首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
北大别主簿源花岗岩和片麻岩矿物的   总被引:10,自引:2,他引:10  
对大别造山带北部主簿源中生代花岗岩侵入体及其围岩片麻岩进行了矿物氧同位素分析,同时对同一样品进行了矿物 Rb- Sr内部等时线定年。结果表明,花岗岩和片麻岩矿物的氧同位素温度大小顺序为:角闪石 >磁铁矿 >榍石 >石英 >黑云母 >长石,遵循缓慢冷却条件下扩散控制的氧同位素交换封闭顺序,指示这些岩石没有受到后期热液蚀变的扰动。根据黑云母-长石-磷灰石-全岩内部 Rb- Sr等时线测定,花岗岩的年龄为 (118± 3) Ma,代表了岩浆侵位冷却年龄;片麻岩的年龄为 (122± 1) Ma,代表了片麻岩受大面积燕山期岩浆侵位热烘烤达到高温同位素平衡后的冷却年龄。因此,矿物之间的氧同位素平衡与否 ,能够对矿物 Rb- Sr体系封闭后平衡状态的保存性以及矿物内部等时线定年的有效性予直接制约。  相似文献   

2.
Rubidium-strontium and samarium-neodymium isotopes of lunar meteorite LaPaz Icefield (LAP) 02205 are consistent with derivation of the parent magma from a source region similar to that which produced the Apollo 12 low-Ti olivine basalts followed by mixing of the magma with small amounts (1-2 wt%) of trace element-enriched material similar to lunar KREEP-rich sample SaU 169. The crystallization age of LAP 02205 is most precisely dated by an internal Rb-Sr isochron of 2991 ± 14 Ma, with an initial 87Sr/88Sr at the time of crystallization of 0.699836 ± 0.000010. Leachable REE-rich phosphate phases of LAP 02205 do not plot on a Sm-Nd mineral isochron, indicating contamination or open system behavior of the phosphates. Excluding anomalous phases from the calculation of a Sm-Nd isochron yields a crystallization age of 2992 ± 85 (initial ε143Nd = +2.9 ± 0.8) that is within error of the Rb-Sr age, and in agreement with other independent age determinations for LAP 02205 from Ar-Ar and U-Pb methods. The calculated 147Sm/144Nd source ratios for LAP 02205, various Apollo 12 and 15 basalts, and samples with strong affinities to KREEP (SaU 169, NWA 773, 15386) are uncorrelated with their crystallization ages. This finding does not support the involvement of a common KREEP component as a heat source for lunar melting events that occurred after crystallization of the lunar magma ocean.  相似文献   

3.
花岗岩体高温热年代学研究的新思路、方法及计算实例   总被引:2,自引:0,他引:2  
对国内外花岗岩体723 对锆石U-Pb 年龄(t Zr)和全岩Rb-Sr 等时线年龄(t Rb)进行的相关分析, 拟合出相关系数很高
(R =0.997), 回归系数接近l 的线性回归方程(t Zr=1.0005×t Rb+0.493041)。 Δt Zr-Rb(t Zr-t Rb)频数统计分析表明: Δt Zr-Rb呈对
称正态分布(偏度系数C SK=0.193; 峰度系数C KU=6.722), 其均值为0.624 Ma, 众数值为1.0 Ma。这表明花岗岩体锆石U-Pb 定
年的测定结果与全岩Rb-Sr 等时线定年测定结果在允许的误差范围内是一致的。不存在花岗岩体锆石U-Pb 年龄必定大于全
岩Rb-Sr 等时线年龄的规律表明,同位素热年代学方法只适用于研究花岗岩结晶固结后的低温热演化史。 前人根据锆石U-Pb
年龄和全岩Rb-Sr 等时线年龄差值及相应同位素体系封闭温度研究的10 个花岗岩体的冷却速率(CR Zr-Rb)表明,它们与岩
体体积尺度不相关,这有悖于“热物体的体积(质量)愈大,则在相同热物理条件下其冷却速率愈小”的热物理学基本定律。
根据热传导理论及本文作者(2010)提出的侵位结晶时差概念我们得出“在相同热物理学条件下,体积尺度是决定花岗岩
体冷却速率最主要因素”的结论。以上述10 个花岗岩体为例,本文计算得出它们在结晶固结前高温阶段的冷却速率(CR ECTD
并拟合出冷却速率与岩体体积尺度呈幂函数关系:CR ECTD=7544.7×D -2.1686, 计算结果符合热物理学基本定律。  相似文献   

4.
In the eastern Himalayan syntaxis, the southern Lhasa terrane is dominated by middle- to high-grade metamorphic rocks (Nyingchi Complex), which are intruded by felsic melts. U-Pb zircon dating and zircon Hf isotopic composition of these metamorphic and magmatic rocks provide important constraints on the tectono-thermal evolution of the Lhasa terrane during convergent process between Indian and Asian continents. U-Pb zircon data for an orthogneiss intruding the Nyingchi Complex yield a protolith magma crystallization age of 83.4 ± 1.2 Ma, with metamorphic ages of 65-46 Ma. This orthogneiss is characterized by positive εHf (t) values of + 8.3 and young Hf model ages of ~ 0.6 Ga, indicating a derivation primarily from a depleted-mantle or juvenile crustal source. Zircons from a quartz diorite yield a magma crystallization age of 63.1 ± 0.6 Ma, with εHf (t) values of − 8.2 to − 2.7, suggesting that this magma was sourced from partial melting of older crustal materials. Zircon cores from a foliated biotite granite show ages ranging from 347 to 2690 Ma, with age peaks at 347-403 Ma, 461-648 Ma and 1013-1183 Ma; their zircon εHf (t) values range from − 30.6 to + 6.9. Both the U-Pb ages and Hf isotopic composition of the zircon cores are similar to those of detrital zircons from the Nyingchi Complex paragneiss, implying that the granite was derived from anatexis of the Nyingchi Complex metasediments. The zircon rims from the granite indicate crustal anatexis at 64.4 ± 0.7 Ma and subsequent metamorphism at 55.1 ± 1.3 and 41.4 ± 2.3 Ma. Our results suggest that the late Cretaceous magmatism in the southern Lhasa terrane resulted from Neo-Tethys oceanic slab subduction and we infer that Paleocene crustal anatexis and metamorphism were related to the thermal perturbation caused by rollback of the northward subducted Neo-Tethyan oceanic slab.  相似文献   

5.
Eclogites from the deepest structural levels beneath the Semail ophiolite, Oman, record the subduction and later exhumation of the Arabian continental margin. Published ages for this high pressure event reveal large discrepancies between the crystallisation ages of certain eclogite-facies minerals and apparent cooling ages of micas. We present precise U-Pb zircon (78.95 ± 0.13 Ma) and rutile (79.6 ± 1.1 Ma) ages for the eclogites, as well as new U-Pb zircon ages for trondhjemites from the Semail ophiolite (95.3 ± 0.2 Ma) and amphibolites from the metamorphic sole (94.48 ± 0.23 Ma). The new eclogite ages reinforce published U-Pb zircon and Rb-Sr mineral-whole rock isochron ages, yet are inconsistent with published interpretations of older 40Ar/39Ar phengite and Sm-Nd garnet dates. We show that the available U-Pb and Rb-Sr ages, which are in tight agreement, fit better with the available geological evidence, and suggest that peak metamorphism of the continental margin occurred during the later stages of ophiolite emplacement.  相似文献   

6.
对国内外32个花岗岩体的锆石U-Pb年龄与全岩Rb-Sr等时线年龄之间差值(Δt)进行的频数统计分析表明:Δt呈对称正态分布(偏度系数CSK=0.36;峰度系数CKU=2.99);年龄差(Δt)既呈正值又有负值,其均值为2.08Ma;相对年龄差(Rt)小于5%。采用最小二乘法计算,花岗岩体锆石U-Pb年龄(tZr)对全岩Rb-Sr等时线年龄(tRb)拟合出相关系数很高(r=0.998),回归系数接近l(α=1.003)的线性回归方程(tRb =1.003tZr +1.258)。这些统计特征表明,从总体来看,花岗岩体的Rb-Sr等时线定年测定结果与锆石U-Pb定年测定结果是一致的,花岗岩全岩Rb-Sr等时线定年方法是成熟、可信的,同时也为花岗岩锆石U-Pb年龄代表结晶年龄而不代表花岗岩侵位年龄提供了依据。  相似文献   

7.
A combined study using multi-radiometric dating and oxygen isotopic geothermometry was carried out for Mesozoic quartz syenite, alkali-feldspar granite and associated hydrothermal uranium mineralization at Dalongshan in the Middle-Lower Yangtze valley of east-central China. Radiometric dating of the quartz syenite yields a whole-rock Rb–Sr isochron age of 135.6±4.3 Ma, a zircon U–Pb isochron age of 132.9±2.2 Ma, and K–Ar ages of 126±2, 118±3 and 94±4 Ma for hornblende, biotite and orthoclase, respectively. The alkali-feldspar granite yields a whole-rock Rb–Sr isochron age of 117.3±3.3 Ma, a zircon U–Pb isochron age of 114.7±2.1 Ma, and K–Ar ages of 112±2, 109±3 and 88±4 Ma for hornblende, biotite and orthoclase, respectively. Oxygen isotope thermometry for both granites gives temperatures of 685 to 720, 555 to 580, 435 to 460 and 320 to 330 °C, for hornblende, magnetite, biotite and orthoclase respectively, when paired with quartz. The systematic differences among the ages by the different techniques on the different minerals are used to reconstruct the cooling history of the granite. The results yield rapid cooling rates of 27.4 to 58.6 °C/Ma from 800 to 300 °C in the early stage, but slow cooling rates of 6.3 to 7.2 °C/Ma from 300 to 150 °C in the late stage. The regular sequence of oxygen isotope temperatures for the different quartz–mineral pairs demonstrates that diffusion is a dominant factor controlling the closure of both radiometric and O isotopic systems during granite cooling. Pitchblende U–Pb isochron dating yields an uranium mineralization age of 106.4±2.9 Ma, which is younger than the age of the granite emplacement and thus considerably postdates the time of magma crystallization, but is close to the closure time of the K–Ar system in the biotite. This points to a close relationship between granite cooling and ore-forming process. It appears that hydrothermal mineralization took place in the stage of slow cooling of the granite, whereas the rapid cooling of the granite was concurrent with the migration of hydrothermal fluids along fault structures. Therefore, the activity of the ore-forming hydrothermal system is temporally dictated by the cooling rates of the granite and may lag about 25 to 30 Ma behind the crystallization timing of associated granite.  相似文献   

8.
The Spessart Crystalline Complex, north-west Bavaria contains two orthogneiss units of granitic to granodioritic composition, known as the Rotgneiss and Haibach gneiss, respectively, which are structurally conformable with associated metasediments. The igneous origin of the Rotgneiss is apparent from field and textural evidence, whereas strong deformation and recrystallization in the Haibach gneiss has obscured most primary textures. New geochemical data as well as zircon morphology prove the Haibach gneiss to be derived from a granitoid precursor, which was chemically similar to the Rotgneiss protolith, thus suggesting a genetic link between those two rock units. Both gneiss types have chemical compositions typical of anatectic two-mica leucogranites. They show characteristics of both I- and S-type granites. Rb-Sr whole rock data on the Haibach gneiss provide an isochron age of 407±14 Ma (IR = 0.7077±0.0007; MSWD 2.2), which is slightly younger than the published date for the Rotgneiss (439±15 Ma; IR=0.7048±0.0026; MSWD 4.9). Single zircon dating of six idiomorphic grains, using the evaporation method, yielded a mean 207Pb/206Pb age of 410±18 Ma for the Haibach gneiss and 418±18 Ma for the Rotgneiss. Both zircon ages are within analytical error of the Rb-Sr isochron dates and are interpreted to reflect the time of protolith emplacement in Silurian times. Three xenocrystic zircon grains from the Rotgneiss yielded 207Pb/206Pb ages of 2278±12, 2490±13 and 2734±10 Ma, respectively, suggesting that late Archaean to early Proterozoic crust was involved in the generation of the granite from which the Rotgneiss is derived. Although it is assumed that the granitic protoliths of the two gneisses were formed through anatexis of older continental crust, the relatively low 87Sr/86Sr initial ratios of both gneisses may also indicate the admixture of a mantle component. The Rotgneiss and the Haibach gneiss thus document granitic magmatism at an active continental margin during late Silurian times.  相似文献   

9.
Rb-Sr and U-Pb isotopic data for granulite facies rocks, forming textural relics with respect to eclogite facies metamorphism in the Western Gneiss Region (WGR) of Norway, highlight the importance of textures and mineral reaction kinetics for the interpretation of geochronological data. Studied rocks from Bårdsholmen, southern WGR, were subjected to granulite facies metamorphism at 955 ± 3 Ma (U-Pb, zircon). Later on, they experienced a subduction-related, kinetically stranded eclogitization (T > 650 °C at ∼20 kbar) at 404 ± 2 Ma (Rb-Sr multimineral internal isochron data), followed by exhumation through amphibolite facies conditions. Full conversion of granulite to eclogite was restricted to zones of fluid infiltration and deformation. Despite the fact that metamorphic temperatures vastly exceeded the commonly assumed ‘closure temperature’ for Rb-Sr in submillimeter-sized biotite for several Ma during eclogite facies overprint, Sr-isotopic signatures of relic biotite have not been fully reset. Large biotite crystals nearly record their Sveconorwegian (Grenvillian) crystallization age. Sr signatures of other granulite facies phases (feldspar, pyroxenes, amphibole) remained unchanged, with the exception of apatite. The results imply that isotopic signatures much closer correspond to the P, T conditions of formation recorded by a dated phase and its paragenesis, than to a temperature history. In texturally well-equilibrated high-grade rocks which experienced no mineral reactions and remained devoid of free fluids during exhumation, like granulites or eclogites, isotopic resetting during cooling is either kinetically locked, or restricted to sluggish intermineral diffusion which demonstrably does not lead to full isotopic homogenization. In texturally unequilibrated rocks, textural relics are likely to represent isotopic relics. It is shown that for both high-grade rocks and for rocks with textural disequilibria, geologically meaningful isotopic ages based on isochron methods can only be derived from sub-assemblages in isotopic equilibrium, which have to be defined by analysis of all rock-forming minerals. Conventional two-point ‘mica ages’ for such rocks are a priori geochronologically uninterpretable, and valid multimineral isochron ages a priori do not record cooling but instead date recrystallization-inducing processes like fluid-rock interaction.  相似文献   

10.
Archaean gneiss-greenstone relationships are still unresolved in many ancient cratonic terrains although there is growing evidence that most of the late Archaean greenstone assemblages were deposited on older tonalitic crust.We report here well defined basement-cover relationships from a late Archaean greenstone belt in Lapland, north of the Polar Circle. The basal greenstone sequence contains quartzite, schist, komatiitic volcanics and an unusual volcanic conglomerate with well preserved granite pebbles of an older basement. These rocks surround a gneiss dome composed of foliated tonalite which shows a polyphase deformation pattern not seen in the neighbouring greenstones.Zircon fractions of the gneisses plot on two discordia lines and give upper intercept ages with concordia at 3,069±16 Ma and 3,110±17 Ma respectively. One fraction contains metamict zircons with components at least 3,135 Ma old. These are the oldest reliable ages yet reported from the Archaean of the Baltic Shield. Rb-Sr whole-rock dating of the tonalitic gneiss yielded an isochron age of 2,729±122 Ma and an ISr of 0.703±0.001. This is interpreted to reflect a resetting event during which the gneisses may have acquired their present tectonic fabric.Rb-Sr model age calculations yield mantle values for ISr at about 2,950±115 Ma and suggest that the tonalite was intruded into the crust as juvenile material at about 3.1 Ga ago as reflected by the zircon ages. It was subsequently deformed and isotopically reset at about 2.7 Ga ago, prior to greenstone deposition.Comparison with tonalitic gneisses of eastern Karelia displays significant differences and suggests that the Archaean of Finland may contain several generations of pre-greenstone granitoid rocks.  相似文献   

11.
New U-Pb zircon data from a segregation pegmatite in the granitic gneiss at Glenfinnan yield discordant points which appear to be aligned along a chord on a concordia diagram with upper and lower intersection ages of 1,517±30 Ma and 556±8 Ma, respectively. The results are similar to published U-Pb zircon data from the granitic gneiss but the lower intersection age does not correspond to concordant ages of 455±3 Ma obtained for monazites from the segregation pegmatite and from paragneiss which hosts the granitic gneiss. The apparent U-Pb zircon chord also gives no indication of a 1,030±50 Ma (large sample) Rb-Sr whole rock isochron age for the granitic gneiss (Brook et al. 1976). A traverse of adjacent 5–8 cm thick slabs in the paragneiss yields a Rb-Sr errochron of 455±60 Ma which also does not agree with the U-Pb zircon lower intersection age. The scale of this Sr whole rock diffusion (ca. 10 cm) is not at variance with existing thermal, temporal and experimental constraints.A two episodic loss model has been applied to the zircon data from the segregation pegmatite, to the previously published zircon data on the granitic gneiss and to new U-Pb zircon data on the host paragneiss. The first lead loss event, if assumed to be in Grenville time, was computed to be strongest in the granitic gneiss and segregation pegmatite. For the three suites of zircon considered, primary ages converge in the 1,700–1,800 Ma range with a final disturbance event at ca. 490 Ma, i.e., close to a plausible prograde stage of Caledonian metamorphism.The zircons in both the granitic gneiss and the paragneiss are believed to have been derived from the ubiquitous early Proterozoic shields bordering the North Atlantic. Furthermore the above model is consistent with the hypothesis that the zircons in the granitic gneiss were largely derived from the paragneiss. However, the U-Pb zircon data are not inconsistent with new Sr-isotopic evidence which suggests an additional, possibly deeper source with lower 87Sr/ 86Sr ratios.  相似文献   

12.
We report 39Ar-40Ar ages of whole rock (WR) and plagioclase and pyroxene mineral separates of nakhlites MIL 03346 and Y-000593, and of WR samples of nakhlites NWA 998 and Nakhla. All age spectra are complex and indicate variable degrees of 39Ar recoil and variable amounts of trapped 40Ar in the samples. Thus, we examine possible Ar-Ar ages in several ways. From consideration of both limited plateau ages and isochron ages, we prefer Ar-Ar ages of NWA 998 = 1334 ± 11 Ma, MIL 03346 = 1368 ± 83 Ma (mesostasis) and 1334 ± 54 Ma (pyroxene), Y-000593 = 1367 ± 7 Ma, and Nakhla = 1357 ± 11 Ma, (2σ errors). For NWA 998 and MIL 03346 the Ar-Ar ages are within uncertainties of preliminary Rb-Sr isochron ages reported in the literature. These Ar-Ar ages for Y-000593 and Nakhla are several Ma older than Sm-Nd ages reported in the literature. We conclude that the major factor in producing Ar-Ar ages slightly too old is the presence of small amounts of trapped martian or terrestrial 40Ar on weathered grain surfaces that was degassed along with the first several percent of 39Ar. A total K-40Ar isochron for WR and mineral data from five nakhlites analyzed by us, plus Lafayette data in the literature, gives an isochron age of 1325 ± 18 Ma (2σ). We emphasize the precision of this isochron over the value of the isochron age. Our Ar-Ar data are consistent with a common formation age for nakhlites. The cosmic-ray exposure (CRE) age for NWA 998 of ∼12 Ma is also similar to CRE ages for other nakhlites.  相似文献   

13.
The results of our combined U-Pb, Rb-Sr, and Sm-Nd isotope study of mare basalt 10017 contribute to the understanding of the petrogenetic processes involved in the origin of geochemical diversity in lunar mare basalt sources, as well as the U-Pb isotope systematics of the Moon. The Rb-Sr, Sm-Nd, and 238U-206Pb isotope systems yield concordant crystallization ages of 3.633 ± 0.057 Ga, 3.678 ± 0.069 Ga, and 3.616 ± 0.098 Ga, respectively. The 235U-207Pb isochron yields an older, though still concordant, age of 3.80 ± 0.12 Ga. Neither the 206Pb-207Pb system nor U-Pb concordia system yields an age for 10017 that is concordant with the age determined from the Sm-Nd, Rb-Sr, and 238U-206Pb systems. The initial 87Sr/86Sr of 10017 is 0.69941 ± 7 and the initial εNd is +3.2 ± 0.4. Initial Pb isotopic compositions, determined from the U-Pb isochrons, are 206Pb/204Pbi = 31 ± 11 and 207Pb/204Pbi = 34 ± 15. Together, these initial Pb compositions constrain the μ value of the 10017 source to be 70 ± 30, assuming a single-stage Pb growth model. This is considerably lower than μ values typically estimated for mare basalt sources (∼100-600). Regardless, the μ values calculated for the sources of mare basalts, as well as other lunar samples, show a range that is larger than can be explained by fractionation of U from Pb solely by crystallization of silicate phases and ilmenite during magma ocean solidification and formation of lunar mantle sources. The U-Pb isotope systematics may reflect late-stage formation of a sulfide phase, which strongly fractionates Pb from U but has minimal effect on Rb/Sr or Sm/Nd compositions, during crystallization of the lunar magma ocean.  相似文献   

14.
Improved precision of radiometric dating of ore deposits can provide information about the thermal history of hydrothermal circulation in cooling plutons. In Jales a Hercynian porphyritic two-mica granite and pre-Ordovician mica schists are cut and intensely altered by the Campo gold-quartz vein. The unaltered granite must be younger than 320 ± 6 Ma, and gives mica Rb-Sr ages of 308.5 ± 2.4 (1) Ma (muscovite) and 294.5 ± 1.1 Ma (biotite). Alteration muscovites from the granite give a weighted mean Rb-Sr age of 308.1 ± 1.5 Ma, and a mean 39Ar-40Ar age of 300.7 ± 2.8 Ma. Alteration muscovites from the mica schists give similar 39Ar-40Ar ages, averaging 303.0 ± 2.8 Ma. The results suggest that circulation of the Campo mineralising fluids took place no more than 2–4 Ma after the granite cooled through the muscovite Rb-Sr closure temperature, about 500 °C, and that subsequent cooling to biotite closure at about 300 °C took place at less than 14°C/Ma. The mean cooling rate following emplacement was 15 to 25 °C/Ma. The most detailed comparable published data, for the Cornubian ore field, imply much faster cooling rates.  相似文献   

15.
Field mapping and structural studies in northern Sierra Leone by an I.G.S. team have established a stratigraphic sequence in this part of the Archaean of the West African Craton. An older “Leonian” granite-greenstone terrain is identified which experienced a tectonic-metamorphic event before the formation of the granite-greenstone terrain which ended with the Liberian tectonic-metamorphic event. Granite gneisses in the Fadugu district with Leonian structures yield statistically acceptable but discordant Pb-Pb and Rb-Sr whole-rock isochron ages of 2959±50 Ma and 2753±61 Ma, respectively (2 σ errors). These ages may be correlated with radiometric ages for the Leonian and Liberian structures elsewhere in Sierra Leone, and it is concluded that the Fadugu Rb-Sr whole-rock isochron has been reset by the Liberian event. The Pb-Pb whole-rock isochron for the Fadugu gneisses and a previously determined (but recomputed and partially checked) Rb-Sr whole-rock isochron age of 2980+80 Ma for granite gneisses from southeastern Sierra Leone provide a definitive age for the Leonian tectonic-metamorphic event at about 2970 Ma. Both the initial 87Sr/86Sr ratios and present-day first-stage model 238U/204Pb value for the Leonian granitoids are indistinguishable from mantle values, but do not preclude the possibility that these granitoids were derived from parental material with a short history in the crust or lower crust. The Rb-Sr whole-rock isochron age of 2753+61 Ma for the Fadugu granite gneiss provides a definitive age for the Liberian event in northern Sierra Leone. A succession of rocks older than the Leonian (i.e., older than 2970 Ma) has been identified in the field but not yet dated.  相似文献   

16.
Combined 147Sm-143Nd and 176Lu-176Hf chronology of the martian meteorite Larkman Nunatak (LAR) 06319 indicates an igneous crystallization age of 193 ± 20 Ma (2σ weighted mean). The individual 147Sm-143Nd and 176Lu-176Hf internal isochron ages are 183 ± 12 Ma and 197 ± 29 Ma, respectively, and are concordant with two previously determined 147Sm-143Nd and 87Rb-87Sr internal isochron ages of 190 ± 26 Ma and 207 ± 14 Ma, respectively (Shih et al., 2009). With respect to the 147Sm-143Nd isotope systematics, maskelynite lies above the isochron defined by primary igneous phases and is therefore not in isotopic equilibrium with the other phases in the rock. Non-isochronous maskelynite is interpreted to result from shock-induced reaction between plagioclase and partial melts of pyroxene and phosphate during transformation to maskelynite, which resulted in it having unsupported 143Nd relative to its measured 147Sm/144Nd ratio. The rare earth element (REE) and high field strength element (HFSE) compositions of major constituent minerals can be modeled as the result of progressive crystallization of a single magma with no addition of secondary components. The concordant ages, combined with igneous textures, mineralogy, and trace element systematics indicate that the weighted average of the radiometric ages records the true crystallization age of this rock. The young igneous age for LAR 06319 and other shergottites are in conflict with models that advocate for circa 4.1 Ga crystallization ages of shergottites from Pb isotope compositions, however, they are consistent with updated crater counting statistics indicating that young volcanic activity on Mars is more widespread than previously realized (Neukum et al., 2010).  相似文献   

17.
Rb-Sr and U-Pb isotopic studies of the two contrasting granite types of the Daguzhai and Luobuli massifs in South China provide new constraints on the interpretation of isotopic age data for plutonic igneous rocks. A Rb-Sr internal isochron age of 146±7Ma for the Luobuli adamellite is interpreted to represent the age of magma crystallization, whereas the whole rock Rb- Sr isochron yields an older apparent age of 161±10Ma which is regarded as resulting from contamination processes affecting the petrogenesis of this adamellite. In the Daguzhai granite the marked scatter of whole- rock Rb-Sr data in isochron diagram is ascribed to the open system behavior of Rb during postmagmatic autometasomatism. Uniformity of initial87Sr /86Sr ratio in this granite is indicated in a plot of87Sr versus86Sr. The autometasomatism has also affected zircon U-Pb system, resulting in a spread of data along the concordia curve between 165 and 125Ma. This spread is regarded as indicating the duration of the autometasomatism.  相似文献   

18.
Precambrian granitic basement rocks obtained from well BH-36 of Bombay High Field, western offshore of India has been studied both by Rb-Sr and K-Ar dating methods. Seven basement samples chosen from two cores have yielded whole rock Rb-Sr isochron age of 1446 ± 67 Ma with an initial87Sr/86Sr ratio of 0.7062 ± 0.0012. This age has been interpreted as the formation/emplacement time of the granite. Two biotite fractions of different grain size separated from a sample CC6B2T have yielded Rb-Sr mineral isochron age of 1385 ± 21 Ma. However, these fractions when studied by K-Ar dating method have yielded slightly higher but mutually consistent ages of 1458 ± 43 Ma and 1465 ± 43 Ma, respectively. Further, two biotites separated from additional samples CC5B9T and CC6B3B have yielded K-Ar ages of 1452 ± 42 Ma and 1425 ± 40 Ma with an overall mean age of 1438 ± 19 Ma. This mean K-Ar age is indistinguishable from whole rock Rb-Sr isochron as well as mineral isochron age within experimental error. The similarity in the whole rock and biotite ages obtained by different isotopic methods suggests that no thermal disturbance has occurred in these rocks after their emplacement/formation around 1450 Ma ago. The present study provides the evidence for the existence of an important Middle Proterozoic magmatic event around 1400-1450 Ma on the western offshore of India which, hitherto, was thought to be mainly confined to the eastern Ghats, Satpura and Delhi fold belt of India. This finding may have an important bearing on the reconstruction of Proterozoic crustal evolution of western Indian shield.  相似文献   

19.
The Bottle Lake Complex is a composite granitic batholith emplaced into Cambrian to Lower Devonian metasedimentary rocks. Both plutons (Whitney Cove and Passadumkeag River) are very coarse grained hornblende and biotite-bearing granites showing petrographic and geochemical reverse zonation. Two linear whole rock Rb/Sr isochrons on xenolith-free Whitney Cove and Passadumkeag River samples indicate ages of 379±5 m.y. and 381±4 m.y., respectively, in close agreement with published K-Ar ages for biotite from Whitney Cove of 377 m.y. and 379 m.y., and for hornblende 40Ar/39Ar determinations from Passadumkeag River which indicate an age of 378±4 m.y. The initial Sr isotopic ratio for Whitney Cove is 0.70553 and for Passadumkeag River is 0.70414. A whole-rock isochron on a suite of xenoliths from the Passadumkeag River granite indicates a whole rock Rb-Sr age of 496±14 m.y., with an initial Sr isotopic ratio of 0.70262.Two types of zircon exhibiting wide petrographic diversity are evident in variable proportions throughout the batholith. One of these types is preferentially found in a mafic xenolith and it is widely dispersed in the host granites forming discrete grains and probably as inclusions in the other type of zircon. U-Pb analyses of zircons give concordia intercept ages of 399±8 m.y. for Whitney Cove, 388±6 m.y. for Passadumkeag River, 415 m.y. for a mafic xenolith in Passadumkeag River, and 396±32 for combined Whitney Cove and Passadumkeag River granite. The zircons show a spread of up to 20 m.y. in the 207Pb/206Pb ages. Omitting the finest zircon fraction in the Passadumkeag River results in a concordia intercept age of 381±3 m.y., in better agreement with the whole-rock Rb-Sr and mineral K-Ar ages. For the Whitney Cove pluton, exclusion of the finest fraction does not bring the zircon age into agreement with the Rb-Sr data.Age estimates by the whole rock Rb-Sr, mineral K-Ar and Ar-Ar methods suggest that the crystallization age of the plutons is about 380 m.y., slightly younger than the U-Pb zircon intercept ages. A possible reason for this discrepancy is that the zircons contain inherited lead. Thus, zircon U-Pb ages might represent a mixture of newly developed zircon and older inherited zircon, whereas the Rb-Sr whole rock age (380 m.y.) reflects the time of crystallization, and the argon ages result from rapid cooling after emplacement.  相似文献   

20.
The Bleikvassli Zn-Pb deposit is located in the Uppermost Allochthon of the northern Norwegian Caledonides and is enclosed in amphibolite facies, multiply deformed supracrustal rocks. The stratiform orebody occurs stratigraphically above a sequence of gneiss and amphibolite and below a thick carbonate unit. The orebody, spatially associated with a footwall microcline gneiss that contains as much as 12wt K2O, occurs in the lower part of the Mine Sequence which also comprises (kyanite-) mica schist and quartzo-feldspathic to siliceous rocks. The host rock lithology and the metal content of the Bleikvassli orebody are consistent with a SEDEX origin of the deposit. Field relationships and chemistry suggest that the microcline gneiss represents a potassic alteration of pelitic sediments related to the ore-forming process. A 464 ± 22 Ma Rb-Sr isochron for the microcline gneiss is interpreted to be a metamorphic age resulting from resetting of the Rb-Sr isotopic system during the Caledonian orogeny. The U-Pb in the whole rock shows evidence of recent mobilization of uranium and a partial or total resetting of the system during peak metamorphism. As with most SEDEX deposits, the lead isotope composition of the Bleikvassli ore plots close to the orogen growth curve. The geological setting of the ore and the lead — isotope compositions of the galenas indicate a Cambrian age of mineralization. However, the slope of the lead isotope data indicate an age of about 1000 Ma, which is also a maximum age of ore deposition. The lead isotope data for the galena, in conjunction with the compositions of the microcline gneiss during peak metamorphism, support a model whereby the microcline rock was formed as an alteration product by the ore forming fluid and the initial lead isotope composition of the microcline rock was similar to that of the galenas during ore deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号