首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Group IIAB is the third largest group of iron meteorites and the second largest group that formed by fractional crystallization; many of these irons formed from the P-rich portion of a magma consisting of two-immiscible liquids. We report neutron-activation data for 78 IIAB irons. These confirm earlier studies showing that the group has the largest known range in Ir concentrations (a factor of 4000) and that slopes are steeply negative on plots of Ir vs. Au or As (or Ni). High negative slopes imply relatively high distribution coefficients for Ir, Au, and As (but, with rare exceptions, remaining less than unity for the latter). IIAB appears to have had the highest S contents of any magmatic group of iron meteorites, consistent with its high contents of other volatile siderophiles, particularly Ga and Ge. Large fractions of trapped melt were present in the IIAB irons with the highest Au and As and lowest Ir contents. As a result, when these irons crystallized, the DAu and DAs values can, with moderate accuracy, be estimated to have been roughly 0.53 and 0.46, respectively. These low values imply that the initial nonmetal (S + P) content of the magma was much lower than 170 mg/g, as estimated in earlier studies; our estimate is 75 mg/g. Our results are consistent with an initial P/S ratio of 0.25, similar to the ratio estimated for other magmatic groups. There is little doubt that incompatible S-rich and P-rich metallic liquids were involved during the formation of group IIAB. After 20% crystallization of our assumed starting composition the two-liquid boundary is encountered (at 72 mg/g S and 18 mg/g P). Initially the volume of S-rich liquid is very small, but continued crystallization increased the volume of this phase and decreased its P/S ratio while increasing this ratio in the P-rich liquid. Most crystallization of the IIAB magma would have occurred in the lower, P-rich portion of the core. However, metal was still a liquidus phase at the top of the core and, because both the immiscible liquids would have convected, they may have approached equilibrium throughout the very limited crystallization of the magma recorded in group IIAB. All IIAB irons contain trapped melt, and this melt will have had very different compositions depending on whether the liquid is S-rich (at the outer solid/liquid interface) or P-rich (at the inner interface). The P/S ratio in the melt trapped in the Santa Luzia iron is about 0.6 g/g, consistent with our modeling of Ir-Au and Ir-As trends implying that Santa Luzia formed in the lower, P-rich portion of the core after about 48% crystallization of the magma. Because the liquids were in equilibrium, the point at which immiscibility first occurred is not recorded by a dramatic change in the trends on element-Au diagrams; the main compositional effect is recorded in the P/S ratio of the trapped melt. The high-Au (>0.8 μg/g) irons for which large sections are available all contain skeletal schreibersite implying a relatively high (>0.3 g/g) P/S ratio; none of these irons could have crystallized from the S-rich upper layer of the core.  相似文献   

2.
Group IID is the fifth largest group of iron meteorites and the fourth largest magmatic group (i.e., that formed by fractional crystallization). We report neutron-activation data for 19 (of 21 known) IID irons. These confirm earlier studies showing that the group has a relatively limited range in Ir concentrations, a factor of 5. This limited range is not mainly due to incomplete sampling; Instead, it seems to indicate low solid/liquid distribution coefficients reflecting very low S contents of the parental magma, the same explanation responsible for the limited range in group IVA. Despite this similarity, these two groups have very different volatile patterns. Group IVA has very low abundances of the volatile elements Ga, Sb and Ge whereas in group IID Ga and Sb abundances are the highest known in a magmatic group of iron meteorites and Ge abundances are the second highest (after group IIAB). Group IID appears to be the only large magmatic group having high volatile abundances but low S. In the volatile-depleted groups IVA and IVB it is plausible that S was lost as a volatile from a chondritic precursor material. Because group IID seems to have experienced minimal loss of volatiles, we suggest that S was lost as an early melt having a composition near that of the Fe–FeS eutectic (315 mg/g S). When temperatures had risen 400–500 K higher P-rich melts formed, became gravitationally unstable, and drained through the first melt to form an inner core that was parental to the IID irons. As discussed by [Kracher, A., Wasson, J.T., 1982. The role of S in the evolution of the parental cores of the iron meteorites. Geochim. Cosmochim. Acta 46, 2419–2426], it is plausible that a metal-rich inner core and a S-rich outer core could coexist metastably because stratification near the interface permitted only diffusional mixing. The initial liquidus temperature of the inner, P-rich core is estimated to have been 1740 K; after >60% crystallization the increase in P and the decrease in temperature may have permitted immiscibility with the S-rich outer core. We have not recognized samples of the outer core.  相似文献   

3.
We report structural and compositional data leading to the classification of 41 iron meteorites, increasing the number of classified independent iron meteorites to 576. We also obtained data on a new metal-rich mesosiderite and on two new iron masses that are paired with previously studied irons. For the first time in this series we also report concentrations of Cr, Co, Cu, As, Sb, W, Re and Au in each of these 44 meteorites. We determined 7 of these elements (all except Sb) in 30 previously studied ungrouped or unusual irons, and obtained Cu data on 104 irons, 21 pallasites, and 3 meteorite phases previously studied by E. Scott. We show that Cu possesses characteristics well suited to a taxonomic element: a siderophile nature, a large range among all irons, and a low range within magmatic groups. For the first time we report the partial resolution of the C-rich group IIIE from its populous twin group IIIAB on element-Ni diagrams other than Ir-Ni. Cachiyuyal previously classified ungrouped and Armanty (Xinjiang) previously classified IIIAB are reclassified IIIE. Despite the addition of 3 new irons and the reanalysis of 3 previously studied irons the members of the set of 15 ungrouped irons having very low Ga (<3 μg/g) and Ge (<0.7 μg/g) contents remain individualists. The same is generally true for irons having 100 ≤ Ni ≤ 180 mg/g and compositional similarities to IIICD, but A80104 increases the Garden Head trio to a quartet. Algoma is reclassified from ungrouped to IIICD-an and Hassi-Jekna and Magnesia from IIICD to IIICD-an. The metal of Horse Creek and Mount Egerton is compositionally closely related to metal from EH chondrites. We suggest that the P-rich Bellsbank trio irons formed in the IIAB core in topographic lows filled with an immiscible, P-rich second liquid.  相似文献   

4.
We present new data for iron meteorites that are members of group IAB or are closely related to this large group, and we have also reevaluated some of our earlier data for these irons. In the past it was not possible to distinguish IAB and IIICD irons on the basis of their positions on element-Ni diagrams, but we now show that plotting the new and revised data yields six sets of compact fields on element-Au diagrams, each set corresponding to a compositional group. The largest set includes the majority (≈70) of irons previously designated IA; we christened this set the IAB main group. The remaining five sets we designate “subgroups” within the IAB complex. Three of these subgroups have Au contents similar to the main group, and form parallel trends on most element-Ni diagrams. The groups originally designated IIIC and IIID are two of these subgroups; they are now well resolved from each other and from the main group. The other low-Au subgroup has Ni contents just above the main group. Two other IAB subgroups have appreciably higher Au contents than the main group and show weaker compositional links to it. We have named these five subgroups on the basis of their Au and Ni contents. The three subgroups having Au contents similar to the main group are the low-Au (L) subgroups, the two others the high-Au (H) subgroups. The Ni contents are designated high (H), medium (M), or low (L). Thus the old group IIID is now the sLH subgroup, the old group IIIC is the sLM subgroup. In addition, eight irons assigned to two grouplets plot between sLL and sLM on most element-Au diagrams. A large number (27) of related irons plot outside these compact fields but nonetheless appear to be sufficiently related to also be included in the IAB complex.Many of these irons contain coarse silicates having similar properties. Most are roughly chondritic in composition; the mafic silicates show evidence of reduction during metamorphism. In each case the silicate O-isotopic composition is within the carbonaceous chondrite range (Δ17O ≤ −0.3‰). In all but four cases these are within the so-called IAB range, −0.30 ≥ Δ17O ≥ −0.68‰. Fine silicates appear to be ubiquitous in the main group and low-Au subgroups; this requires that viscosities in the parental melt reached high values before buoyancy could separate these.The well-defined main-group trends on element-Au diagrams provide constraints for evaluating possible models; we find the evidence to be most consistent with a crystal segregation model in which solid and melt are essentially at equilibrium. The main arguments against the main group having formed by fractional crystallization are: a) the small range in Ir, and b) the evidence for rapid crystallization and a high cooling rate through the γ-iron stability field. The evidence for the latter are the small sizes of the γ-iron crystals parental to the Widmanstätten pattern and the limited thermal effects recorded in the silicates (including retention of albitic plagioclase and abundant primordial rare gases). In contrast, crystal segregation in a cooling metallic melt (and related processes such as incomplete melting and melt migration) can produce the observed trends in the main group. We infer that this melt was formed by impact heating on a porous chondritic body, and that the melt was initially hotter than the combined mix of silicates and metal in the local region; the melt cooled rapidly by heat conduction into the cooler surroundings (mainly silicates). We suggest that the close compositional relationships between the main group and the low-Au subgroups are the result of similar processes instigated by independent impact events that occurred either at separate locations on the same asteroid or on separate but compositionally similar asteroids.  相似文献   

5.
Twenty-one iron meteorites with Ge contents below 1 μg/g, including nine belonging to groups IIIF and IVB, have been analyzed by instrumental neutron activation analysis (INAA) for the elements Co, Cr, As, Au, Re, Ir and W. Groups IIIF and IVB show positive correlations of Au, As and Co (IIIF only) with published Ni analyses, and negative correlations of Ir, Re, Cr (IVB only) and W (IIIF only) with Ni. On element-Ni plots, the gradients of the least squares lines are similar to those of many other groups, excluding IAB and IIICD. With the inclusion of a new member, Klamath Falls, group IIIF has the widest range of Au, As and Co contents of any group and the steepest gradients on plots of these elements against Ni. It is likely that these trends in groups IIIF and IVB were produced by fractionation of elements between solid and liquid metal, probably during fractional crystallization.It has been suggested that some of the 15 irons with <l μg/g Ge which lie outside the groups might be related. However, the INAA data indicate that no two are as strongly related as two group members. These low-Ge irons and the members of groups IIIF, IVA and IVB tend to have low concentrations of As, Au and P, low CoNi ratios and high Cr contents. The depletion of the more volatile elements probably results from incomplete condensation into the metal from the solar nebula.The structures of low-Ge irons generally reflect fast cooling rates (20–2000 K Myr?1). When data for all iron meteorites are plotted on a logarithmic graph of cooling rate against Ge concentration and results for related irons are averaged, there is a significant negative correlation. This suggests that metal grains which inefficiently condensed Ge and other volatile elements tended to accrete into small parent bodies.  相似文献   

6.
We have investigated the partitioning of Ir. Ge, Ga, W, Cr, Au, P, and Ni between solid metal and metallic liquid as a function of temperature and S-concentration of the metallic liquid. Partition coefficients for siderophile elements such as Ir, W, Ga and Ge increase by factors of 10–100 as the Sconcentration of the metallic liquid increases from 0–30 wt%. Partition coefficients for other siderophile elements such as Ni, Au and P increase by only factors of 2–3. In contrast, partition coefficients for the more chalcophile element Cr decrease. These experimentally-determined partition coefficients have been used in conjunction with a fractional crystallization model to reproduce the geochemical behavior of Ni, P, Au and Ir during the magmatic evolution of groups IIAB, IIIAB, IVA and IVB iron meteorites. The mean S-concentration for each group increases in the order IVB, IVA, IIIAB, IIAB, in accord with cosmochemical prediction. However, we are unable to reproduce the geochemical behavior of Ge, Ga, W and Cr in an internally consistent way. We conclude that the magmatic histories of these iron meteorite groups are more complex than has been generally assumed.  相似文献   

7.
The primary fractionation process in iron meteorites is that responsible for the distribution of elements between the groups, most notably Ga and Ge, which show concentration ranges of 103 and 104 respectively. To investigate the cause of the primary fractionation, concentrations of 16 elements were converted to relative abundances by dividing the element/Ni ratio by the CI chondrite ratio. These abundances were plotted on logarithmic graphs with data for each group (except IB and IIICD) and each cluster of closely related anomalous irons averaged.Co, P, Au, As, Cu, Sb, Ge and Zn are positively correlated with Ga. For most groups (except IA, IC and IIAB) relative abundances of these elements tend to decrease from about 1 in approximately the order listed above. This is the expected order in which these elements will condense into Fe, Ni during equilibrium nebular condensation. Mean relative abundances of refractory elements in groups generally lie within a narrow range of 0.5–2, and are uncorrelated with Ga. Although the equilibrium model may be only a gross approximation, it suggests that most primary fractionation did occur during nebular condensation.The anomalous irons are essential for defining many of the primary fractionation trends. On several element-Ga graphs the displacements of the anomalous irons from the primary curves indicate that these irons experienced the same secondary fractionation process (probably fractional crystallization) that produced the trends within most groups. The anomalous irons appear to be samples from over 50 minor groups, which have similar histories to the 12 major groups.  相似文献   

8.
Based on structural observations and the concentrations of Cr, Co, Ni, Cu, Ga, Ge, As, Sb, Re, Ir, and Au by neutron-activation analysis we have classified 14 Chinese iron meteorites. Thirteen are members of the large groups IAB, IIICD, IIIAB and IVA. Leshan is an ungrouped iron meteorite that falls within the IIE field on some element-Ni diagrams, but is distinctly outside this field on plots of Cu, W, and Ir vs. Ni; it is very similar in composition to Techado, another ungrouped iron. The high Cu content of Leshan in consistent with other evidence indicating that Cu is a valuable parameter for classifying iron meteorites. IIICD Dongling appears not to be a new meteorite, but to be paired with Nantan; Dongling was recovered about 50 km from the location of the Nantan shower. In view of the fact that Yongning is highly oxidized, we assign it to group IAB but cannot rule out IIICD. IVA-An Longchang has many characteristics of IVA irons, but has been remelted, probably in a terrestrial setting. Five irons belong to group IVA, a remarkably large number. Three are identical in composition, and we suspect that the two from Hubei, Guanghua and Huangling, are paired. Thus this set of 14 irons includes 12 independent falls.  相似文献   

9.
The concentrations of P, V, Cr, Fe, Co, Ni, Cu, Ga, Ge, As, Mo, Ru, Rh, Pd, W, Re, Os, Ir, Pt, and Au in the group IVB iron meteorites Cape of Good Hope, Hoba, Skookum, Santa Clara, Tawallah Valley, Tlacotepec, and Warburton Range have been measured by laser ablation inductively coupled plasma mass spectrometry. The data were fitted to a model of fractional crystallization of the IVB parent body core, from which the composition of the parent melt and metal/melt distribution coefficients for each element in the system were determined, for a chosen value of D(Ni). Relative to Ni and chondritic abundances, the parent melt was enriched in refractory siderophiles, with greatest enrichment of 5× chondritic in the most refractory elements, and was strongly volatile-depleted, down to 0.00014× chondritic in Ge. Comparison to an equilibrium condensation sequence from a gas of solar composition indicates that no single temperature satisfactorily explains the volatility trend in the IVB parent melt; a small (<1%) complement of ultrarefractory components added to metal that is volatile-depleted but otherwise has nearly chondritic abundances (for Fe, Co and Ni) best explains the volatility trend. In addition to this volatility processing, which probably occurred in a nebular setting, there was substantial oxidation of the metal in the IVB parent body, leading to loss of Fe and other moderately siderophile elements such as Cr, Ga, and W, and producing the high Ni contents that are observed in the IVB irons. By assuming that the entire IVB parent body underwent a similar chemical history as its core, the composition of the silicate that is complementary to the IVB parent melt was also estimated, and appears to be similar to that of the angrite parent.  相似文献   

10.
Magmatic iron meteorites are thought to be samples of the central metallic cores of asteroid-sized parent bodies. Sulfur is believed to have been an important constituent of these parental cores, but due to the low solubility of S in solid metal, initial S-contents for the magmatic groups cannot be determined through direct measurements of the iron meteorites. However, experimental solid metal-liquid metal partition coefficients show a strong dependence on the S-content of the metallic liquid. Thus, by using the experimental partition coefficients to model the fractional crystallization trends within magmatic iron meteorite groups, the S-contents of the parental cores can be indirectly estimated. Modeling the Au, Ga, Ge, and Ir fractionations in four of the largest magmatic iron meteorite groups leads to best estimates for the S-contents of the parental cores of 12 ± 1.5 wt% for the IIIAB group, 17 ± 1.5 wt% for the IIAB group, and 1 ± 1 wt% for the IVB group. The IVA elemental fractionations are not adequately fit by a simple fractional crystallization model with a unique initial S-content. These S-content estimates are much higher than those recently inferred from crystallization models involving trapped melt. The discrepancy is due largely to the different partition coefficients that are used by the two models. When only partition coefficients that are consistent with the experimental data are used, the trapped melt model, and the low S-contents it advocates, cannot match the Ge and Ir fractionations that are observed in IIIAB iron meteorites.  相似文献   

11.
We used neutron activation to characterize the metal of 33 main-group pallasites (PMG), widely held to be samples of a core-mantle interface. Most PMG cluster in a narrow range of metal and silicate compositions, but 6 are assigned to an anomalous subset (PMG-am) because of their deviant metal compositions, and 4 others to another anomalous subset (PMG-as) because of their appreciably higher olivine Fa contents. Metal compositions in all PMG are closely related to those in evolved IIIAB irons, and are generally consistent with their formation in the IIIAB parent asteroid. On element-Au diagrams for incompatible elements the normal PMG plot near an extrapolation of IIIAB trends to higher Au concentrations. On element-Au plots of compatible elements such as Ir or Pt the loci of PMG spread out over a broader region explainable by mixing of evolved IIIAB magma with early-crystallized core or mantle-residue solids.Two features of PMG require special models: (1) Ga and Ge contents are generally high (≈1.5×) compared to the IIIAB-based mixing model: and (2) the FeO/(FeO + MgO) ratios span a surprisingly wide range, from 0.11-0.14 in normal PMG to 0.16 to 0.18 in PMG-as This range is larger than expected in a cumulate layer at the base of a mantle. We suggest that both features may be related to the interaction of PMG precursors with a highly evolved magmatic gas phase, and that some or all of these anomalies may have resulted from vapor deposits in voids near the core-mantle interface.An important boundary condition for understanding the detailed PMG origin at the core-mantle interface is the large difference between the solidus temperature of Fa11 olivine (≈2000 K) and the liquidus temperature of an evolved IIIAB melt containing >100 mg/g S and some P (≈1600 K). Following the mixing event that formed the PMG it is therefore reasonable that there would have been olivine rubble floating on top of the IIIAB-like magma, but with appreciable void space present just above the upper level reached by the magma. These voids would have contained gases released from the magma during its flow into the PMG region. We suggest that Ga and Ge, the two most volatile siderophiles in our element set, were added to PMG metal from the magmatic gas. We also suggest that the magmatic gas was oxidizing and that the PMG having high olivine fayalite contents formed in regions where the ratio of void to olivine was high, and that some metallic Fe was oxidized and entered the olivine (or the phosphoran olivine). In support of the latter idea is the observation that both Ni and Co are elevated in the PMG-as (Fa≥16) compared to values predicted by IIIAB trends.We analyzed two Eagle-Station pallasites (PES); after correction for weathering effects in Cold Bay, its composition is found to closely resemble that of Eagle Station but to represent a more evolved composition (i.e., lower Ir, higher Au). Vermillion and Yamato 8451 have been called pyroxene pallasites but have metal compositions (unrelated to those of the PMG or PES) that are too different from each other to even allow assignment to the same grouplet.  相似文献   

12.
During the past three decades many iron meteorites have been collected from the deserts of North Africa. Almost all are now characterized, and the distribution among classes is found to be very different from those that were in museums prior to the collection of meteorites from hot and cold (Antarctica) deserts. Similar to the iron meteorites from Antarctica, the irons from Northwest Africa include a high fraction of ungrouped irons and of minor subgroups of group IAB. The different distribution is attributed to the small median size of the desert meteorites (∼1.3 kg in North African irons, ∼30 kg in non-desert irons). It appears that a sizable fraction of these small (several centimeter) masses constitute melt pockets produced by impacts in chondritic regoliths; they were never part of a large (meter-to-kilometer) magma bodies. As a result, a meter-size fragment ejected from the regolith of the asteroid may contain several of these small metallic masses. It may be that such stochastic sampling effects enhanced the fraction of IAB-sHL irons among the irons from Northwest Africa.The variety observed in small meteoroids is also enhanced because (relative to large) small fragments are more efficiently ejected from asteroids and because the orbital parameters of small meteoroids are more strongly affected by collisions and drag effects, they evolve to have Earth-crossing perihelia more rapidly than large meteoroids; as a result, the set of small meteoroids tends to sample a larger number of parent asteroids than does the set of larger meteoroids.  相似文献   

13.
Most iron meteorites presumably formed from the cores of parent bodies having more or less chondritic bulk compositions. Consideration of the behavior of S during condensation and core formation indicates that these cores, at least in the case of groups having high or moderate volatile contents (IIAB, IIIAB), contained a substantial amount of S. When elemental fractionations observed in these iron meteorite groups are compared to model calculations of fractional crystallization it becomes evident that at least the IIAB parent melt, and very likely the IIIAB parent melt as well, did not contain the full S complement of the parent body. We consider three possible scenarios to account for the S depletion: (1) Outgassing of S during parent body differentiation; this was probably only possible if the parent body contained organic material, which is improbable for IIIAB. (2) Liquid immiscibility. Our fractional crystallization model would predict curved log Xvs. log Ni relationships in this case, which for many elements are not observed. (3) Formation of metastable liquid layers by episodic melting during core formation. This is based on the fact that the difference in melting temperature between a FeFeS eutectic and FeNi metals is ~500 K. Two melting episodes would tend to form distinct liquid layers that maintain their identities over the crystallization lifetime of the core.Solidification of the cores parental to the main iron meteorite groups should also produce a significant number of sulfide meteorites. The scarcity of sulfide-rich meteorites can be attributed to their lower mechanical resistance to space attrition, higher ablation during atmospheric passage, and faster weathering on earth.  相似文献   

14.
Using improved analytical techniques, which reduce the Re blanks by factors of 8 to 10, we report new Re-Os data on low Re and low PGE pallasites (PAL-anom) and IIIAB irons. The new pallasite samples nearly double the observed range in Re/Os for pallasites and allow the determination of an isochron of slope 0.0775 ± 0.0008 (T = 4.50 ± 0.04 Ga, using the adjusted λ187Re = 1.66 × 10−11 a−1) and initial (187Os/188Os)0 = 0.09599 ± 0.00046. If the data on different groups of pallasites (including the “anomalous” pallasites) are considered to define a whole-rock isochron, their formation would appear to be distinctly younger than for the iron meteorites by ∼60 Ma. Five IIIAB irons (Acuna, Bella Roca, Chupaderos, Grant, and Bear Creek), with Re contents ranging from 0.9 to 2.8 ppb, show limited Re/Os fractionation and plot within errors on the IIAB iron meteorite isochron of slope 0.07848 ± 0.00018 (T = 4.56 ± 0.01 Ga) and initial (187Os/188Os)0 = 0.09563 ± 0.00011. Many of the meteorites were analyzed also for Pd-Ag and show 107Ag enrichments correlated with Pd/Ag, requiring early formation and fractionation of the FeNi metal, in a narrow time interval, after injection of live 107Pd (t1/2 = 6.5 Ma) into the solar nebula. Based on Pd-Ag, the typical range in relative ages of these meteorites is ≤10 Ma. The Pd-Ag results suggest early formation and preservation of the 107Pd-107Ag systematics, both for IIIAB irons and for pallasites, while the younger Re-Os apparent age for pallasites suggests that the Re-Os system in pallasites was subject to re-equilibration. The low Re and low PGE pallasites show significant Re/Os fractionation (higher Re/Os) as the Re and PGE contents decrease. By contrast, the IIIAB irons show a restricted range in Re/Os, even for samples with extremely low Re and PGE contents. There is a good correlation of Re and Ir contents. The correlation of Re and Os contents for IIIAB irons shows a similar complex pattern as observed for IIAB irons (Morgan et al., 1995), and neither can be ascribed to a continuous fractional crystallization process with uniform solid-metal/liquid-metal distribution coefficients.  相似文献   

15.
Reported in this paper are structural and compositional data as the basis for the classification of 35 iron meteorites. The Xingjiang iron meteorite, previously labelled IIIAB, is reclassified as IIIE on the basis of its lower Ga/Ni and Ge/Ni ratios, its wider and swollen kamacite bands and the ubiquitous presence of haxonite, (Fe, Ni)23C. IIICD Dongling appears not to be a new meteorite, but to be paired with Nandan. Four Antarctic iron meteorites IAB Allan Hills A77250, A77263, A77289 and A77290 are classified as paired meteorites based on their similarities in structure, and the concentrations of Cr, Co, Ni, Cu, Ga, Ge, As, Sb, W, Re, Ir and Au. It is found that Cu shares certain properties with Ga and Ge, which makes it an excellent taxonomic parameter. BecauseK Cu is near unity, Cu displays a small range of variation within most magmatic groups (less than a factor of 2.2) and, because of its high volatility, large variations can be noticed among groups.  相似文献   

16.
The solubility limits of the α (kamacite) and γ (taenite) phases in the Fe-Ni and Fe-Ni-P phase diagrams have been measured at low temperatures, 700-300°C. The predicted αα + γ retrograde solubility below 500°C was demonstrated experimentally for the first time in the Fe-Ni system. The minimum solubility of Ni in γ at the γα boundary increases with decreasing temperature to as much as 54 wt% at 300°C. The addition of P increases the maximum solubility of Ni in α by as much as 1.6 wt% and decreases the minimum solubility of Ni in γ by as much as 7 wt% at 300°C.The solubility limits of kamacite and taenite were also obtained from heat-treated samples of the Grant and Cape York iron meteorites. The data indicate that in iron meteorites minor and trace elements other than P do not significantly shift the Ni solubility limits of the Fe-Ni and Fe-Ni-P phase diagrams. The measured phase diagrams can be used to explain the Agrell effect and the differences in maximum Ni content of taenite among irons and chondrites. The formation of plessite and the influence of the measured solubility limits on the cooling rate simulation method are also considered.  相似文献   

17.
A set of 11 impact melt rock samples from the Rochechouart impact structure, France and nine impact melt rock samples from Sääksjärvi impact structure, Finland were studied for their major and trace element compositions, including the abundances of the platinum group elements. The main goal of this study was to identify the projectile type(s) responsible for the formation of these two impact structures. The results confirmed previous studies that suggested extraterrestrial contamination in both the Rochechouart and Sääksjärvi impact melt rocks. The projectile types found for Rochechouart and Sääksjärvi are quite similar, and compatible with the composition of non-magmatic iron meteorites (IA and IIIC). This interpretation is based on: identical platinum group element patterns as well as peculiar Ni/Cr, Ni/Ir and Cr/Ir ratios, which can be explained by mixing of the different components of non-magmatic iron meteorites. This result indicates that, besides ordinary chondrites, non-magmatic iron may be among the most common material impacting the Earth, as they also represent the majority of the projectiles for craters smaller that 1.5 km. The abundance of non-magmatic irons as projectiles as well as their composition (olivine, pyroxene and iron) supports the assumption that a fraction of the S-type asteroids could by related to this type of material.  相似文献   

18.
The Pt-Re-Os isotopic and elemental systematics of 13 group IIAB and 23 group IIIAB iron meteorites are examined. As has been noted previously for iron meteorite groups and experimental systems, solid metal-liquid metal bulk distribution coefficients (D values) for both IIAB and IIIAB systems show DOs>DRe>>DPt>1 during the initial stages of core crystallization. Assuming closed-system crystallization, the latter stages of crystallization for each core are generally characterized by DPt>DRe>DOs. The processes governing the concentrations of these elements are much more complex in the IIIAB core relative to the IIAB core. Several crystallization models utilizing different starting parameters and bulk distribution coefficients are considered for the Re-Os pair. Each model has flaws, but in general, the results suggest that the concentrations of these elements were dominated by equilibrium crystallization and subsequent interactions between solid metal and both equilibrium and evolved melts. Late additions of primitive metal to either core were likely minor or nonexistent.The 187Re-187Os systematics of the IIAB and IIIAB groups are consistent with generally closed-system behavior for both elements since the first several tens of Ma of the formation of the solar system, consistent with short-lived chronometers. The Re-Os isochron ages for the complete suites of IIAB and IIIAB irons are 4530 ± 50 Ma and 4517 ± 32 Ma, respectively, and are similar to previously reported Re-Os ages for the lower-Ni endmembers of these two groups. Both isochrons are consistent with, but do not require crystallization of the entire groups within 10-30 Ma of the initiation of crystallization.The first high-precision 190Pt-186Os isochrons for IIAB and IIIAB irons are presented. The Pt-Os isochron ages for the IIAB and IIIAB irons, calculated using the current best estimate of the λ for 190Pt, are 4323 ± 80 Ma and 4325 ± 26 Ma respectively. The Re-Os and Pt-Os ages do not overlap within the uncertainties. The younger apparent ages recorded by the Pt-Os system likely reflect error in the 190Pt decay constant. The slope from the Pt-Os isochron is combined with the age from the Re-Os isochron for the IIIAB irons to calculate a revised λ of 1.415 × 10−12 a−1 for 190Pt, although additional study of this decay constant is still needed.  相似文献   

19.
Iron meteorites were analysed for nineteen siderophile and chalcophile elements by conventional inductively coupled plasma-mass spectrometry with the specific aim of demonstrating that this technique is an effective alternative to the more routine, yet complex, methodologies adopted in this field such as instrumental or radiochemical neutron activation analysis. Two aliquots of each meteorite sample, in the form of small shavings, were dissolved, one in 6 mol l-1 HNO3 and the other in aqua regia , and diluted to a final concentration of 1 mg sample per 1 ml of solution, without pre-concentrating the analytes. Nitric acid solutions were used for the determination of the elements Cr, Co, Ni, Cu, Ga, Ge and As; aqua regia solutions were analysed for the elements Mo, Ru, Rh, Pd, In, Sn, Sb, W, Re, Ir, Pt and Au. Samples were analysed by external calibration, carried out using synthetic multi-elemental solutions, and internal standardisation (with Be, Rb and Bi selected as internal standards). The results obtained from the analyses of nine geochemically well-characterized iron meteorites (Canyon Diablo, Odessa, Toluca, Coahuila, Sikhote-Alin, Buenaventura, Tambo Quemado, Gibeon, NWA 859) with widely variable chemical compositions are in good agreement with literature values for most elements. Detection limits were generally below the lowest concentration observed in iron meteorites. The most notable exception is for Ge, which cannot be successfully determined in the low-Ge meteorites of groups IVA, IVB and IIIF and a number of ungrouped irons. A test of the overall reproducibility of the adopted method, undertaken by repeatedly analysing the same Odessa IAB meteorite specimen, yielded relative standard deviations (1 s ) of between 1 and 6% for all elements except Cr (40%).  相似文献   

20.
We have determined the metallographic cooling rates for 13 IVA irons using the most recent and most accurate metallographic cooling rate model. Group IVA irons have cooling rates that vary from 6600 °C/Myr at the low-Ni end of the group to 100 °C/Myr at the high-Ni end of the group. This large cooling rate range is totally incompatible with cooling in a mantled core which should have a uniform cooling rate. Thermal and fractional crystallization models have been used to describe the cooling and solidification of the IVA asteroid. The thermal model indicates that a metallic body of 150 ± 50 km in radius with less than 1 km of silicate on the outside of the body has a range of cooling rates that match the metallographic cooling rates in IVA irons in the temperature range 700-400 °C where the Widmanstätten pattern formed. The fractional crystallization model for Ni with initial S contents between 3 and 9 wt% is consistent with the measured variation of cooling rate with bulk Ni and the thermal model. New models for impacts in the early solar system and the evolution of the primordial asteroid belt allow us to propose that the IVA irons crystallized and cooled in a metallic body that was derived from a differentiated protoplanet during a grazing impact. Other large magmatic iron groups, IIAB, IIIAB, and IVB, also show significant cooling rate ranges and are very likely to share a similar history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号