首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Organic Geochemistry》2012,42(12):1269-1276
This study sought to characterize hydrogen isotopic fractionation during biosynthesis of leaf wax n-alkanes in succulent plants capable of crassulacean acid metabolism (CAM). The metabolic and physiological features of CAM represent crucial strategies for survival in hot and dry climates and have been hypothesized to impact hydrogen isotope fractionation. We measured the stable carbon and hydrogen isotopic compositions (δ13C and δD, respectively) of individual n-alkanes in 20 species of succulent plants from a global collection of the Huntington Botanical Gardens, San Marino, California. Greenhouse conditions and irrigation with water of constant δD value enabled determination of interspecies differences in net D/H fractionation between source water and leaf wax products. Carbon isotope ratios provide constraints on the extent of CAM vs. C3 photosynthesis and indicate a wide range of CAM use, with δ13C values ranging from −33.01‰ to −18.54‰ (C27–C33 n-alkanes) and −26.66‰ to −17.64‰ (bulk tissue). Despite the controlled growth environment, we observed ca. 90‰ interspecies range in δD values from −193‰ to −107‰. A positive correlation between δ13Cbulk and δDC31 values with R2 = 0.60 (δ13CC31 and δDC31 values with R2 = 0.41) implicates a metabolic isotope effect as the dominant cause of interspecies variation in the hydrogen isotopic composition of leaf wax n-alkanes in CAM-intermediate plants.  相似文献   

2.
《Applied Geochemistry》2005,20(3):455-464
In order to characterize the H isotopic compositions of individual lipid compounds from different terrestrial depositional environments, the δD values of C-bound H in individual n-alkanes from typical terrestrial source rocks of the Liaohe Basin and the Turpan Basin, China, were measured using gas chromatography–thermal conversion–isotope ratio mass spectrometry (GC–TC–IRMS). The analytical results indicate that the δD values of individual n-alkanes in the extracts of terrestrial source rocks have a large variation, ranging from −140‰ to −250‰, and are obviously lighter than the δD of marine-sourced n-alkanes. Moreover, a trend of depletion in 2H(D) was observed for individual n-alkanes from different terrestrial depositional environments, from saline lacustrine to freshwater paralic lacustrine, and to swamp. For example, the δD values of n-alkanes from a stratified saline lacustrine environment vary from −140‰ to −200‰, δD for n-alkanes from swamp facies range from −200‰ to −250‰, while those from freshwater paralic lacustrine–lacustrine environments fall between the δD values of the end members. The shift toward lighter δD from saltwater to freshwater environments indicates that the source water δD is the major controlling factor for the H isotopic composition of individual compounds. In addition, H exchange between formation water and sedimentary organic matter may possibly be important in regard to the δD of individual n-alkanes. Therefore, other lines of geochemical evidence must be considered when depositional paleoenvironments of source rocks are reconstructed based on the H isotopic composition of individual n-alkanes.  相似文献   

3.
An unusual series of C22–C27 monounsaturated sterenes and C24–C30 tetracyclic terpanes (17,21-secohopanes) were detected in relatively high concentrations in an immature evaporitic marl sediment of the Jinxian Sag, Bohai Bay Basin, North China. The site of unsaturation in these novel sterenes is assigned tentatively to the D ring on the basis of mass spectral interpretation, which also distinguishes them from reported unsaturated sterenes. Other hydrocarbon biomarker or stable isotope characteristics are indicative of microbial (e.g. methyl hopanes), phytoplankton or higher plant (depleted δ13C values of isoprenoids and hopanes) inputs and an anoxic carbonate depositional environment (hexacyclic hopanes; tetracyclic terpanes). The hydrocarbon composition showed no obvious biodegradation and the relatively high concentration of unsaturated terpenoids (e.g. gammacerene) and low values of other established maturity parameters (Ts/Tm = 0.23; Ro = 0.44%; Tmax = 417 °C), are consistent with sediments of low maturity. The novel, low molecular weight sterenes and the tetracyclic terpanes may be early diagenetic products of microbial sources in a carbonate environment.  相似文献   

4.
The Qinjiatun and Qikeshu oilfields are new Mesozoic petroleum exploration targets in Lishu Fault Depression of Songliao Basin, northeastern China. Currently, researches on geochemistry of crude oils from Qinjiatun and Qikeshu oilfields have not been performed and the genesis of oils is still uncertain. Based on bulk analyses, the crude oils in the Qinjiatun and Qikeshu oilfields of Lishu Fault Depression from the Lower Cretaceous can be classified as three types. TypeⅠoils, from Quantou and Denglouku formations of Qikeshu oilfield, are characterized by high C24tetracyclic terpane/C26tricyclic terpanes ratios, low gammacerance/C30hopane ratios, tricyclic terpanes/hopanes ratios, C29Ts/C29norhopane ratios and 17α(H)-diahopane/17α(H)-hopane ratios, indicating a brackish lacustrine facies. TypeⅡoils, from Shahezi Formation of Qikeshu oilfield show low C24tetracyclic terpane/C26tricyclic terpanes, high gammacerance/C30hopane ratios, tricyclic terpanes/hopanes ratios, C29Ts/C29 norhopane and C30diahopane/C30hopane ratios, thus suggesting that they originated from source rocks deposited in a weak reducing brackish lacustrine environment, or clay-rich sediments. Type oilsⅢ, from some wells of Qikeshu oilfield have geochemical characteristics intermediate between those two types and may be mixture of typeⅠand Ⅱoils.  相似文献   

5.
《Applied Geochemistry》2000,15(7):937-952
The B isotopic composition, in combination with O and H isotopes and hydrochemical tracers, is utilized to constrain the evolution of basement-hosted groundwaters via water–rock interactions and fluid infiltration from external (sedimentary) reservoirs. Two distinct groundwater types have been identified in the Central European crystalline basement (N Switzerland–SW Germany): (1) fresh groundwaters characterized by low values of δ11B (−3.5 to −0.6‰), δ18O (−12.0 to −10.0‰), and δD (−86.8 to −71.9‰), and (2) brackish groundwaters with distinctly heavier B, O, and H isotopic compositions (δ11B=+6.4 to +17.6‰, δ18O=−9.4 to −5.6‰, δD=−67.6 to −60.8‰). Fresh groundwaters show a systematic decrease in δ11B, related to an increase in B concentrations (and degree of total mineralization), along the pathway of groundwater migration which can only be interpreted in terms of leaching of crystalline host rocks. A δ11B value of −3.3‰ is inferred for the crustal B source (mainly Hercynian granites) involved in the leaching process, in agreement with the known δ11B range of granitic rocks. The evolution of brackish groundwaters, derived from crystalline basement reservoirs with little water circulation, is more complex. As indicated by B–O–H stable isotope and hydrochemical (e.g. B/Cl, Na/Cl, and Br/Cl) constraints, brackish groundwaters from the study area are influenced by admixture of sediment-derived fluids which infiltrated from Late Paleozoic (Permo-Carboniferous) and Early Mesozoic (Lower Triassic) sedimentary strata. The data presented show that B isotopes are sensitive to mixing processes of fluids derived from different crustal reservoirs and, hence, may be utilized as a tracer for constraining the internal (autochthonous) vs external (allochthonous) origin of salinity in basement-hosted groundwaters.  相似文献   

6.
The reported source rocks for the abundant petroleum in the Tarim Basin, China range from Cambrian to Lower Ordovician and/or Upper Ordovician in age. However, the difference between the two groups of source rocks is not well characterized. In this study, pyrite was removed from eleven mature to over mature kerogen samples from source rocks using the method of CrCl2 reduction and grinding. The kerogen and coexisting pyrite samples were then analyzed for δ34S values. Results show that the kerogen samples from the Cambrian have δ34S values between +10.4‰ and +19.4‰. The values are significantly higher than those from the Lower Ordovician kerogen (δ34S of between +6.7‰ and +8.7‰), which in turn are generally higher than from the Upper Ordovician kerogen samples (δ34S of between ?15.3 and +6.8‰). The associated pyrite shows a similar trend but with much lower δ34S values. This stratigraphically controlled sulfur isotope variation parallels the evolving contemporary marine sulfate and dated oil δ34S values from other basins, suggesting that seawater sulfate and source rock age have an important influence on kerogen and pyrite δ34S values. The relatively high δ34S values in the Cambrian to Lower Ordovician source rocks are associated with abundant aryl isoprenoids, gammacerane and C35 homohopanes in the extractable organic matter, indicating that these source rocks were deposited in a bottom water euxinic environment with water stratification. Compared with the Upper Ordovician, the Cambrian to Lower Ordovician source rocks show abundance in C28 20R sterane, C23 tricyclic terpanes, 4,23,24-trimethyl triaromatic dinosteroids and depletion in C24 tetracyclic terpane, C29 hopane. Thus, δ34S values and biomarkers of source rock organic matter can be used for distinguishing the Cambrian and Upper Ordovician source rocks in the Tarim Basin.  相似文献   

7.
《Applied Geochemistry》2003,18(7):997-1009
The δ18O and δD values in the deep confined aquifer beneath the North China Plain which is located at 112°30′E–119°30′E and 34°46′N–40°25′N, reflect differences in paleoclimatic conditions between the Holocene and the late Pleistocene. Groundwater samples whose 14C ages are between 12 and 25 ka B.P have ranges of −9.4 to −11.7‰ for δ18O and −76‰ to −85‰ for δD values. These very negative δ18O and δD values reflect the cold and arid climate in the last glacial period. The temperature estimated in this period is 6–9 °C cooler than that of the present. The entire ranges of δ18O and δD values for samples with 14C dating from 7 ka B.P to present are −7.7‰ to −10.2‰ and −63‰ to −73‰, respectively. The greater δ18O and δD enrichments of these samples indicate a period of relatively humid and warm climate in the Holocene. However, the wide ranges of δ18O (−9.0‰ to −11.1‰) and δD (−66‰ to −80‰) values for samples with 14C age ranging from 12 to 7 ka B.P. imply an unstable climatic condition of rapidly increasing temperature, which marks the transition from the Pleistocene to the Holocene.  相似文献   

8.
《Applied Geochemistry》2005,20(7):1427-1444
Very high S oils (up to 14.7%) with H2S contents of up to 92% in the associated gas have been found in the Tertiary in the Jinxian Sag, Bohai Bay Basin, PR China. Several oil samples were analyzed for C and S stable isotopes and biomarkers to try to understand the origin of these unusual oil samples.The high S oils occur in relatively shallow reservoirs in the northern part of the Jinxian Sag in anhydrite-rich reservoirs, and are characteristic of oils derived from S-rich source rocks deposited in an enclosed and productive stratified hypersaline water body. In contrast, low S oils (as low as 0.03%) in the southern part of the Jinxian Sag occur in Tertiary lacustrine reservoirs with minimal anhydrite. These southern oils were probably derived from less S-rich source rocks deposited under a relatively open and freshwater to brackish lake environment that had larger amounts of higher plant inputs.The extremely high S oil samples (>10%) underwent biodegradation of normal alkanes resulting in a degree of concentration of S in the residual petroleum, although isoprenoid alkanes remain showing that biodegradation was not extreme. Interestingly, the high S oils occur in H2S-rich reservoirs (H2S up to 92% by volume) where the H2S was derived from bacterial SO4 reduction, most likely in the source rock prior to migration. Three oils in the Jinxian Sag have δ34S values from +0.3‰ to +16.2‰ and the oil with the highest S content shows the lightest δ34S value. This δ34S value for that oil is close to the δ34S value for H2S (∼0‰). It is possible that H2S was incorporated into functionalized compounds within the residual petroleum during biodegradation at depth in the reservoir thus accounting for the very high concentrations of S in petroleum.  相似文献   

9.
The Southern Alps are an ideal locality for studying patterns of isotopic fractionation associated with orographic precipitation. We have evaluated whether altitudinal change is reflected in the stable hydrogen isotopic composition (δ2H) of stream water, plant stem water and leaf wax lipids (n-alkanes) from living plants and soils, as well as in soil temperature. Samples were collected along an altitudinal transect from the windward side of the Southern Alps to Lake Hawea in the rain shadow. The results indicate that δ2H values of stem water overlap with stream water, demonstrating a gradual decrease with elevation that complied with modeled Rayleigh distillation, reflecting an isotopic lapse rate of −18.0 (± 1.1, 1σ)‰/km. Leaf and soil n-alkanes shared similar δ2H values and were 2H depleted relative to stem/stream waters. The values for soil n-alkanes indicated an isotopic lapse rate of −21.8 (± 2.0, 1σ)‰/km, consistent with precipitation data and long term observations. MBT/CBT derived soil temperature values based on the relative distribution of microbial tetraether lipids were similar to midsummer temperature observations, displaying an elevational decrease rate of −5.6 (± 1.5, 1σ) °C/km, consistent with regional and global observations.The results indicate that sedimentary lipid δ2H and microbial tetraether temperature estimates captured altitudinal trends in the isotopic composition of precipitation and mean temperature and further support their application in the reconstruction of past climate and surface uplift histories. However, notable differences in isotopic composition and temperature estimates between in situ soils and those with downslope transport of material emphasize the importance of facies analysis when interpreting past systems.  相似文献   

10.
《Applied Geochemistry》2004,19(6):937-946
Analysis of stable isotopes and major ions in groundwater and surface waters in Belize, Central America was carried out to identify processes that may affect drinking water quality. Belize has a subtropical rainforest/savannah climate with a varied landscape composed predominantly of carbonate rocks and clastic sediments. Stable oxygen (δ18O) and hydrogen (δD) isotope ratios for surface and groundwater have a similar range and show high d-excess (10–40.8‰). The high d-excess in water samples suggest secondary continental vapor flux mixing with incoming vapor from the Caribbean Sea. Model calculations indicate that moisture derived from continental evaporation contributes 13% to overhead vapor load. In surface and groundwater, concentrations of dissolved inorganic carbon (DIC) ranged from 5.4 to 112.9 mg C/l and δ13CDIC ranged from −7.4 to −17.4‰. SO42, Ca2+ and Mg2+ in the water samples ranged from 2–163, 2–6593 and 2–90 mg/l, respectively. The DIC and δ13CDIC indicate both open and closed system carbonate evolution. Combined δ13CDIC and Ca2+, Mg2+, and SO42− suggest additional groundwater evolution by gypsum dissolution and calcite precipitation. The high SO42−content of some water samples indicates regional geologic control on water quality. Similarity in the range of δ18O, δD and δ13CDIC for surface waters and groundwater used for drinking water supply is probably due to high hydraulic conductivities of the karstic aquifers. The results of this study indicate rapid recharge of groundwater aquifers, groundwater influence on surface water chemistry and the potential of surface water to impact groundwater quality and vise versa.  相似文献   

11.
《Applied Geochemistry》1995,10(5):547-552
Stable Cl and C isotope ratio results for 3 selected chlorinated solvents, perchloroethylene (PCE), trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) provided by 4 different manufacturers are presented. The isotope ratio for all compounds range between −3.5 and +6.0‰ forδ37Cl and from −37.2 to −23.3%. forδ13C. The greatest37Cl difference between manufacturers is observed in the TCE samples which showδ37CI values of −2.5%o for PPG, +2.43‰ for ICI and +4.4‰ for DOW. TCAs show a smaller range (−2.4 to +2.0‰), while the TCEs have slightly different37Cl contents. The13C data show the most distinctδ13C values for PCEs (−23.3 for DOW, −24.1 for Vulcan, −33.8 for PPG and −37.2‰ for ICI) while both TCEs and TCAs show a smallerδ13C range, but still distinct differences. These preliminary data suggest that each manufacturer and solvent type may have distinctiveδ637Cl andδ13C values. These results show that by using a combination of37Cl and13C, there is a potential to indicate a specific source of chlorinated solvents, as well as an ability to delineate contamination episodes caused by these compounds in groundwaters.  相似文献   

12.
The alternative development of coal-bearing hydrocarbon source rocks and low-porosity and low-permeability tight sandstone reservoirs of the Triassic Xujiahe Formation in the Sichuan Basin is favorable for near-source hydrocarbon accumulation. The natural gas composition of the Xujiahe Formation in the Sichuan Basin is dominated by hydrocarbon gases, of which the methane content is80.16%-98.67%. Typically, the C_2~+ content is larger than 5% in main wet gas. The dry gas is mainly distributed in the western and northern regions of the basin. The non-hydrocarbon gases mainly contain nitrogen, carbon dioxide, hydrogen, and helium, with a total content of 2%. The carbon isotope ranges of methane and its homologues in natural gas are: δ~(13)C_1 of-43.8‰ to-29.6‰, δ~(13)C_2 of-35.4‰ to-21.5‰, δ~(13)C_3 of-27.6‰ to-19.8‰,and δ~(13)C_4 of-27.7‰ to-18.8‰. δ~(13)C_3δ~(13)C_4 occurs in some natural gas with a low evolution degree; such gas is mainly coal-related gas from humic-type source rocks of the Xujiahe Formation. As for the natural gas, δ~2 H_(CH4) values ranged from-195‰ to-161‰,δ~2 H_(C2H6) values ranged from-154‰ to-120‰, and δ~2 H_(C3H8) values ranged from-151‰ to-108‰. The dry coefficient,δ~(13)C and δ~2 H_(CH4) are all positively correlated with the maturity of source rocks. The higher the maturity of source rocks is, the larger the natural gas dry coefficient is and the larger the δ~(13)C and δ~2 H_(CH_4) values are, indicative of the characteristic of near-source accumulation. The δ~2 H_(C2H6) value of natural gas is influenced by paleosalinity to a relatively large extent; the higher the paleosalinity is, the larger the δ~2 H_(C2H6) value is. The Pr/Ph value of the condensate oil ranged from 1.60 to 3.43, illustrating light oxidization-light reduction and partial-oxidization characteristics of the depositional environment of coal-bearing source rocks of the Xujiahe Formation. The natural gas light hydrocarbon(C_5-C_7) from the Xujiahe Formation presented two characteristics: the first was the relatively high aromatic hydrocarbon content(19%-32.1%), which reveals the characteristic of natural gas with humic substances of high-maturity; the second was the low content of aromatic hydrocarbon(0.4%-9.3%),reflecting water-washing during the accumulation of the natural gas. The reported research outcomes indicate a potential mechanism for natural gas accumulation in the Xujiahe Formation, which will further guide natural gas exploration in this region.  相似文献   

13.
《Applied Geochemistry》1994,9(6):609-626
The Saint-Salvy vein-hosted Zn (+Ge) deposit occurs in an E–W fault system which flanks the southern margin of the late Variscan Sidobre granite, and cross-cuts Cambrian black shales of the Palaeozoic basement. Comprehensive mineralogical and geochemical studies of vein samples have revealed four mineralizing events (M1–M4) related to late and post-Variscan tectonic events. A further late-stage event may be related to weathering.M1 (=skarn deposits) and M2 (=patchily mineralized quartz veinlets) are associated with granite emplacement. Quartz contains low salinity, H2OCO2(NaCl)-dominated fluids(⩽6wt% NaCl equiv.) of relatively high temperature (300–580°C), trapped under moderate to high pressure. Estimated M1 fluid δD and calculated fluidδ18O plot within the metamorphic water field. There appears to be no involvement of magmatic fluids.By contrast, M3 (= barren quartz) and M4 (= zinciferous economic mineralization) stages have H2OCO2NaClCaCl2 fluid inclusions with high salinities (23–25 wt% NaCl equiv.) and low temperatures(∼ 80–140°C), which were trapped under low-pressure conditions. The high salinity and NaCl + CaCl2 content of both M3 and M4 indicates that their parent fluids leached evaporitic salts. M3 fluids are meteoric water dominated, falling close to the meteoric water line (δD andδ18O averaging −64 and −8‰, respectively). M4 fluids have highly distinctive δD averaging −101‰, and calculated fluidδ18O varying from−1.2to+7.1‰. The unusually low δD composition of M4 suggests the involvement of “organic” fluids, in which H is derived directly or indirectly from organic matter. The relatively highδ18O of M4 fluids indicates that considerable isotopic exchange with sedimentary material took place, displacing theδ18O from the meteoric water line. The data imply interaction of meteoric waters with evaporite and hydrocarbon-bearing sedimentary sequences, most probably the adjacent Aquitain Basin.The main economic mineralization (M4 stage) took place during a tensional event, probably coincident with the Lias-Dogger transition.Calculatedδ34SH2S of M4 sulphide(+5.4to+8.2‰) is almost identical toδ34S of local Cambrian sulphides(+4.7to+9.4‰) suggesting a genetic link. Abundant siderite associated with M4 sphalerite hasδ13C ranging from−2.6to−4.4‰ indicating that carbon was sourced from sedimentary carbonate mobilized by, or equilibrated with the hydrothermal fluid.Late-stage sulphides exhibit extraordinary and highly distinctiveδ34S. Sphalerite has extremely low δ34S(−42.5to−50.5‰), whereas pyrite has an extraordinary large range from−33.2‰to+74.3‰. Closed system sulphate reduction is held to be responsible for the extremely highδ34S: whereas more open system reduction produces the very low values. The coincidence of isotopically lowδ13C(−7.6to−11.9‰) for co-genetic calcite suggests the involvement of organic matter in the reduction process.  相似文献   

14.
《Organic Geochemistry》2012,42(12):1277-1284
Compound-specific isotope measurements of organic compounds are increasingly important in palaeoclimate reconstruction. Searching for more accurate peat-based palaeoenvironmental proxies, compound-specific fractionation of stable C, H and O isotopes of organic compounds synthesized by Sphagnum were determined in a greenhouse study. Three Sphagnum species were grown under controlled climate conditions. Stable isotope ratios of cellulose, bulk organic matter (OM) and C21–C25 n-alkanes were measured to explore whether fractionation in Sphagnum is species-specific, as a result of either environmental conditions or genetic variation. The oxygen isotopic composition (δ18O) of cellulose was equal for all species and all treatments. The hydrogen isotopic composition (δD) of the n-alkanes displayed an unexpected variation among the species, with values between −154‰ for Sphagnum rubellum and −184‰ for Sphagnum fallax for the C23 n-alkane, irrespective of groundwater level. The stable carbon isotopic composition (δ13C) of the latter also showed a species-specific pattern. The pattern was similar for the carbon isotope fractionation of bulk OM, although the C23 n-alkane was >10‰ more depleted than the bulk OM. The variation in H fractionation may originate in the lipid biosynthesis, whereas C fractionation is also related to humidity conditions. Our findings clearly emphasize the importance of species identification in palaeoclimate studies based on stable isotopes from peat cores.  相似文献   

15.
The Cipoeiro gold deposit, located in the Gurupi Belt, northern Brazil, is hosted by tonalites of 2148 Ma. The deposit is controlled by splays related to the major strike-slip Tentugal shear zone, and at the deposit scale, the mineralization is confined to ductile–brittle shear zones. Mineralization style comprises thick quartz veins and narrow and discontinuous quartz-carbonate veinlets associated with disseminations in altered host rocks. The postmetamorphic hydrothermal paragenesis is composed of quartz, calcite, chlorite, white mica (phengite), pyrite, and minor albite. Electron microprobe analysis of chlorites reveals a relatively uniform chemical composition at depths of more than 100 m. The chlorites are characterized by (Fe + Mg) ratios between 0.37 and 0.47 and AlIV ranging between 2.22 and 2.59 a.p.f.u. and are classified as Fe-chlinochlore. Temperatures calculated by applying the AlIV contents of chlorites yield a relatively narrow interval of 305 ± 15°C. Stable isotope (O, H, C, S) compositions have been determined in silicate, carbonate, and sulfide minerals. The δ18O and δD values of the mineralizing fluid range from +2.4 to +5.7 and from −43‰ to −20‰, respectively, and are interpreted as having a metamorphic origin. The δ13C values of fluid CO2 are in the range −10.7‰ to −3.9‰, whereas the fluid δ34S is around 0‰. Carbon and sulfur compositions are not diagnostic of their sources, compatible as they are with mantle, magmatic, or average crustal reservoirs. The hydrothermal paragenesis, chlorite–pyrite coexistence, temperature of ore formation, and sulfur isotope evidence indicate relatively reduced fO2 conditions for the mineralizing fluid. Geologic, chemical, and isotopic characteristics of the Cipoeiro deposit are compatible with the class of orogenic gold deposits.  相似文献   

16.
《China Geology》2020,3(4):602-610
Thirty-nine crude oils and twenty-one rock samples from Niger Delta Basin, Nigeria have been characterized based on their isotope compositions by elemental analysis-isotope ratio mass spectrometry and gas chromatography-isotope ratio mass spectrometry. The bulk carbon isotopic values of the whole rock extracts, saturate and aromatic fractions range from –28.7‰ to –26.8‰, –29.2‰ to –27.2 ‰ and –28.5 ‰ to –26.7 ‰, respectively while the bulk carbon isotopic values of the whole oils, saturate and aromatic fractions range from –25.4 ‰ to –27.8 ‰, –25.9 ‰ to –28.4 ‰ and –23.5 ‰ to –26.9 ‰, respectively. The average carbon isotopic compositions of individual alkanes (nC12-nC33) in the rock samples range from –34.9‰ to –28.2‰ whereas the average isotopic values of individual n-alkanes in the oils range from –31.1‰ to –23.8‰. The δ13C isotope ratios of pristane and phytane in the rock samples range from –29.2 ‰ to –28.2 ‰ and –30.2 ‰ to –27.4 ‰ respectively while the pristane and phytane isotopic values range from –32.1‰ to –21.9‰ and –30.5‰ to –26.9‰, respectively. The isotopic values recorded for the samples indicated that the crude oils were formed from the mixed input of terrigenous and marine organic matter and deposited under oxic to sub-oxic condition in lacustrine-fluvial/deltaic environments. The stable carbon isotopic compositions were found to be effective in assessing the origin and depositional environments of crude oils in the Niger Delta Basin.  相似文献   

17.
Ice core from Greenland was melted, filtered, homogenised, loaded into glass ampoules, sealed, autoclaved to eliminate biological activity, and calibrated by dual‐inlet isotope‐ratio mass spectrometry. This isotopic reference material (RM), USGS46, is intended as one of two secondary isotopic reference waters for daily normalisation of stable hydrogen (δ2H) and stable oxygen (δ18O) isotopic analysis of water with a mass spectrometer or a laser absorption spectrometer. The measured δ2H and δ18O values of this reference water were ?235.8 ± 0.7‰ and ?29.80 ± 0.03‰, respectively, relative to VSMOW on scales normalised such that the δ2H and δ18O values of SLAP reference water are, respectively, ?428 and ?55.5‰. Each uncertainty is an estimated expanded uncertainty (= 2uc) about the reference value that provides an interval that has about a 95‐percent probability of encompassing the true value. This reference water is available in cases containing 144 glass ampoules that are filled with either 4 ml or 5 ml of water per ampoule.  相似文献   

18.
Natural gas in the Xujiahe Formation of the Sichuan Basin is dominated by hydrocarbon (HC) gas, with 78–79% methane and 2–19% C2+ HC. Its dryness coefficient (C1/C1–5) is mostly < 0.95. The gas in fluid inclusions, which has low contents of CH4 and heavy hydrocarbons (C2+) and higher contents of non-hydrocarbons (e.g. CO2), is a typical wet gas produced by thermal degradation of kerogen. Gas produced from the Upper Triassic Xujiahe Formation (here denoted field gas) has light carbon isotope values for methane (δ13C1: −45‰ to −36‰) and heavier values for ethane (δ13C2: −30‰ to −25‰). The case is similar for gas in fluid inclusions, but δ13C1 = −36‰ to −45‰ and δ13C2 = −24.8‰ to −28.1‰, suggesting that the gas experienced weak isotopic fractionation due to migration and water washing. The field gas has δ13CCO2 values of −15.6‰ to −5.6‰, while the gas in fluid inclusions has δ13CCO2 values of −16.6‰ to −9‰, indicating its organic origin. Geochemical comparison shows that CO2 captured in fluid inclusions mainly originated from source rock organic matter, with little contribution from abiogenic CO2. Fluid inclusions originate in a relatively closed system without fluid exchange with the outside following the gas capture process, so that there is no isotopic fractionation. They thus present the original state of gas generated from the source rocks. These research results can provide a theoretical basis for gas generation, evolution, migration and accumulation in the basin.  相似文献   

19.
《Applied Geochemistry》2005,20(11):2017-2037
The Tertiary Thrace Basin located in NW Turkey comprises 9 km of clastic-sedimentary column ranging in age from Early Eocene to Recent in age. Fifteen natural gas and 10 associated condensate samples collected from the 11 different gas fields along the NW–SE extending zone of the northern portion of the basin were evaluated on the basis of their chemical and individual C isotopic compositions. For the purpose of the study, the genesis of CH4, thermogenic C2+ gases, and associated condensates were evaluated separately.Methane appears to have 3 origins: Group-1 CH4 is bacteriogenic (Calculated δ13CC1–C = −61.48‰; Silivri Field) and found in Oligocene reservoirs and mixed with the thermogenic Group-2 CH4. They probably formed in the Upper Oligocene coal and shales deposited in a marshy-swamp environment of fluvio-deltaic settings. Group-2 (δ13CC1–C = −35.80‰; Hamitabat Field) and Group-3 (δ13C1–C = −49.10‰; Değirmenköy Field) methanes are thermogenic and share the same origin with the Group-2 and Group-3 C2+ gases. The Group-2 C2+ gases include 63% of the gas fields. They are produced from both Eocene (overwhelmingly) and Oligocene reservoirs. These gases were almost certainly generated from isotopically heavy terrestrial kerogen (δ13C = −21‰) present in the Eocene deltaic Hamitabat shales. The Group-3 C2+ gases, produced from one field, were generated from isotopically light marine kerogen (δ13C = −29‰). Lower Oligoce ne Mezardere shales deposited in pro-deltaic settings are believed to be the source of these gases.The bulk and individual n-alkane isotopic relationships between the rock extracts, gases, condensates and oils from the basin differentiated two Groups of condensates, which can be genetically linked to the Group-2 and -3 thermogenic C2+ gases. However, it is crucial to note that condensates do not necessarily correlate to their associated gases.Maturity assessments on the Group-1 and -2 thermogenic gases based on their estimated initial kerogen isotope values (δ13C = −21‰; −29‰) and on the biomarkers present in the associated condensates reveal that all the hydrocarbons including gases, condensates and oils are the products of primary cracking at the early mature st age (Req = 0.55–0.81%). It is demonstrated that the open-system source conditions required for such an early-mature hydrocarbon expulsion exist and are supported by fault systems of the basin.  相似文献   

20.
The stable isotopic ratios of oxygen, carbon and the non-exchangeable carbon-bound hydrogen of cellulose from marine plants (algae and higher vascular forms) and animals (tunicates) collected in their natural habitats and from freshwater vascular plants grown in the laboratory under controlled conditions were determined.The δ18Ovalues of cellulose from all the plants and animals were 27 ±3% more positive than the δ18O values of the waters in which the organisms grew. Temperature had little or no influence on this relationship for three species of freshwater vascular plants that were analyzed. The relationship between the δ18O values of cellulose and the water used in its synthesis is probably established by the isotopic fractionation that occurs during the hydration of carbonyl groups of the intermediates involved in cellulose synthesis.The δD values of the non-exchangeable hydrogen of cellulose (determined by analyzing cellulose nitrate) from different organisms that grew in the same environment differed by large amounts. This difference ranged up to 200‰ for different species of algae collected at a single site: the corresponding difference for different species of tunicates and vascular plants was 60 and 20‰ respectively. The δD values of cellulose nitrate from different species of freshwater vascular plants grown in water of constant temperature and isotopic composition differed by as much as 60‰ The relationship between the δD values of the carbon-bound hydrogen of cellulose and the water used in its synthesis displayed a significant temperature dependence for four species of freshwater vascular plants that were analyzed. The δD values of cellulose nitrate prepared from different parts of one of the plants grown under constant conditions differed by 40‰ Hydrogen isotopic fractionation during cellulose synthesis appears to be more variable among different species and displays a larger temperature dependence than was suggested by previous studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号