1  
Sixteen new high precision U-Pb zircon ages are reported from Jurassic and Early Cretaceous silicic volcanic and plutonic rocks of Hong Kong. When combined with the existing age dataset, the new ages constrain more tightly the timing of major periods of volcanism and plutonism at 162.6 ± 4.5 Ma, 146.7 ± 1.1 Ma, 143.0 ± 1.0 Ma and 140.8 ± 0.6 Ma. However, two ages of 151.9 ± 0.2 Ma and 148.1 ± 0.2 Ma, from eastern New Territories and southern Hong Kong indicate additional and therefore more continuous, albeit pulsed, magmatic activity than previously thought.  相似文献   

9.
We report the results of a SIMS U-Pb study of 112 zircons from breccia samples from the Apollo 14 and 17 landing sites. Zircon occurs in the breccia matrices as rounded, irregular shaped, broken and rarely euhedral grains and as constituent minerals in a variety of lithic clasts ranging in composition from ultra-mafic and mafic rocks to highly evolved granophyres. Crystallisation of zircon in magmatic rocks is governed by the zirconium saturation in the melt. As a consequence, the presence of zircon in mafic rocks on the Moon implies enrichment of their parent melts in the KREEP component. Our SIMS results show that the ages of zircons from mafic to ultramafic clasts range from ca. 4.35 Ga to ca. 4.00 Ga demonstrating multiple generations of KREEPy mafic and ultramafic magmas over this time period. Individual zircon clasts in breccia matrices have a similar age range to zircons in igneous clasts and all represent zircons that have been incorporated into the breccia from older parents. The age distributions of zircons from breccias from both the Apollo 14 and Apollo 17 landing sites are essentially identical in the range 4.35-4.20 Ga. However, whereas Apollo 14 zircons additionally show ages from 4.20 to 3.90 Ga, no zircons from Apollo 17 samples have primary ages less than ca. 4.20 Ga. Also, in contrast to previous suggestions that the magmatism in the lunar crust is continuous our results show that the zircon age distribution is uneven, with distinct peaks of magmatic activity at ca. 4.35 Ga, ca. 4.20 Ga in Apollo 14 and 17 and a possible third peak in zircons from Apollo 14 at ca. 4.00 Ga. To explain the differences in the zircon age distributions between the Apollo 14 and 17 landing sites we propose that episodes of KREEP magmatism were generated from a primary reservoir, and that this reservoir contracted over time towards the centre of Procellarum KREEP terrane. We attribute the peaks in KREEP magmatism to impact induced emplacement of KREEP magma from a primary mantle source or to a progressive thermal build-up in the mantle source until the temperature exceeds the threshold for generation of KREEP magma, which is transported into the crust by an unspecified possibly plume-like process.  相似文献   

10.
Detrital zircon grains from Beit Bridge Group quartzite from the Central Zone of the Limpopo Belt near Musina yield mostly ages of 3.35-3.15 Ga, minor 3.15-2.51 Ga components, and numerous older grains grouped at approximately 3.4, 3.5 and 3.6 Ga. Two grains yielded concordant Late Hadean U-Pb ages of 3881 ± 11 Ma and 3909 ± 26 Ma, which are the oldest zircon grains so far found in Africa. The combined U-Pb and Lu-Hf datasets and field relationships provide evidence that the sedimentary protolith of the Beit Bridge Group quartzite was deposited after the emplacement of the Sand River Gneisses (3.35-3.15 Ga), but prior to the Neoarchean magmatic-metamorphic events at 2.65-2.60 Ga. The finding of abundant magmatic zircon detritus with concordant U-Pb ages of 3.35-3.15 Ga, and 176Hf/177Hf of 0.28066 ± 0.00004 indicate that the Sand River Gneiss-type rocks were a predominant source. In contrast, detrital zircon grains older than approximately 3.35 Ga were derived from the hinterland of the Limpopo Belt; either from a so far unknown crustal source in southern Africa, possibly from the Zimbabwe Craton and/or a source, which was similar but not necessarily identical to the one that supplied the Hadean zircons to Jack Hills, Western Australia. The Beit Bridge Group zircon population at >3.35 Ga shows a general εHft increase with decreasing age from εHf3.9Ga = −6.3 to εHf3.3-3.1Ga = −0.2, indicating that Hadean crust older than 4.0 Ga (TDM = 4.45-4.36 Ga) was rejuvenated during magmatic events between >3.9 and 3.1 Ga, due to a successive mixing of crustal rocks with mantle derived magmas. The existence of a depleted mantle reservoir in the Limpopo’s hinterland is reflected by the ∼3.6 Ga zircon population, which shows εHf3.6Ga between −4.6 and +3.2. In a global context, our data suggest that a long-lived, mafic Hadean protocrust with some tonalite-trondhjemite-granodiorite constituents was destroyed and partly recycled at the Hadean/Archean transition, perhaps due to the onset of modern-style plate tectonics.  相似文献   

11.
Kinetics of isotopic equilibrium in the mineral radiometric systems of igneous and metamorphic rocks is an important issue in geochronology. It turns out that temperature is the most important factor in dictating isotopic equilibrium or disequilibrium with respect to diffusion mechanism. Contemporaneous occurrence of Mesozoic granites and gneisses in the Dabie orogen of China allows us to evaluate the thermal effect of magma emplacement and associated metamorphism on mineral radiometric systems. Zircon U-Pb, mineral Rb-Sr and O isotope analyses were carried out for a Cretaceous granite and its host gneiss (foliated granite) from North Dabie. Zircon U-Pb dating gave consistently concordant ages of 127 ± 3 Ma and 128 ± 2 Ma for the granite and the gneiss, respectively. A direct correspondence in equilibrium state is observed between the O and Rb-Sr isotope systems of both granitic and gneissic minerals. Mineral O isotope temperatures correlate with O diffusion closure temperatures under conditions of slow cooling, indicating attainment and preservation of O isotope equilibrium in these minerals. The mineral Rb-Sr isochron of granite, constructed by biotite, feldspar, apatite and whole-rock with the O isotope equilibrium, yields a meaningful age of 118 ± 3 Ma, which is in accordance with the mineral Rb-Sr isochron age of 122 ± 1 Ma for the host gneiss. The consistency in both U-Pb and Rb-Sr ages between the granite and the gneiss suggests a contemporaneous process of crystallizing the zircons and resetting the Rb-Sr radiometric systems during magma emplacement and granite foliation. Whereas the zircon U-Pb ages for both granite and gneiss are interpreted as the timing of magma crystallization, the young Rb-Sr isochron ages record the timing of Sr diffusion closure during the slow cooling. Protolith of the gneiss crystallized shortly before intrusion of the granite, so that it was able to be foliated by voluminous emplacement of coeval mafic to felsic magmas derived by anatexis of orogenic lithospheric keel. Therefore, extensional collapse of collision-thickened crust at Early Cretaceous is suggested to trigger the post-collisional magmatism, which in turn serves as an essential driving force for the contemporaneous high-T deformation/metamorphism.  相似文献   

12.
The accuracy and validation of geo- and thermochronological dating hinges on the availability of well-characterised age reference materials. The Mesoproterozoic gabbroic anorthosite FC1 from the Duluth Complex, Minnesota is a reference material for zircon U-Pb and a suggested reference material for apatite fission-track dating. We evaluate FC1 as (U-Th)/He reference material, and determine its apatite U-Pb, and zircon and apatite (U-Th)/He age. Our dating results constrain the thermal history of FC1, showing that fast cooling occurred between ~ 1099 and 1040 Ma from ≥ 600 °C to ~ 200 °C. The zircon (U-Th)/He data from air-abraded grains give a robust isochron age of 1037 ± 25 Ma (2s) without overdispersion. The within-grain homogeneity of U and Th, the availability of FC1 zircon, and the absence of radiation-damage effects on the (U-Th)/He age support its use as reference material. Unabraded zircon grains give lower and more dispersed ages, highlighting the usefulness of air abrasion to control for α-ejection in (U-Th)/He dating. Our apatite (U-Th-Sm)/He single-grain ages vary between 180 and 300 Ma. Their wide dispersion argues against the use of FC1 apatite as (U-Th-Sm)/He reference material and makes the interpretation of their low-temperature thermal history complicated.  相似文献   

13.
Hafnium isotope analyses of a large number of metamorphic zircon grains of two garnet-kyanite-staurolite schist samples from the Shackleton Range yielded 176Hf/177Hf of 0.28160 ± 0.00003 and 0.28142 ± 0.00003, respectively. The variations of these analyses are less than ±1.2 epsilon units and indicate that all metamorphic zircon grains in the two rocks formed in environments with nearly homogenous Hf isotopic composition. The metamorphic origin of the zircon grains is constrained by textures as well as by their low Th/U (<0.2), 176Lu/177Hf (<0.0003), and 176Yb/177Hf ratios (<0.009), indicating that they grew in the presence of garnet. Furthermore, the grains yield Pb-Pb ages of c. 1.7 Ga, which is the time of amphibolite-facies metamorphism. In combination with petrological results, it is suggested that the observed 176Hf/177Hf homogeneity was caused by a fluid- and deformation-assisted dissolution of detrital zircon grains, followed by new zircon re-precipitation that was accompanied by Hf transport on at least a hand-specimen scale. This interpretation is supported by results obtained from an additional paragneiss sample that contains zoned zircon grains with xenocrystic cores formed at 2.6-1.8 Ga and metamorphic rims with a U-Pb age of 1.7 Ga. The 176Hf/177Hf variation of the zircon rims is mostly at ±0.0003, which is much less than that of the magmatic cores (±0.0019). The metamorphic fluid for the dissolution-homogenization-re-precipitation process most likely resulted from prograde reactions among the minerals chlorite-muscovite-biotite-garnet-staurolite-apatite, in agreement with thin section observations and P-T pseudosection calculations.  相似文献   

14.
The Epupa Metamorphic Complex constitutes the southwestern margin of the Congo Craton and is exposed in a hilly to mountainous terrain of northwestern Namibia, bordering the Kunene River and extending into southern Angola. It consists predominantly of granitoid gneisses which are migmatized over large areas. This migmatization locally led to anatexis and produced crustal-melt granites such as the Otjitanda Granite. We have undertaken reconnaissance geochemical studies and single zircon U–Pb SHRIMP and Pb–Pb evaporation dating of rocks of the Epupa Complex. The granitoid gneisses, migmatites and anatectic melts are similar in composition and constitute a suite of metaluminous to peraluminous, calc-alkaline granitoids, predominantly with volcanic arc geochemical signatures. The zircon protolith ages for the orthogneisses range from 1861 ± 3 to 1758 ± 3 Ma. Anatexis in the migmatitic Epupa gneisses was dated from a melt patch at 1762 ± 4 Ma, and the anatectic Otjitanda Granite has a zircon age of 1757 ± 4 Ma. Migmatization and anatexis therefore occurred almost immediately after granitoid emplacement and date a widespread high-temperature Palaeoproterozoic event at ∼1760 Ma which has not been recorded elswhere in northern Namibia. The Nd isotopic systematics of all dated samples are surprisingly similar and suggest formation of the protolith from a source region that probably separated from the depleted mantle about 2.4–2.0 Ga ago. A major Archaean component in the source area is unlikely.  相似文献   

15.
用SHRIMP U-Pb和Sm-Nd定年技术,对攀西红格矿区含矿层状辉长岩、碱性正长岩进行了年龄测定。获得红格辉长岩中3种不同晶形锆石的U-Pb年龄分别为258.4±4.1Ma、1841±34Ma、2487±12Ma,由辉长岩、辉石和磷灰石所构成的Sm-Nd等时线年龄为253±14Ma;碱性正长岩中锆石的U-Pb年龄为257.2±1.5Ma。结果表明,红格辉长岩中具有典型基性岩锆石特征的锆石U-Pb年龄(258Ma)与同一地质样品的Sm-Nd年龄(全岩+矿物内部等时线年龄),以及同一矿区的正长岩锆石U-Pb年龄在测定误差范围内一致。鉴于层状辉长岩和碱性正长岩在空间上密切共生,在形成时间上一致,可以认为它们都属于晚二叠世末岩浆活动的产物;而1841Ma和2487Ma的锆石,可能是在基性-超基性岩浆的上侵过程中,从基底所捕获的岩浆锆石和继承锆石,其年龄信息,揭示了康滇地轴岩浆岩带的下部或结晶基底存在元古代甚至新太古代末期的岩石或物质。  相似文献   

16.
New U-Pb zircon data from a segregation pegmatite in the granitic gneiss at Glenfinnan yield discordant points which appear to be aligned along a chord on a concordia diagram with upper and lower intersection ages of 1,517±30 Ma and 556±8 Ma, respectively. The results are similar to published U-Pb zircon data from the granitic gneiss but the lower intersection age does not correspond to concordant ages of 455±3 Ma obtained for monazites from the segregation pegmatite and from paragneiss which hosts the granitic gneiss. The apparent U-Pb zircon chord also gives no indication of a 1,030±50 Ma (large sample) Rb-Sr whole rock isochron age for the granitic gneiss (Brook et al. 1976). A traverse of adjacent 5–8 cm thick slabs in the paragneiss yields a Rb-Sr errochron of 455±60 Ma which also does not agree with the U-Pb zircon lower intersection age. The scale of this Sr whole rock diffusion (ca. 10 cm) is not at variance with existing thermal, temporal and experimental constraints.A two episodic loss model has been applied to the zircon data from the segregation pegmatite, to the previously published zircon data on the granitic gneiss and to new U-Pb zircon data on the host paragneiss. The first lead loss event, if assumed to be in Grenville time, was computed to be strongest in the granitic gneiss and segregation pegmatite. For the three suites of zircon considered, primary ages converge in the 1,700–1,800 Ma range with a final disturbance event at ca. 490 Ma, i.e., close to a plausible prograde stage of Caledonian metamorphism.The zircons in both the granitic gneiss and the paragneiss are believed to have been derived from the ubiquitous early Proterozoic shields bordering the North Atlantic. Furthermore the above model is consistent with the hypothesis that the zircons in the granitic gneiss were largely derived from the paragneiss. However, the U-Pb zircon data are not inconsistent with new Sr-isotopic evidence which suggests an additional, possibly deeper source with lower 87Sr/ 86Sr ratios.  相似文献   

17.
Studies of meteorites are based mostly on samples that fell to Earth in the recent past (i.e., a few million years at most). The Morokweng LL-chondrite meteorite is a particularly interesting specimen as its fall is much older (ca. 145 Ma) than most other meteorites and because it is the only macro-meteorite clast (width intersected in drill core: 25 cm) found in a melt sheet of a large impact structure. When applied to the Morokweng meteorite, 40Ar/39Ar thermochronology provides an opportunity to study (1) effects associated with pre-impact and post-impact processes and (2) collision events within a potentially distinct and as yet unsampled asteroid population.A single multi-grain aliquot yielded an inverse isochron age of 625 ± 163 Ma. This suggests a major in-space collisional event at this time. We have modeled the diffusion of 40Ar within the meteorite and plagioclase during and after the ∼145 Ma impact on Earth to tentatively explain why pre-terrestrial impact 40Ar has been preserved within the plagioclase grains. The ∼145 Ma terrestrial impact age is recorded in the low-retentivity sites of the meteorite plagioclase grains that yielded a composite inverse isochron age at 141 ± 15 Ma and thus, confirms that age information about major (terrestrial or extraterrestrial) impacts can be recorded in the K-rich mineral phases of a meteorite and measured by the 40Ar/39Ar technique. More studies on fossil meteorites need to be carried out to understand if the rough 0.6 Ga age proposed here corresponds to major LL-chondrite asteroid population destructions or, rather, to an isolated collision event.  相似文献   

18.
Accessory minerals with so-called granular texture have risen in importance as geochronological tools for U-Pb dating of meteorite impact events. Grain-scale recrystallization, typically triggered by a combination of high-strain deformation and post-impact heating, can create a polycrystalline microstructure consisting of neoblasts that expel radiogenic Pb, which are thus ideal for isotopic dating. While granular domains in zircon and monazite from shocked rocks have been demonstrated to preserve impact ages, few U-Pb dating studies have been conducted on granular microstructures in titanite (CaTiSiO5). Here we report the occurrence of granular-textured titanite from ~2020 Ma granite basement rock exposed in the rim of the 4–5 Ma Roter Kamm impact structure in Namibia. Orientation mapping reveals two microstructurally distinct titanite populations: one consisting of strained/deformed grains, and the other consisting of grains that comprise aggregates of strain-free neoblasts. In situ U-Pb geochronology on 37 grains shows that most grains from both titanite populations yield indistinguishable U-Pb dates of ca. 1025 Ma, consistent with the observed microstructures forming during the Mesoproterozoic Namaqua Orogeny. Only four grains preserved older age domains, recording ca. 1875 Ma Paleoproterozoic metamorphism. Two significant observations emerge: (1) none of the analyzed titanite grains yield the 2020 Ma igneous crystallization age previously established from zircon in the same sample, and (2) no age-resetting was detected that could be attributed to the 4 to 5 Ma Roter Kamm impact event. Despite the similarity of the neoblastic microstructure to minerals from other sites with an established impact provenance, the granular texture and near-complete Pb-loss in titanite from Roter Kamm granite instead records a Paleo- to Mesoproterozoic polymetamorphic history, rather than Miocene age shock-related processes. These results highlight the critical importance of grain-scale context for interpretation of U-Pb data in granular titanite, and the potential for misinterpreting inherited (pre-impact) microstructures as impact-related phenomenon in target rocks with a complex geological history.  相似文献   

19.
To elucidate the age and origin of seamounts in the eastern North Atlantic, 54 titanite and 10 zircon fractions were dated by the U-Pb chronometer, and initial Pb, Sr, and Hf isotope ratios were measured in feldspars and zircon, respectively. Rocks analyzed are essentially trachy-andesites and trachytes dredged during the “Tore Madeira” cruise of the Atalante in 2001. The ages reveal different pulses of alkaline magmatism occurring at 104.4 ± 1.4 (2σ) Ma and 102.8 ± 0.7 Ma on the Sponge Bob seamount, at 96.3 ± 1.0 Ma on Ashton seamount, at 92.3 ± 3.8 Ma on the Gago Coutinho seamount, at 89.3 ± 2.3 Ma and 86.5 ± 3.4 Ma on the Jo Sister volcanic complex, and at 88.3 ± 3.3 Ma, 88.2 ± 3.9, and 80.5 ± 0.9 Ma on the Tore locality. No space-time correlation is observed for alkaline volcanism in the northern section of the Tore-Madeira Rise, which occurred 20-30 m.y. after opening of the eastern North Atlantic. Initial isotope signatures are: 19.139-19.620 for 206Pb/204Pb, 15.544-15.828 for 207Pb/204Pb, 38.750-39.936 for 208Pb/204Pb, 0.70231-0.70340 for 87Sr/86Sr, and +6.9 to +12.9 for initial epsilon Hf. These signatures are different from Atlantic MORB, the Madeira Archipelago and the Azores, but they lie in the field of worldwide OIB. The Cretaceous seamounts therefore seem to be generated by melts from a OIB-type source that interact with continental lithospheric mantle lying formerly beneath Iberia and presently within the ocean-continent transition zone. Inheritance in zircon and high 207Pb of initial Pb substantiate the presence of very minor amounts of continental material in the lithospheric mantle. A long-lived thermal anomaly is the most plausible explanation for alkaline magmatism since 104 Ma and it could well be that the same anomaly is still the driving force for tertiary and quaternary alkaline magmatism in the eastern North Atlantic region. This hypothesis is agreement with the plate-tectonic position of the region since Cretaceous time, including an about 30° anti-clockwise rotation of Iberia.  相似文献   

20.
U-Pb zircon and rutile multigrain ages and 207Pb/206Pb zircon evaporation ages are reported from high-pressure felsic and metapelitic granulites from northern Bohemia, Czech Republic. The granulites, in contrast to those from other occurrences in the Bohemian Massif, do not show evidence of successive HT/MPLP overprints. Multigrain size fractions of nearly spherical, multifaceted, metamorphic zircons from three samples are slightly discordant and yield a U-Pb Concordia intercept age of 348 ± 10 Ma, whereas single zircon evaporation of two samples resulted in 207Pb/206Pb ages of 339 ± 1.5 and 339 ± 1.4 Ma, respectively. A rutile fraction from one sample has a U-Pb Concordia intercept age of 346 ± 14 Ma. All ages are identical, within error, and a mean age of 342 ± 5 Ma was adopted to reflect the peak of HP metamorphism. Because rutile has a lower closing temperature for the U-Pb isotopic system than zircon, the results and the P-T data imply rapid uplift and cooling after peak metamorphism. The above age is identical to ages for high-grade metamorphism reported from the southern Bohemian Massif and the Granulite Massif in Saxony. It can be speculated that all these granulites were part of the same lower crustal unit in early Carboniferous, being separated later due to crustal stacking and subsequent late Variscan orogenic collapse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号