首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The aluminum-rich (>10 wt% Al2O3) objects in the CH carbonaceous chondrite North West Africa (NWA) 739 include Ca,Al-rich inclusions (CAIs), Al-rich chondrules, and isolated mineral grains (spinel, plagioclase, glass). Based on the major mineralogy, 54 refractory inclusions found in about 1 cm2 polished section of NWA 739 can be divided into hibonite-rich (16%), grossite-rich (26%), melilite-rich (28%), spinel-pyroxene-rich (16%) CAIs, and amoeboid olivine aggregates, (AOA's, 17%). Most CAIs are rounded, 25–185 μm (average=70 μm) in apparent diameter, contain abundant, tiny perovskite grains, and typically surrounded by a single- or double-layered rim composed of melilite and/or Al-diopside; occasionally, layers of spinel+hibonite and forsterite are observed. The AOAs are irregularly shaped, 100–250 μm (average=175 μm) in size, and consist of forsterite, Fe,Ni-metal, and CAIs composed of Al-diopside, anorthite, and minor spinel. One AOA contains compact, rounded melilite-spinel-perovskite CAIs and low-Ca pyroxene replacing forsterite. The Al-rich (>10 wt% bulk Al2O3) chondrules are divided into Al-diopside-rich and plagioclase-rich. The Al-diopside-rich chondrules, 50–310 μm (average=165 μm) in apparent diameter, consist of Al-diopside, skeletal forsterite, spinel, ±Al-rich low-Ca pyroxene, and ±mesostasis. The plagioclase-rich chondrules, 120–455 μm (average=285 μm) in apparent diameter, are composed of low-Ca and high-Ca pyroxenes, forsterite, anorthitic plagioclase, Fe,Ni-metal nodules, and mesostasis. The isolated spinel occurs as coarse, 50–125 μm in size, subhedral grains, which are probably the fragments of Al-diopside chondrules. The isolated plagioclase grains are too coarse (60–120 μm) to have been produced by disintegration of chondrules or CAIs; they range in composition from nearly pure anorthite to nearly pure albite; their origin is unclear. The Al-rich objects show no evidence for Fe-alkali metasomatic or aqueous alteration; the only exception is an Al-rich chondrule fragment with anorthite replaced by nepheline. They are texturally and mineralogically similar to those in other CH chondrites studied (Acfer 182, ALH85085, PAT91467, NWA 770), but are distinct from the Al-rich objects in other chondrite groups (CM, CO, CR, CV). The CH CAIs are dominated by very refractory minerals, such as hibonite, grossite, perovskite and gehlenitic melilite, and appear to have experienced very low degrees of high-temperature alteration reactions. These include replacement of grossite by melilite, of melilite by anorthite, diopside, and spinel, and of forsterite by low-Ca pyroxene. Only a few CAIs show evidence for melting and multilayered Wark-Lovering rims. These observations may suggest that CH CAIs experienced rather simple formation history and escaped extensive recycling. In order to preserve the high-temperature mineral assemblages, they must have been efficiently isolated from the hot nebular region, like some chondrules and the zoned Fe,Ni-metal grains in CH chondrites.  相似文献   

2.
The coarse-grained, igneous, anorthite-rich (Type C) CAIs from Allende studied (100, 160, 6-1-72, 3529-40, CG5, ABC, TS26, and 93) have diverse textures and mineralogies, suggesting complex nebular and asteroidal formation histories. CAIs 100, 160, 6-1-72, and 3529-40 consist of Al,Ti-diopside (fassaite; 13-23 wt% Al2O3, 2-14 wt% TiO2), Na-bearing åkermanitic melilite (0.1-0.4 wt% Na2O; Åk30-75), spinel, and fine-grained (∼5-10 μm) anorthite groundmass. Most of the fassaite and melilite grains have “lacy” textures characterized by the presence of abundant rounded and prismatic inclusions of anorthite ∼5-10 μm in size. Lacy melilite is pseudomorphed to varying degrees by grossular, monticellite, and pure forsterite or wollastonite. CAI 6-1-72 contains a relict Type B CAI-like portion composed of polycrystalline gehlenitic melilite (Åk10-40), fassaite, spinel, perovskite, and platinum-group element nuggets; the Type B-like material is overgrown by lacy melilite and fassaite. Some melilite and fassaite grains in CAIs 100 and 160 are texturally similar to those in the Type B portion of 6-1-72. CAIs ABC and TS26 contain relict chondrule fragments composed of forsteritic olivine and low-Ca pyroxene; CAI 93 is overgrown by a coarse-grained igneous rim of pigeonite, augite, and anorthitic plagioclase. These three CAIs contain very sodium-rich åkermanitic melilite (0.4-0.6 wt% Na2O; Åk63-74) and Cr-bearing Al,Ti-diopside (up to 1.6 wt% Cr2O3, 1-23 wt% Al2O, 0.5-7 wt% TiO2). Melilite and anorthite in the Allende Type C CAI peripheries are replaced by nepheline and sodalite, which are crosscut by andradite-bearing veins; spinel is enriched in FeO. The CAI fragment CG5 is texturally and mineralogically distinct from other Allende Type Cs. It is anorthite-poor and very rich in spinel poikilitically enclosed by Na-free gehlenitic melilite (Åk20-30), fassaite, and anorthite; neither melilite nor pyroxene have lacy textures; secondary minerals are absent. The Al-rich chondrules 3655b-2 and 3510-7 contain aluminum-rich and ferromagnesian portions. The Al-rich portions consist of anorthitic plagioclase, Al-rich low-Ca pyroxene, and Cr-bearing spinel; the ferromagnesium portions consist of fosteritic olivine, low-Ca pyroxene, and opaque nodules.We conclude that Type C CAIs 100, 160, 6-1-72, and 3529-40 formed by melting of coarse-grained Type B-like CAIs which experienced either extensive replacement of melilite and spinel mainly by anorthite and diopside (traces of secondary Na-bearing minerals, e.g., nepheline or sodalite, might have formed as well), or addition of silica and sodium during the melting event. CG5 could have formed by melting of fine-grained spinel-melilite CAI with melilite and spinel partially replaced anorthite and diopside. CAIs ABC, 93, and TS-26 experienced melting in the chondrule-forming regions with addition of chondrule-like material, such as forsteritic olivine, low-Ca pyroxene, and high-Ca pyroxene. Anorthite-rich chondrules formed by melting of the Al-rich (Type C CAI-like) precursors mixed with ferromagnesian, Type I chondrule-like precursors. The Allende Type C CAIs and Al-rich chondrules experienced fluid-assisted thermal metamorphism, which resulted in pseudomorphic replacement of melilite and anorthite by grossular, monticellite, and forsterite (100, 160, 6-1-72, 3592-40) or by grossular, monticellite, and wollastonite (ABC, 93, TS-26). The pseudomorphic replacement was followed or accompanied by iron-alkali metasomatic alteration resulting in replacement of melilite and anorthite by nepheline and sodalite, enrichment of spinel in FeO, and precipitation of salite-hedenbergite pyroxenes, wollastonite, and andradite in fractures and pores in and around CAIs.  相似文献   

3.
Amoeboid olivine aggregates (AOAs) are the most common type of refractory inclusions in CM, CR, CH, CV, CO, and ungrouped carbonaceous chondrites Acfer 094 and Adelaide; only one AOA was found in the CBb chondrite Hammadah al Hamra 237 and none were observed in the CBa chondrites Bencubbin, Gujba, and Weatherford. In primitive (unaltered and unmetamorphosed) carbonaceous chondrites, AOAs consist of forsterite (Fa<2), Fe, Ni-metal (5-12 wt% Ni), and Ca, Al-rich inclusions (CAIs) composed of Al-diopside, spinel, anorthite, and very rare melilite. Melilite is typically replaced by a fine-grained mixture of spinel, Al-diopside, and ±anorthite; spinel is replaced by anorthite. About 10% of AOAs contain low-Ca pyroxene replacing forsterite. Forsterite and spinel are always 16O-rich (δ17,18O∼−40‰ to −50‰), whereas melilite, anorthite, and diopside could be either similarly 16O-rich or 16O-depleted to varying degrees; the latter is common in AOAs from altered and metamorphosed carbonaceous chondrites such as some CVs and COs. Low-Ca pyroxene is either 16O-rich (δ17,18O∼−40‰) or 16O-poor (δ17,18O∼0‰). Most AOAs in CV chondrites have unfractionated (∼2-10×CI) rare-earth element patterns. AOAs have similar textures, mineralogy and oxygen isotopic compositions to those of forsterite-rich accretionary rims surrounding different types of CAIs (compact and fluffy Type A, Type B, and fine-grained, spinel-rich) in CV and CR chondrites. AOAs in primitive carbonaceous chondrites show no evidence for alteration and thermal metamorphism. Secondary minerals in AOAs from CR, CM, and CO, and CV chondrites are similar to those in chondrules, CAIs, and matrices of their host meteorites and include phyllosilicates, magnetite, carbonates, nepheline, sodalite, grossular, wollastonite, hedenbergite, andradite, and ferrous olivine.Our observations and a thermodynamic analysis suggest that AOAs and forsterite-rich accretionary rims formed in 16O-rich gaseous reservoirs, probably in the CAI-forming region(s), as aggregates of solar nebular condensates originally composed of forsterite, Fe, Ni-metal, and CAIs. Some of the CAIs were melted prior to aggregation into AOAs and experienced formation of Wark-Lovering rims. Before and possibly after the aggregation, melilite and spinel in CAIs reacted with SiO and Mg of the solar nebula gas enriched in 16O to form Al-diopside and anorthite. Forsterite in some AOAs reacted with 16O-enriched SiO gas to form low-Ca pyroxene. Some other AOAs were either reheated in 16O-poor gaseous reservoirs or coated by 16O-depleted pyroxene-rich dust and melted to varying degrees, possibly during chondrule formation. The most extensively melted AOAs experienced oxygen isotope exchange with 16O-poor nebular gas and may have been transformed into magnesian (Type I) chondrules. Secondary mineralization and at least some of the oxygen isotope exchange in AOAs from altered and metamorphosed chondrites must have resulted from alteration in the presence of aqueous solutions after aggregation and lithification of the chondrite parent asteroids.  相似文献   

4.
The petrography and mineral chemistry of 110 Ca-, Al-rich inclusions (CAIs) and 9 Ca- and/or Al-rich amoeboid olivine aggregates (AOAs) from the Ningqiang carbonaceous chondrite are reported. These CAIs are referred to as hibonite-bearing and hibonite-free melilite-spinel-rich (Type A), and spinel-pyroxene inclusions. Melilite is more gehlenitic in the hibonite-bearing Type As than in the other two types, and all of them vary within a range of Åk0-30. Modal compositions of the three types of CAIs overlap with each other, and make up a continuum with wide ranges of melilite: spinel: diopside. The diopside occurs as rims on the CAIs or their individual concentric objects. The 9 AOAs contain spinel ± diopside ± anorthite in the centers of the aggregates; the spinel grains rimmed by diopside in the centers are similar to the spinel-pyroxene inclusions. Bulk compositions of these CAIs vary along the condensation trajectory, with the hibonite-bearing Type As plotting at the beginning followed by hibonite-free Type As then by spinel-pyroxene inclusions as temperature decreases. Bulk compositions of the AOAs are close to the lowest temperature condensation trajectory. Except for a few with compact textures, most of the Type As and spinel-pyroxene inclusions are fluffy aggregates, probably pristine vapor-solid condensates of the nebula.The bulk compositions of the Type As appear to overlap with the range of most melilite-Ti-Al-clinopyroxene-rich (Type B) inclusions. Hence, crystallization of liquids produced by melting the Type As can form Type B inclusions, without significant evaporative loss of MgO or SiO2. A few Type Bs have bulk compositions deviating from the range of their proposed precursors, and may have suffered significant evaporation, as suggested in previous studies.  相似文献   

5.
We measured major, minor, and trace-element compositions for eleven Al-rich chondrules from unequilibrated ordinary chondrites to investigate the relationships between Al-rich chondrules, ferromagnesian chondrules, Ca-, Al-rich inclusions (CAIs), and amoeboid olivine aggregates (AOAs). Phase equilibrium considerations show that, for the most part, mineral assemblages in Al-rich chondrules are those expected from melts of the observed compositions. The diversity of mineral assemblages and Al-rich chondrule types arises mainly from the fact that the array of compositions spans both the spinel-saturated anorthite-forsterite reaction curve and a thermal divide defined by where the anorthite-forsterite join crosses the reaction curve. The reaction curve accounts for the two principal varieties of Al-rich chondrule, plagioclase-phyric and olivine-phyric, with or without aluminous spinel. The thermal divide influences the subsequent evolution of each variety. A third variety of Al-rich chondrule contains abundant sodium-rich glass; trace-element fractionation patterns suggest that these glassy Al-rich chondrules could have been derived from the other two by extensive alteration of plagioclase to nepheline followed by remelting. The bulk compositions of Al-rich chondrules (except sodium-rich ones) are intermediate in a volatility sense between ferromagnesian chondrules and type C CAIs. The combined trend of bulk compositions for CAIs, Al-rich chondrules, and ferromagnesian chondrules mirrors, but does not exactly match, the trend predicted from equilibrium condensation at PT ∼ 10-3 atm; the observed trend does not match the trend found for evaporation from a liquid of chondritic composition. We thus infer that the bulk compositions of the precursors to CAIs, Al-rich chondrules, were ferromagnesian chondrules were controlled primarily by vapor-solid reactions (condensation or sublimation) in the solar nebula. Some Al-rich chondrules are consistent with an origin by melting of a compound CAI-ferromagnesian chondrule hybrid; others cannot be so explained. Any hybrid model is restricted by the constraint that the CAI precursor consisted dominantly of pyroxene + plagioclase + spinel; melilite cannot have been a significant component. Amoeboid olivine aggregates also have the inferred mineralogical characteristics of Al-rich chondrule precursors—they are mixtures of olivine with plagioclase-spinel-pyroxene-rich CAIs—but the few measured bulk compositions are more olivine-rich than those of Al-rich chondrules.  相似文献   

6.
We have discovered two FUN inclusions, CG-14 and TE, among a group of five forsterite-rich inclusions in Allende, two of which are described for the first time herein. All five consist of euhedral forsterite and spinel crystals poikilitically enclosed by fassaite. Forsterite and spinel are usually segregated from one another, sometimes into a spinel-rich mantle and a forsterite-rich core. Some inclusions contain vesicles, indicating that they were once molten. The crystallization sequence inferred from textures is: spinel, forsterite, fassaite and, finally, Mg-rich melilite. One concentrically-zoned inclusion contains melilite in its mantle whose composition lies on the opposite side of the liquidus minimum in the melilite binary from that in its core. This suggests that segregation of forsterite from spinel in all of these inclusions could be due to volatilization of MgO and SiO2 relative to Al2O3 and CaO from the outsides of droplets. CG-14 is relatively uniformly enriched in refractory elements relative to Cl chondrites by a factor similar to that for Ca-, Al-rich coarse-grained inclusions except for Ca, Al and Hf which are unusually low. No Ce anomaly such as found in FUN inclusions Cl and HAL is present in CG-14. Whole-rock samples of CG-14 and TE are more strongly mass-fractionated in oxygen relative to “normal” Allende inclusions than the FUN inclusion EK 1-4-1 and less so than Cl. Relative to bulk Allende, both inclusions have strongly massfractionated magnesium and silicon and 25Mg excesses or deficits of 24Mg or 26Mg. CG-14 has a 29Si excess or a deficit of 28Si or 30Si. Volatilization loss cannot be responsible for the magnesium and silicon isotope fractionations, as this would require prohibitively large mass loss from these magnesium-rich inclusions. The remarkable similarity in textures between FUN and non-FUN inclusions implies similar thermal histories, arguing against different rates of evaporative loss of major elements. Sputtering alone may be insufficient to account for the magnitude and direction of oxygen isotope fractionation in FUN inclusions.  相似文献   

7.
Grossite (CaAl4O7) is one of the one of the first minerals predicted to condense from a gas of solar composition, and therefore could have recorded isotopic compositions of reservoirs during the earliest stages of the Solar System evolution. Grossite-bearing Ca,Al-rich inclusions (CAIs) are a relatively rare type of refractory inclusions in most carbonaceous chondrite groups, except CHs, where they are dominant. We report new and summarize the existing data on the mineralogy, petrography, oxygen and aluminum-magnesium isotope systematics of grossite-bearing CAIs from the CR, CH, CB, CM, CO, and CV carbonaceous chondrites. Grossite-bearing CAIs from unmetamorphosed (petrologic type 2―3.0) carbonaceous chondrites preserved evidence for heterogeneous distribution of 26Al in the protoplanetary disk. The inferred initial 26Al/27Al ratio [(26Al/27Al)0] in grossite-bearing CAIs is generally bimodal, ˜0 and ˜5×10−5; the intermediate values are rare. CH and CB chondrites are the only groups where vast majority of grossite-bearing CAIs lacks resolvable excess of radiogenic 26Mg. Grossite-bearing CAIs with approximately the canonical (26Al/27Al)0 of ˜5×10−5 are dominant in other chondrite groups. Most grossite-bearing CAIs in type 2–3.0 carbonaceous chondrites have uniform solar-like O-isotope compositions (Δ17O ˜ ‒24±2‰). Grossite-bearing CAIs surrounded by Wark-Lovering rims in CH chondrites are also isotopically uniform, but show a large range of Δ17O, from ˜ ‒40‰ to ˜ ‒5‰, suggesting an early generation of gaseous reservoirs with different oxygen-isotope compositions in the protoplanetary disk. Igneous grossite-bearing CAIs surrounded by igneous rims of ±melilite, Al-diopside, and Ca-rich forsterite, found only in CB and CH chondrites, have uniform 16O-depleted compositions (Δ17O ˜ ‒14‰ to ‒5‰). These CAIs appear to have experienced complete melting and incomplete O-isotope exchange with a 16O-poor (Δ17O ˜ ‒2‰) gas in the CB impact plume generated about 5 Ma after CV CAIs. Grossite-bearing CAIs in metamorphosed (petrologic type >3.0) CO and CV chondrites have heterogeneous Δ17O resulted from mineralogically-controlled isotope exchange with a 16O-poor (Δ17O ˜ ‒2 to 0‰) aqueous fluid on the CO and CV parent asteroids 3–5 Ma after CV CAIs. This exchange affected grossite, krotite, melilite, and perovskite; corundum, hibonite, spinel, diopside, forsterite, and enstatite preserved their initial O-isotope compositions. The internal 26Al-26Mg isochrons in grossite-bearing CAIs from weakly-metamorphosed CO and CV chondrites were not disturbed during this oxygen-isotope exchange.HCCJr is grateful to Klaus Keil for all his sound profession counsel and collegial friendship over the years. He has always been willing to talk and has the generous nature of listening and sharing his thoughts freely and constructively. Professor Klaus Keil has been a mentor to and played a key role in the careers of three of the authors of this paper (ANK, KN, and GRH). He has also influenced the careers of the other authors and most of the people who have worked on meteorites over the past 50+ years. We therefore dedicate this paper to Professor Keil and present it in this Special Issue of Geochemistry.  相似文献   

8.
Allende “fluffy” Type A's (FTA's) are a distinct sub-group of Ca-, Al-rich inclusions whose primary mineral assemblage consists of Al-rich melilite (Åk 0–33), spinel that is commonly very V-rich, perovskite and, frequently, hibonite. Some contain relatively coarse-grained melilite (up to 1.5 mm) that is intensely kink-banded and commonly reversely-zoned, hibonite and V-rich spinel. Others contain much finer-grained and strain-free melilite (?50 μm) and have not been found to contain hibonite or V-rich spinel. Some FTA's contain both coarser- and finer-grained melilite and textural relationships indicate that the latter is replacing the former. FTA's are characterized by extremely irregular shapes and 60–75 volume per cent of fine-grained, secondary alteration products. Many are aggregates of innumerable nodules, each of which is surrounded by a Wark-Lovering-type rim sequence. These nodules are frequently separated from one another by matrix-like clastic rim material. Other FTA's do not have nodular structure. Structural and mineralogical characteristics of their Wark-Lovering rims suggest that FTA's did not achieve their shapes by deformation of a liquid or a hot, plastic solid. In contrast to those in Type B inclusions, formation of reverse zoning in the coarser-grained melilite crystals in FTA's cannot be understood in terms of crystallization from a liquid but are readily explainable by condensation from a solar nebular gas during a period of falling pressure. Further evidence against a liquid origin is the wide range of spinel compositions within individual coarser-grained FTA's. The fact that the reversely-zoned melilite crystals cannot have been produced in any kind of sublimation or distillation process precludes formation of these inclusions as volatilization residues. FTA's are aggregates in some of which are preserved vapor-solid condensate grains that formed at high temperature in the solar nebula.  相似文献   

9.
Amoeboid olivine aggregates (AOAs) in primitive carbonaceous chondrites consist of forsterite (Fa<2), Fe,Ni-metal, spinel, Al-diopside, anorthite, and rare gehlenitic melilite (Åk<15). ∼10% of AOAs contain low-Ca pyroxene (Fs1-3Wo1-5) that is in corrosion relationship with forsterite and is found in three major textural occurrences: (i) thin (<15 μm) discontinuous layers around forsterite grains or along forsterite grain boundaries in AOA peripheries; (ii) 5-10-μm-thick haloes and subhedral grains around Fe,Ni-metal nodules in AOA peripheries, and (iii) shells of variable thickness (up to 70 μm), commonly with abundant tiny (3-5 μm) inclusions of Fe,Ni-metal grains, around AOAs. AOAs with the low-Ca pyroxene shells are compact and contain euhedral grains of Al-diopside surrounded by anorthite, suggesting small (10%-20%) degree of melting. AOAs with other textural occurrences of low-Ca pyroxene are rather porous. Forsterite grains in AOAs with low-Ca pyroxene have generally 16O-rich isotopic compositions (Δ17O < −20‰). Low-Ca pyroxenes of the textural occurrences (i) and (ii) are 16O-enriched (Δ17O < −20‰), whereas those of (iii) are 16O-depleted (Δ17O = −6‰ to −4‰). One of the extensively melted (>50%) objects is texturally and mineralogically intermediate between AOAs and Al-rich chondrules. It consists of euhedral forsterite grains, pigeonite, augite, anorthitic mesostasis, abundant anhedral spinel grains, and minor Fe,Ni-metal; it is surrounded by a coarse-grained igneous rim largely composed of low-Ca pyroxene with abundant Fe,Ni-metal-sulfide nodules. The mineralogical observations suggest that only spinel grains in this igneous object were not melted. The spinel is 16O-rich (Δ17O ∼ −22‰), whereas the neighboring plagioclase mesostasis is 16O-depleted (Δ17O ∼ −11‰).We conclude that AOAs are aggregates of solar nebular condensates (forsterite, Fe,Ni-metal, and CAIs composed of Al-diopside, anorthite, spinel, and ±melilite) formed in an 16O-rich gaseous reservoir, probably CAI-forming region(s). Solid or incipiently melted forsterite in some AOAs reacted with gaseous SiO in the same nebular region to form low-Ca pyroxene. Some other AOAs appear to have accreted 16O-poor pyroxene-normative dust and experienced varying degrees of melting, most likely in chondrule-forming region(s). The most extensively melted AOAs experienced oxygen isotope exchange with 16O-poor nebular gas and may have been transformed into chondrules. The original 16O-rich signature of the precursor materials of such chondrules is preserved only in incompletely melted grains.  相似文献   

10.
R chondrites are a distinct group of chondritic meteorites with unique mineralogical and chemical compositions. They contain various types of Al-rich objects [Ca,Al-rich inclusions (CAIs), Al-rich chondrules and fragments], whose mineralogical compositions and classifications were previously determined by Rout and Bischoff (2008). Here, we report on the bulk compositions of 126 such Al-rich objects determined by broad-beam electron probe microanalysis.Most of the CAIs, except a few, are significantly altered by complex nebular and/or parent body processes and the determination of their pristine composition is difficult. We found that the simple concentric spinel-rich inclusions have high Al2O3 (21–72 wt%) correlated with their high modal spinel. The subgroup of simple concentric spinel-rich CAIs have a high Al2O3 (21–57 wt%) and also sometimes high FeO (up to 36 wt%), due to a high hercynitic component in the spinel. One simple concentric spinel- and hibonite-rich CAI H030/L, identified as a HAL-type CAI by isotopic studies reported elsewhere, has a highly refractory composition (Al2O3~72 wt%). Most of the simple concentric spinel- and fassaite-rich CAIs have consistently high CaO (~2.5–17 wt%) compared to other simple concentric spinel-rich inclusions group, where only some inclusions have high CaO (up to 15 wt%). Simple concentric spinel- and Na,Al-alteration product-rich CAIs are heavily altered and have high Na2O (up to ~12.5 wt%).The three analyzed fassaite-rich spherules have high CaO and Al2O3, and complex spinel- and fassaite-rich CAIs have high CaO (up to 23 wt%) and SiO2 (up to 41 wt%). Most of the complex spinel- and plagioclase-rich CAIs are altered and contain high amounts of secondary oligoclase. However, a few are less affected by secondary alteration and these are characterized by relatively high CaO (up to 24 wt%) and Al2O3 (18–33 wt%); complex spinel and Na,Al-alteration product-rich CAIs are similar to the concentric spinel- and Na,Al-alteration product-rich CAIs. Due to Fe- and alkali-metasomatism, the vast majority of the inclusions in this subgroup were heavily altered, either in a nebular or parent body environment. As a result of this alteration, they contain high FeO and Na2O+K2O+Cl.Almost all inclusions have a Ca/Al-ratio below the solar ratio. This suggests that significant Ca/Al fractionation occurred during the formation of most CAIs, most probably due to disequilibrium condensation of spinel prior to melilite. However, a distillation process cannot be ruled out for some CAIs in producing the spinel enrichment. Some porous and fine grained CAIs may have been produced by agglomeration of refractory dust rich in spinel and fassaite. The HAL-type CAI, H030/L, most likely formed by distillation, similar to most of the HAL-type inclusions. Phase equilibrium analysis, in the CMAS system, shows that the fassaite-bearing spherules most likely formed by metastable crystallization and disequilibrium processes. Al-rich chondrules are characterized by >10 wt% Al2O3, and most of these also have high FeO and Na2O. Considering their bulk compositions, their precursors seem to have been a mixture of a ferromagnesian chondrule component rich in olivine and an anorthite–spinel–pyroxene–nepheline-rich CAI component. The mineral assemblages of some of the less altered Al-rich chondrules conform to those predicted by phase equilibrium studies.  相似文献   

11.
Based on their mineralogy and petrography, ∼200 refractory inclusions studied in the unique carbonaceous chondrite, Acfer 094, can be divided into corundum-rich (0.5%), hibonite-rich (1.1%), grossite-rich (8.5%), compact and fluffy Type A (spinel-melilite-rich, 50.3%), pyroxene-anorthite-rich (7.4%), and Type C (pyroxene-anorthite-rich with igneous textures, 1.6%) Ca,Al-rich inclusions (CAIs), pyroxene-hibonite spherules (0.5%), and amoeboid olivine aggregates (AOAs, 30.2%). Melilite in some CAIs is replaced by spinel and Al-diopside and/or by anorthite, whereas spinel-pyroxene assemblages in CAIs and AOAs appear to be replaced by anorthite. Forsterite grains in several AOAs are replaced by low-Ca pyroxene. None of the CAIs or AOAs show evidence for Fe-alkali metasomatic or aqueous alteration. The mineralogy, textures, and bulk chemistry of most Acfer 094 refractory inclusions are consistent with their origin by gas-solid condensation and may reflect continuous interaction with SiO and Mg of the cooling nebula gas. It appears that only a few CAIs experienced subsequent melting. The Al-rich chondrules (ARCs; >10 wt% bulk Al2O3) consist of forsteritic olivine and low-Ca pyroxene phenocrysts, pigeonite, augite, anorthitic plagioclase, ± spinel, FeNi-metal, and crystalline mesostasis composed of plagioclase, augite and a silica phase. Most ARCs are spherical and mineralogically uniform, but some are irregular in shape and heterogeneous in mineralogy, with distinct ferromagnesian and aluminous domains. The ferromagnesian domains tend to form chondrule mantles, and are dominated by low-Ca pyroxene and forsteritic olivine, anorthitic mesostasis, and Fe,Ni-metal nodules. The aluminous domains are dominated by anorthite, high-Ca pyroxene and spinel, occasionally with inclusions of perovskite; have no or little FeNi-metal; and tend to form cores of the heterogeneous chondrules. The cores are enriched in bulk Ca and Al, and apparently formed from melting of CAI-like precursor material that did not mix completely with adjacent ferromagnesian melt. The inferred presence of CAI-like material among precursors for Al-rich chondrules is in apparent conflict with lack of evidence for melting of CAIs that occur outside chondrules, suggesting that these CAIs were largely absent from chondrule-forming region(s) at the time of chondrule formation. This may imply that there are several populations of CAIs in Acfer 094 and that mixing of “normal” CAIs that occur outside chondrules and chondrules that accreted into the Acfer 094 parent asteroid took place after chondrule formation. Alternatively, there may have been an overlap in the CAI- and chondrule-forming regions, where the least refractory CAIs were mixed with Fe-Mg chondrule precursors. This hypothesis is difficult to reconcile with the lack of evidence of melting of AOAs which represent aggregates of the least refractory CAIs and forsterite grains.  相似文献   

12.
A correlation of petrography, mineral chemistry and in situ oxygen isotopic compositions of fine-grained olivine from the matrix and of fine- and coarse-grained olivine from accretionary rims around Ca-Al-rich inclusions (CAIs) and chondrules in CV chondrites is used here to constrain the processes that occurred in the solar nebula and on the CV parent asteroid. The accretionary rims around Leoville, Vigarano, and Allende CAIs exhibit a layered structure: the inner layer consists of coarse-grained, forsteritic and 16O-rich olivine (Fa1-40 and Δ17O = −24‰ to −5‰; the higher values are always found in the outer part of the layer and only in the most porous meteorites), whereas the middle and the outer layers contain finer-grained olivines that are more fayalitic and 16O-depleted (Fa15-50 and Δ17O = −18‰ to +1‰). The CV matrices and accretionary rims around chondrules have olivine grains of textures, chemical and isotopic compositions similar to those in the outer layers of accretionary rims around CAIs. There is a correlation between local sample porosity and olivine chemical and isotopic compositions: the more compact regions (the inner accretionary rim layer) have the most MgO- and 16O-rich compositions, whereas the more porous regions (outer rim layers around CAIs, accretionary rims around chondrules, and matrices) have the most MgO- and 16O-poor compositions. In addition, there is a negative correlation of olivine grain size with fayalite contents and Δ17O values. However, not all fine-grained olivines are FeO-rich and 16O-poor; some small (<1 μm in Leoville and 5-10 μm in Vigarano and Allende) ferrous (Fa>20) olivine grains in the outer layers of the CAI accretionary rims and in the matrix show significant enrichments in 16O (Δ17O = −20‰ to −10‰). We infer that the inner layer of the accretionary rims around CAIs and, at least, some olivine grains in the finer portions of accretionary rims and CV matrices formed in an 16O-rich gaseous reservoir, probably in the CAI-forming region. Grains in the outer layers of the CAI accretionary rims and in the rims around chondrules as well as matrix may have also originated as 16O-rich olivine. However, these olivines must have exchanged O isotopes to variable extents in the presence of an 16O-poor reservoir, possibly the nebular gas in the chondrule-forming region(s) and/or fluids in the parent body. The observed trend in isotopic compositions may arise from mixtures of 16O-rich forsterites with grain overgrowths or newly formed grains of 16O-poor fayalitic olivines formed during parent body metamorphism. However, the observed correlations of chemical and isotopic compositions of olivine with grain size and local porosity of the host meteorite suggest that olivine accreted as a single population of 16O-rich forsterite and subsequently exchanged Fe-Mg and O isotopes in situ in the presence of aqueous solutions (i.e., fluid-assisted thermal metamorphism).  相似文献   

13.
Clinopyroxene and orthopyroxene megacrysts with lamellar intergrowths of pyroxenes and garnet rarely survive in pyroxenite layers from the exposed spinel-lherzolite massifs because of the emplacement history into the crust. Such features are remarkably preserved in some thick bands (up to 1 m) from the Freychinède ultramafic body (Ariège, French Pyrenees). These bands display a symmetrical zoning from the edges to the centre due to the concurrent decrease of orthopyroxene/clinopyroxene and spinel/garnet modal ratios. Textural and chemical data suggest that the present pyroxenite parageneses resulted from subsolidus recrystallization of magmatic assemblages composed of Al-rich orthopyroxene and clinopyroxene with minor spinel. These primary assemblages were changed by subsolidus recrystallization connected with an isobaric cooling at upper-mantle depth (45–50 km) from solidus temperature (1250°C) down to steady equilibrium temperature (950° C). The primary Al-rich ortho-and clinopyroxenes behaved differently on cooling. In a first stage, orthopyroxene exsolved concomitant Al-rich clinopyroxene and garnet, whereas clinopyroxene exsolved only Al-rich orthopyroxene. The garnet exsolution in clinopyroxene host is delayed to lower temperatures. This multistage process could account for the contrasting shapes of diffusion gradients adjacent to exsolved garnet, which tend to be flat in host-orthopyroxene and steep in host-clinopyroxene. An independent thermal modelling, together with available Al-diffusion data in clinopyroxene, allows us to define a fast magmatic cooling followed by a two-stage subsolidus cooling (35° C/year-6 from 1250° C to 1050° C and 9° C/year-6 to 900° C). This matches the contrasted exsolution sequences observed in the pyroxene megacrysts.  相似文献   

14.
Recent 182Hf-182W age determinations on Allende Ca-, Al-rich refractory inclusions (CAIs) and on iron meteorites indicate that CAIs have initial ε182W (−3.47 ± 0.20, 2σ) identical to that of magmatic iron meteorites after correction of cosmogenic 182W burn-out (−3.47 ± 0.35, 2σ). Either the Allende CAIs were isotopically disturbed or the differentiation of magmatic irons (groups IIAB, IID, IIIAB, and IVB) all occurred <1 m.y. after CAI formation. To assess the extent of isotopic disturbance, we have analyzed the elemental distribution of Hf and W in two CAIs, Ef2 from Efremovka (CV3 reduced), and Golfball from Allende (CV3 oxidized). Fassaite is the sole host of Hf (10-25 ppm) and, therefore, of radiogenic W in CAIs, with 180Hf/184W > 103, which is lowered by the ubiquitous presence of metal inclusions to 180Hf/184W > 10 in bulk fassaite. Metal alloy (Ni ∼ 50%) is the sole host of W (∼500 ppm) in Ef2, while opaque assemblages (OAs) and secondary veins are the hosts of W in Golfball. A large metal alloy grain from Ef2, EM2, has 180Hf/184W < 0.006. Melilite has both Hf and W below detection limits (<0.01 ppm), but the presence of numerous metallic inclusions or OAs makes melilite a carrier for W, with 180Hf/184W < 1 in bulk melilite. Secondary processes had little impact on the 182Hf-182W systematics of Ef2, but a vein cross-cutting fassaite in Golfball has >100 ppm W with no detectable Pt or S. This vein provides evidence for transport of oxidized W in the CAI. Because of the ubiquitous distribution of OAs, interpretations of the 182Hf-182W isochron reported for Allende CAIs include: (i) all W in the OAs was derived by alteration of CAI metal, or (ii) at least some of the W in OAs may have been equilibrated with radiogenic W during metamorphism of Allende. Since (ii) cannot be ruled out, new 182Hf-182W determinations on CAIs from reduced CV3 chondrites are needed to firmly establish the initial W isotopic composition of the solar system.  相似文献   

15.
The oxygen isotopic micro-distributions within and among minerals in a coarse-grained Ca, Al-rich inclusion (CAI), 7R-19-1 from the Allende meteorite, were measured by in situ using secondary ion mass spectrometry (SIMS). All values of O isotopic ratios in 7R-19-1 minerals fall along the carbonaceous chondrite anhydrous mineral mixing (CCAM) line on a δ17OSMOW vs. δ18OSMOW plot. Major refractory minerals (spinel, fassaite and melilite) in 7R-19-1 showed large negative anomalies of Δ17O in the order, spinel (−21‰) > 16O-rich melilite (∼−18‰) > fassaite (−15 to +1‰) > 16O-poor melilite (−8 to +2‰). However, the lower limit values of Δ17O are similar at about −21‰, a value commonly observed in CAIs. The similarity in the extreme values of the isotope anomaly anomalies suggests that crystallization of all CAIs started from an 16O enrichment of 21‰ (Δ17O) relative to terrestrial values. The order of the O isotopic anomalies observed for 7R-19-1, except for 16O-poor melilite, is parallel to the crystallization sequence determined by experiment from CAI liquid (Stolper, 1982), indicating that the O isotopic exchange in 7R-19-1 occurred between CAI melt and surrounding gas while 7R-19-1 was crystallizing from the 16O enriched CAI liquid (∼−21‰ in Δ17O) in the 16O-poor solar nebula. However, the a single crystallization sequence during the cooling stage cannot explain the existence of 16O-poor melilite. The presence of 16O-poor melilite suggests that multiple heating events occurred during CAI formation. The sharp contact between 16O-rich and 16O-poor melilite crystals and within 16O-rich melilite indicates that these multiple heatings occurred quickly. Based on the O isotopic and chemical compositions, fassaite crystals were aggregates of relic crystals formed from CAI melt whichthat have had various O isotopic compositions from the remelting processes. The results of intra-mineral distributions of O isotopes also support multiple heating events during CAI formation.  相似文献   

16.
We report in situ ion microprobe analyses of oxygen isotopic compositions of olivine, low-Ca pyroxene, high-Ca pyroxene, anorthitic plagioclase, glassy mesostasis, and spinel in five aluminum-rich chondrules and nine ferromagnesian chondrules from the CR carbonaceous chondrites EET92042, GRA95229, and MAC87320. Ferromagnesian chondrules are isotopically homogeneous within ±2‰ in Δ17O; the interchondrule variations in Δ17O range from 0 to −5‰. Small oxygen isotopic heterogeneities found in two ferromagnesian chondrules are due to the presence of relict olivine grains. In contrast, two out of five aluminum-rich chondrules are isotopically heterogeneous with Δ17O values ranging from −6 to −15‰ and from −2 to −11‰, respectively. This isotopic heterogeneity is due to the presence of 16O-enriched spinel and anorthite (Δ17O = −10 to −15‰), which are relict phases of Ca,Al-rich inclusions (CAIs) incorporated into chondrule precursors and incompletely melted during chondrule formation. These observations and the high abundance of relict CAIs in the aluminum-rich chondrules suggest a close genetic relationship between these objects: aluminum-rich chondrules formed by melting of spinel-anorthite-pyroxene CAIs mixed with ferromagnesian precursors compositionally similar to magnesium-rich (Type I) chondrules. The aluminum-rich chondrules without relict CAIs have oxygen isotopic compositions (Δ17O = −2 to −8‰) similar to those of ferromagnesian chondrules. In contrast to the aluminum-rich chondrules from ordinary chondrites, those from CRs plot on a three-oxygen isotope diagram along the carbonaceous chondrite anhydrous mineral line and form a continuum with amoeboid olivine aggregates and CAIs from CRs. We conclude that oxygen isotope compositions of chondrules resulted from two processes: homogenization of isotopically heterogeneous materials during chondrule melting and oxygen isotopic exchange between chondrule melt and 16O-poor nebular gas.  相似文献   

17.
Amoeboid olivine aggregates (AOAs) from the reduced CV chondrites Efremovka, Vigarano, and Leoville consist of forsteritic olivine, FeNi-metal and a refractory component composed of spinel, Al-diopside, ±anorthite. Secondary ferrous olivine and alkali-rich minerals (nepheline and sodalite), commonly observed in the oxidized CVs, are rare. Mineralogy and chemical compositions of AOAs are similar to those predicted by equilibrium thermodynamic condensation models, suggesting that AOAs formed primarily by gas-solid condensation over a narrow temperature range, slightly below the temperatures over which most Ca-Al-rich inclusions (CAIs) formed. AOAs in the reduced CVs preserve a 1st-generation 16O-rich signal (δ17,18O ∼ −40‰) similar to that observed in many CAIs, suggesting that these refractory objects originated from a common source in the solar nebula. In fact AOAs and many fine-grained CAIs may have formed by the same processes, but at slightly different temperatures, and can be considered a single class of refractory objects.Alteration of the AOAs is manifested by differing extents of 16O-depletion in original AOA minerals, FeO-enrichment in olivine, and formation of interstitial very fine grained Na-bearing phases. From the six AOAs and one fine-grained, melilite-pyroxene-rich CAI examined in this study, five distinct patterns of alteration were identified. (1) One unaltered AOA from Vigarano is characterized by 16O-rich forsterite without FeO-rich rims and interstitial Na-bearing phases. (2) Weak alteration in the melilite-pyroxene-rich CAI is characterized by incomplete 16O-depletion in some melilite and precipitation of Na-bearing phases near the CAI rim. (3) Oxygen isotopic composition and mineralogy are correlated in two AOAs from Leoville with 16O-rich olivine, 16O-poor anorthite and a range of intermediate compositions in Al-diopside. This pattern is consistent with model diffusion between original grains and a 16O-poor reservoir during a relatively short-term (<60 yr), high-temperature (900-1100°C) event. (4) Original forsterite has been enriched in FeO, but remained 16O-rich in one AOA from Vigarano. This result is consistent with the slower rate of diffusion of O than Fe and Mg in olivine. At least some interstitial phases are 16O-rich, and Na-bearing phases are abundant in this AOA. (5) In contrast, oxygen isotopic composition and Fo-content are correlated in two AOAs from Efremovka. The olivine in these AOAs tends to have forsteritic 16O-rich cores and FeO-rich 16O-depleted rims. The general correlation between oxygen isotopic composition and Fo-content is difficult to model by diffusion, and may have formed instead by aqueous dissolution and precipitation along the margins of preexisting olivine grains.Independent evidence for aqueous alteration of the Efremovka AOAs is provided by OH-rich signals detected during ion beam sputtering of some of the 16O-poor olivine. Elevated 16OH-count rates and order of magnitude increases in 16OH detected during single analyses reflect trapping of an aqueous phase in 16O-depleted olivine. An elevated 16OH signal was also detected in one analysis of relatively 16O-poor melilite in the melilite-pyroxene CAI from Vigarano, suggesting that this object also was altered by aqueous fluid.  相似文献   

18.
Amoeboid olivine aggregates (AOAs) in primitive (unmetamorphosed and unaltered) carbonaceous chondrites are uniformly 16O-enriched (Δ17O ∼ −20‰) and consist of forsterite (Fa<2), FeNi-metal, and a refractory component (individual CAIs and fine-grained minerals interspersed with forsterite grains) composed of Al-diopside, anorthite, ±spinel, and exceptionally rare melilite (Åk<15); some CAIs in AOAs have compact, igneous textures. Melilite in AOAs is replaced by a fine-grained mixture of spinel, Al-diopside, and anorthite. Spinel is corroded by anorthite or by Al-diopside. In ∼10% of > 500 AOAs studied in the CR, CV, CM, CO, CH, CB, and ungrouped carbonaceous chondrites Acfer 094, Adelaide, and LEW85332, forsterite is replaced to a various degree by low-Ca pyroxene. There are three major textural occurrences of low-Ca pyroxene in AOAs: (i) thin (<10 μm) discontinuous layers around forsterite grains or along forsterite grain boundaries in AOA peripheries; (ii) haloes and subhedral grains around FeNi-metal nodules in AOA peripheries, and (iii) thick (up to 70 μm) continuous layers with abundant tiny inclusions of FeNi-metal grains around AOAs. AOAs with low-Ca pyroxene appear to have experienced melting of various degrees. In the most extensively melted AOA in the CV chondrite Leoville, only spinel grains are relict; forsterite, anorthite and Al-diopside were melted. This AOA has an igneous rim of low-Ca pyroxene with abundant FeNi-metal nodules and is texturally similar to Type I chondrules.Based on these observations and thermodynamic analysis, we conclude that AOAs are aggregates of relatively low temperature solar nebular condensates originated in 16O-rich gaseous reservoir(s), probably CAI-forming region(s). Some of the CAIs were melted before aggregation into AOAs. Many AOAs must have also experienced melting, but of a much smaller degree than chondrules. Before and possibly after aggregation, melilite and spinel reacted with the gaseous SiO and Mg to form Ca-Tschermakite (CaAl2SiO6)-diopside (CaMgSi2O6) solid solution and anorthite. Solid or incipiently melted olivine in some AOAs reacted with gaseous SiO in the CAI- or chondrule-forming regions to form low-Ca pyroxene: Mg2SiO4 + SiO(g) + H2O(g) = Mg2Si2O6 + H2(g). Some low-Ca pyroxenes in AOAs may have formed by oxidation of Si-bearing FeNi-metal: Mg2SiO4 + Si(in FeNi) + 2H2O(g) = Mg2Si2O6 + 2H2(g) and by direct gas-solid condensation: Mg(g) + SiO(g) +H2O(g) = Mg2Si2O6(s) + H2(g) from fractionated (Mg/Si ratio < solar) nebular gas.Although bulk compositions of AOAs are rather similar to those of Type I chondrules, on the projection from spinel onto the plane Ca2SiO4-Mg2SiO4-Al2O3, these objects plot on different sides of the anorthite-forsterite thermal divide, suggesting that Type I chondrules cannot be produced from AOAs by an igneous fractionation. Formation of low-Ca pyroxene by reaction of AOAs with gaseous SiO and by melting of silica-rich dust accreted around AOAs moves bulk compositions of the AOAs towards chondrules, and provide possible mechanisms of transformation of refractory materials into chondrules or chondrule precursors. The rare occurrences of low-Ca pyroxene in AOAs may indicate that either AOAs were isolated from the hot nebular gas before condensation of low-Ca pyroxene or that condensation of low-Ca pyroxene by reaction between forsterite and gaseous SiO was kinetically inhibited. If the latter is correct, then the common occurrences of pyroxene-rich Type I chondrules may require either direct condensation of low-Ca pyroxenes or SiO2 from fractionated nebular gas or condensation of gaseous SiO into chondrule melts.  相似文献   

19.
A coordinated mineralogical and oxygen isotopic study of four fine-grained calcium-, aluminum-rich inclusions (CAIs) from the ALHA77307 CO3.0 carbonaceous chondrite was conducted. Three of the inclusions studied, 05, 1-65, and 2-119, all have nodular structures that represent three major groups, melilite-rich, spinel-rich, and hibonite-rich, based on their primary core mineral assemblages. A condensation origin was inferred for these CAIs. However, the difference in their primary core mineralogy reflects unique nebular environments in which multiple gas-solid reactions occurred under disequilibrium conditions to form hibonite, spinel, and melilite with minor perovskite and Al,Ti-rich diopside. A common occurrence of a diopside rim on the CAIs records a widespread event that marks the end of their condensation as a result of isolation from a nebular gas. An exception is a rare inclusion 2-112 that contains euhedral spinel crystals embedded in melilite, suggesting this CAI had been re-melted. All of the fine-grained CAIs analyzed in ALHA77307 are 16O-rich with an average Δ17O value of ∼−22 ± 5‰ (2σ), indicating no apparent correlation between their textures and oxygen isotopic compositions. We therefore conclude that a prevalent 16O-rich gas reservoir existed in a region of the solar nebula where CO3 fine-grained CAIs formed, initially by condensation and then later, some of them were reprocessed by melting event(s).  相似文献   

20.
Complex I-Xe and mineralogical studies have been performed on four heavily-altered Allende fine-grained spinel-rich Ca, Al-rich inclusions (CAIs) and four Allende dark inclusions (DIs) showing various degrees of iron-alkali metasomatic alteration. The CAIs are largely composed of Fe-rich spinel, Al-diopside, and secondary nepheline and sodalite. The DIs consist of chondrules and Allende-like matrix composed of lath-shaped fayalitic olivine, nepheline, sodalite, and Ca, Fe-rich pyroxene ± andradite ± FeNi-sulfide nodules. Chondrule phenocrysts are extensively or completely replaced by fayalitic olivine, nepheline, and sodalite; metal nodules are replaced by FeNi-sulfides, andradite and Ca, Fe-rich pyroxenes. The chondrules and matrices are crosscut by Ca, Fe-rich pyroxene ± FeNi-sulfide ± fayalitic olivine veins. DIs are surrounded by continuous Ca-rich rims composed of andradite, wollastonite, kirschsteinite, and Ca, Fe-rich pyroxenes, whereas the outer portions of the inclusions are depleted in Ca.Three CAIs yield well-defined I-Xe isochrons with ages 3.1 ± 0.2, 3.0 ± 0.2 and 3.7 ± 0.2 Ma younger than the Shallowater internal standard (4566 ± 2 Ma). Similar release profiles suggest the same iodine carrier (most probably sodalite) for all four CAIs. The Allende DIs yield I-Xe ages from 0.8 ± 0.3 to 1.9 ± 0.2 Ma older than Shallowater. Based on the petrographic observations, we infer that the DIs experienced at least two-stage alteration. During an early stage of the alteration, which took place in an asteroidal setting, but not in the current location of the DIs, chondrule silicates were replaced by secondary fayalitic olivine, nepheline, and sodalite. Calcium lost from the chondrules was redeposited as Ca, Fe-rich pyroxene veins and Ca, Fe-rich pyroxene ± andradite nodules in the matrix. The second stage of alteration resulted in mobilization of Ca from the DIs and its re-deposition as Ca-rich rims composed of Ca, Fe-rich pyroxenes, andradite, and wollastonite, around the DIs. We interpret I-Xe ages of the DIs as time of their alteration prior incorporation into Allende. The younger I-Xe ages of the fine-grained spinel-rich CAIs may reflect hydrothermal alteration of the Allende host, which could have occurred contemporaneously with the second stage of alteration of the Allende DIs. The lack of evidence for the disturbance of I-Xe system in the Allende DIs may suggest that fluid responsible for the alteration of the Allende CAIs was in equilibrium with the I- and Xe-bearing phases of the DIs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号