首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
浙江油田苏北采油厂于2017-07-28~29对丰探15井近4 km深的泰二段第三段进行了水力压裂,分成试压和主压.我们同时应用微破裂向量扫描(Vector Scanning,VS)实施了地面微震实时监测,目的是评估监测质量、实时监测的可行性、与压裂效果.我们严格执行了安静处布台和有效去噪等应用VS的必要条件,最大限度地提高了信噪比,平均的最小信噪比为2.35%;输出结果可靠.为今后更有效地设计和控制压裂,通过电信网和互联网,我们实施了野外采集数据的实时传输和遥控数据处理解释,观察了每分钟裂缝带的发展;实时监测系统可行.主压的最终X型破裂明显是在试压裂缝的基础上,由试压的300 m长,扩展到400~500 m,并加密了缝网;井域最大主压应力方位被限制在NE(50~80)±5°.本次压裂微震活动有明显的间歇性,较大微震群发生前积累能量所需时间,由初期的10 min内,逐渐延长到最后的百分钟.微震活动由压裂点扩展到远处的顺序清晰,这可能同此井附近的介质较为完整有关.每分钟的压裂微震活动状态一般在5~15 min内可报告给压裂施工团队.通过这次典型的水力压裂微震实时监测,我们验证了:VS的原理可行,且满足其应用的必要条件极为重要.微震实时监测有效地指导了压裂泵注程序的优化,针对监测到的缝网形态及时采取了液性变化、停泵转向等手段,实现了更大的改造体积.  相似文献   

2.
微破裂向量扫描原理是为了适应微震监测的目标特性、恶劣的地表监测环境、和对应用的一般监测要求,而逐步发展起来的.它不得不放弃记录要求较高的传统定位处理方法与可能使很多台站噪声极大的等距等角阵列,使用离散稀疏台网,处理分析完整的空间记录向量.在数学上,它计算各台记录对准各扫描点的向量间的相关性程度;在物理上,则反映了破裂释放能量的分布.选择安静处布设地震台网并在数据处理中去除和压制干扰信号以获得较小振幅的随机记录,是应用向量扫描技术的必要条件.这种条件应当数值化地由地震仪器、地震台网分布、监测环境、与去噪过程判定.一般情况下,为保证监测质量,它放弃振幅较小的纵波,而使用到达地表时携带能量较多的横波,并对扫描计算使用的台站记录附加以不同的权重;为提高性价比和使微震监测成为常规手段,在满足应用必要条件的基础上,它使用一个估计的最小扫描台站数,以及携行布设的最大台站数.利用相关性的概念,它可对速度模型引起的误差进行适度校正.微破裂向量扫描是专门针对微小破裂、三分量浅地表埋设观测、稀疏布设台阵、实时监测并4D处理解释、且考虑了微震多有剪切破裂特性的地震学监测方法;它扩展了传统定位方法的监测范围,能够在地表快速施工并"看到"微破裂,性价比高,可发展成为一种日常生产监测手段.  相似文献   

3.
微地震是岩石的微小破裂.微地震的另一个重要特性是剪切破裂或具有很强的剪切破裂成分.通常人们感兴趣的是监测与生产生活密切相关的微震活动,为环保、安全、提高生产效率、以及一般地学科研提供参数和建议.观测微震信号,以及对其实施的数理、地质、工程等的分析研究,构成整个微震监测系统.对此系统的每一步骤,从观测仪器研制、微震台网布设、微震记录的整理和去噪、微震或其释放能量分布的定位,到分析微震时空活动规律,以及这些规律与监测目标之间关联的解释,都必须从上述微震的两个特性出发.微震监测照搬常用勘探地震学和一般小震以上的天然地震学软硬件是不恰当的.微震监测方法的研发必须严格服从地震学基本原理并进行大量实验.本文对微震及其监测进行了一般综述,说明了由于微震的两个重要特性及其监测的艰难程度,也由于微震监测成为伴随生产生活的性价比较高的常规手段的需求,而不得不研发基于微小信噪比数据记录、实施地面监测的微破裂向量扫描技术,较详细地描述了其原理、微震仪器、台网布设原则、去噪、分析解释原则、和应用中所得到的重要分析结论,以及目前存在的技术问题和展望.  相似文献   

4.
在2017和2018两年中,我们对新疆18口煤层气井的水力压裂,应用微地震向量扫描技术,实施了微震监测.这批井的特点是,除3口井煤层的倾角小于30°外,余均为高倾角,其中6口井的倾角大于70°,近乎直立.由于煤层在强度上较常规油气储层显著得低,因而压裂设计预期裂缝沿煤层延展.然而,经反复校核,尽管多数井的裂缝带满足预期(占总井数的72%),还是确认了3口井(17%)的裂缝延展面同已知煤层在倾向上有一个40°~60°的夹角;另一类特例是2口井(11%)的类似X型的破裂,即一个裂缝面满足了预期的倾向和倾角,同时也有一个倾向相反、倾角相似的破裂面.因而在机理上,若视煤层为已有断层,在构造应力场作用下,煤层的压裂破裂面有三种可能性:(1)仅沿煤层延展;(2)仅沿已有断层裂隙面延展;(3)同时沿这两个层面破裂.此外,破裂面展布以相对压裂点向上为主.研究这些压裂裂缝面的产状、发育机理、与对其微震监测的解释方法特性,对具有不同倾角的煤层的压裂设计与压裂监测,有重要意义.  相似文献   

5.
应用微破裂向量扫描技术的必要条件是避免、去除、和压制干扰信号以获得较小振幅的随机记录,故其工程化中的核心任务是尽力提高记录数据中的有效信噪比;而最关键和基础性的环节是数据采集,这也是当前微震监测的最大问题.应用向量扫描的专用微震监测仪器应当适合地表接收具有剪切成分的微弱地震信号、可独立布设、和无线高速传输数据,以适应地表恶劣监测环境和对监测的常规合理要求.记录仪和检波器参数或性能,均应围绕这些要求设计和研制;特别的,检波器应具有较高的灵敏度、恰当的3D地面运动响应频率范围(较低的自然频率)、与大地高度耦合为一个整体的特性.在地表实施向量扫描的理想微震监测台网,作为努力方向,应当是:每个台点非常安静;台点尽可能接近目标;台点越多越好;和台点均匀分布并包围覆盖监测目标地表投影点(域).为满足向量扫描应用的必要条件、适合地面监测环境、并照顾到对监测方法的常规要求,除按理想微震监测台网的条件去努力外,实际应用时,台网布设原则应当是:(1)台点距诸如压裂车等强干扰源的近边界约在1 km;(2)排除监测区域内所有强干扰源影响范围后,以满足安静点数值定义布设台点;(3)台点距强干扰源的远边界,应服从安静点定义和越接近目标越好的原则.  相似文献   

6.
水力压裂能有效沟通天然裂缝形成复杂缝网系统,极大地提高低渗透油气藏的产能.为有效评估储层水力压裂改造效果及规避潜在的地质安全隐患,需要建立完善的压裂改造监测技术,而微地震监测是目前最为有效的监测手段之一.近年来,国内外微地震监测技术取得了较快的发展,但数据处理仍基本依赖于人工,成本昂贵,且较难提供连续的监测信息以完整反映压裂全过程.为进一步推动非常规压裂生产过程中的实时微地震监测及现场反馈,减轻人员负担、降低成本,我们发展了基于无线4G实时传输节点地震仪和深度学习的软硬件一体化微地震实时监测技术.在川南某页岩气开发平台的微地震监测试验中,该一体化实时监测技术通过4G无线网络实时回传采集的地震波形,并利用最新的深度学习技术对实时数据流进行处理,实现了从地震数据采集、数据实时传输、微地震检测、震相拾取、地震定位、震级分析等一系列功能,并通过云端将微地震分析结果实时反馈至压裂现场,实现了对压裂施工过程不间断地实时自动监测.同时,通过对比地面两套不同密度观测系统人工处理与自动处理的结果,对实时监测技术的准确性和可靠性进行了定量分析和验证.该软硬件一体化微地震实时自动监测技术的研发为我国今后非常...  相似文献   

7.
微震监测定位技术的精度及效率是微震监测中的核心技术问题,震源扫描算法作为一种稳定、可靠的方法被广泛用于微震监测定位中,但是在多事件、多参数反演中,其反演效率严重制约其应用.本文将震源扫描算法与DIRECT算法思想结合,提出基于DIRECT算法的微震快速网格震源搜索定位方法,即在求解震源扫描算法目标函数最优解时,采用DIRECT搜索策略,无需划分网格大小,直接搜索目标函数最优解.通过地面及井中微震监测模型测试表明,基于DIRECT算法的微震快速网格震源搜索定位方法比传统的震源扫描算法搜索次数少、计算耗时短、计算精度高,尤其适合大空间内多事件、多参数的震源反演,为水力压裂微震监测过程中大量数据的实时、快速、准确定位提供了可能.  相似文献   

8.
本文对近些年微地震压裂监测主要方法的研发现状从地震学角度做了简要的回顾和评论,讨论了它们的观测和处理手段的可行性与局限性;特别是依据已有观测事实,讨论了在地表布设千台地震仪(检波器)以内的地震台网时,拾取压裂破裂弹性波到时进而实施定位的可能性.文中强调了:研发和评价任何微震压裂监测方法,应当明确压裂产生的大量微小震级破裂和它们具有剪切成分的特性,也要顾及日常生产应用的要求和一般监测环境.井中邻近监测和实施传统定位处理,在检波器阵距压裂点几百米内,信噪比高,应是目前精度较高的最可靠的方法;若数据处理得好,它虽然不大可能作为日常手段,但可用于科研和检验其它方法.对地表大规模阵列式监测,定位处理因成功率较低和施工复杂似乎不能用作日常手段;若实施叠加或偏移处理,即使使用单分量阵也要顾及初动极性,以及最好避免大批量的非安静点的设置.微破裂向量扫描应当是可行的,但仍然需要进一步完善以克服其局限性.  相似文献   

9.
微震监测技术被广泛应用于衡量水力压裂作用。由于微震释放机制的复杂性,很难获得对其统一的理论认识。基于地震学原理,本文采用物理模拟实验和数值分析方法对页岩水力压裂扩展造成微震的机制进行研究。理论上,岩石破裂过程取决于水力裂纹尖端的应力分布。通过反演得到矩张量的特征方程及其特征值,从而确定震源点的破裂机制。通过真三轴水力压裂物理试验和声发射实验获得岩石破裂过程的基本规律。利用声发射信号的主频特性和初始运动来确定震源处的拉剪损伤比。震源点微震地震波采用水平井压裂数值模拟方法进行研究,得到不同位置、不同平面、不同方向上的微震波的频率和能量特性。通过数值分析验证了微地震波的分布,并揭示了在水力压裂作用下释放的震源机制。研究成果对页岩特性、页岩气储层评价和重构、优化压裂参数、提高采收率等方面具有重要的现实意义。  相似文献   

10.
中国石油新疆油田分公司风城油田1845井区目前有13个井组正在实施蒸汽辅助重力泄油(SAGD).2018年12月至2019年4月期间,我们应用微破裂向量扫描对该井区实施了共35天的微震监测,试图定量确定热蒸汽腔的4D变化.由于微震活动的间歇性和跳跃性,一定期间的监测,很难用含震级或能量的震源分布对蒸汽腔实施解释;故,我...  相似文献   

11.
本文是微破裂向量扫描技术(Vector Scanning—VS)系列文章的第四篇.前三篇分别为微地震压裂监测技术研发进展、VS的原理、VS的数据采集(见本文参考文献).为满足微震监测中应用VS的必要条件,即获得小振幅的随机记录,在数据处理中,必须数值化地判断凸显的、或隐藏在背景噪声中的有规律的干扰.目标区内外与监测目标无关的干扰记录被视为外来能量,应去除或压制.换言之,依然是尽力提高有效信噪比.数据处理的主要任务是:处理准备,包括扫描几何设计、构建监测目标区的速度模型、与计算扫描体内各点的地震波射线传播到达各观测点的走时和入射参数表;判别、去除、和压制各类干扰噪声;及完成扫描计算.作为去噪后达到的目标,小振幅的随机背景记录应当是:远处无穷个振源及观测点附近弱电磁场干扰的组合,是无规律或时空上不可预报从而也不可能去除的波动;这些背景噪声的振幅应尽可能的小;有效频率带内,每个频率携带有差别不大的能量密度,即接近白噪声.因而,在时间、频率、和空间域,必须在去噪过程中搜寻、压制或去除下列干扰:任何在周期上可能重复的记录;任何携带较高能量的窄带频率;凸显的任何较大振幅;以及除有用信号外,台站间可能相关的其他记录;等等.要实现数据处理的工程化,主要是软件的高度自动化,需要将VS的必要条件、物理等科技知识、经过验证的观测结论、和计算经验实现数值化,融入到一个专家系统中.  相似文献   

12.
对地震记录中显著可视事件震级的确定,已有如里氏震级、矩震级、不同定义的震级之间的关联、震级与能量之间的关系等成熟方法。然而,由于微地震事件记录常淹没在背景噪声中,无法实施包括确定震级在内的传统定位。为比较不同类型不同地域的微震大小、研究微震机制及诱发原因、使用其安全预警等,我们外延里氏震级到微震范畴,定义了等效里氏微震震级:根据微破裂向量扫描输出的无量纲能量或最小信噪比,估计一定时空中单位时间单位台站所接收的在时空目标一点上的等效能量和震级。文中列出了目前我们在微震监测中发现的几类微震的大小规模。  相似文献   

13.
在水力压裂微地震监测中,速度模型的误差对微震定位结果的偏差影响尤为显著,因此如何获得较为准确的速度模型是微震监测过程中的重要一步.一般使用测井数据和射孔监测数据来反演计算微地震速度模型.该计算过程耗时较长,这不利于微震监测的实时化.针对这个问题,本文从模拟退火法入手,提出采用多马尔科夫链的并行方案,将其与速度模型的校正过程相结合.通过拆分马尔科夫链并分别在多线程中并行计算,可以大大缩短单条线程中的计算时间以达到提升速度模型校正效率的目的.经过合成数据及实际监测数据的验证,证明了本文方法相对串行模拟退火法,能有效提升速度模型校正的效率,并且精度上也能得到保证,能充分满足野外实时监测的需求.  相似文献   

14.
井中微地震快速定位监测是评价非常规油气藏压裂效果的有效手段之一,鉴于研究区内压裂井和监测井距离较远,采集到的微地震数据信噪比低,纵横波初至拾取困难,直接影响微地震定位以及储层压后效果评价的准确性.针对该问题,本文对区内J1HF井的井中微地震事件的识别和初至拾取,采用了更具灵活布设、成本低廉的井中微地震快速定位技术,利用邻井埋设的三分量检波器组成的观测系统,采集了压裂井微地震信号,并对微地震信号进行数据精细处理,利用微地震快速定位算法,实现岩石破裂事件的有效监测.通过对压裂过程岩石破裂能量的时空特征分析,获得了压裂裂缝几何形态及扩展模式,认为本井采用的“暂堵球+纤维暂堵剂”双暂堵工艺较为合理,可有效提高压裂裂缝复杂程度,获得较理想的储层改造体积,研究成果对南华北地区煤系页岩气压裂改造具有一定的指导和借鉴作用.  相似文献   

15.
李稳  刘伊克  刘保金 《地球物理学报》2016,59(10):3869-3882
井下微震监测获得的地震记录往往包含大量的噪声,记录信噪比很低.有效地震信号的识别与提取是进行后续地震定位等工作之前需要优先解决的问题.经过研究发现,井下水压裂微地震信号具有稀疏分布的特征,而井下环境噪声则具有更多的Gaussian分布特征.为此,本文提出将图像处理领域适宜于稀疏分布信号降噪处理的稀疏码收缩方法应用于井下微震监测数据处理.为解决需要利用与待处理数据中有效信号成分具有相似分布特征的无噪信号序列估算正交基以及计算效率等问题,将原方法与小波变换理论相结合.即通过优选小波基函数作为正交基进行小波变换将信号分解为不同级的小波系数,利用稀疏码收缩方法中对稀疏编码施加的非线性收缩方式作为阈值准则对小波系数进行改造.通过多方面的数值实验证明了该方法在处理地震子波及井下微地震信号方面准确可靠.含噪记录经过处理后有效地震信号的到时、波形、时频谱特征等均能得到良好的识别和恢复.并且该方法具有很强的抗噪能力,当信噪比低至-20~-30db时,仍然能够发挥作用.在处理大量实际井下微震监测数据的过程中,面对多种复杂情况,本方法展现出了计算效率高、计算结果可靠、应用简单等优势,证明了其本身具有实际应用价值,值得进一步的研究和推广.  相似文献   

16.
田宵  汪明军  张伟 《中国地震》2021,37(2):309-321
微地震监测技术是监测水力压裂过程、评价压裂效果的重要手段.对于地面监测,PP波极性能够直接、快速地反演震源机制,同时极性校正能够提高绕射叠加定位方法的成像精度.因此,准确而迅速地确定P波极性对地面微地震实时监测具有重要意义.卷积神经网络是一种深度学习算法,具有强大的特征学习与分类能力,可用来确定微地震事件的P波极性.地...  相似文献   

17.
四川盆地威远地区志留系龙马溪组页岩气压裂过程中存在压裂井套管变形和周边井受压裂干扰产量波动的问题.为了有效评价页岩气压裂效果,查明压裂井套管变形、周边井产量波动的原因,以四川盆地威远地区X平台微地震监测为例,开展了页岩气压裂微地震监测技术研究与应用.结果表明:(1)基于微地震事件计算的储层改造体积可定性评价压裂效果,一般压裂规模越大,压裂改造体积越大,压后产量也越高;(2)根据微地震监测结果实时调整暂堵剂加入时机和尝试多次暂堵,可提高人工压裂裂缝的复杂度,同时降低可能引起套管变形的天然裂缝活化;(3)与人工压裂裂缝方向一致的天然裂缝不易引起套管变形,与人工压裂裂缝方向不一致的天然裂缝的剪切滑移是套管变形的重要因素;(4)压裂液在压裂层段积累,形成高压力带,逐渐驱动压裂液沿着天然裂缝或储层孔隙通道向周边井的低压力带渗流,造成X平台周边井产量波动.以上认识,对页岩气高效开发具有一定指导意义.  相似文献   

18.
利用哥伦比亚大学 GCMT 目录给出的祁连山中东段地区中强地震震源机制资料,研究较大区域(34°-41°N,100°-106°E)的应力场;利用该地区布设的中法微震数字监测台网多年监测资料和甘肃数字监测台网资料,使用 P 波和 S 波初动及振幅比联合反演方法,反演中小地震震源机制解和发震应力场。结果表明,地区构造应力大致为北东40°-45°水平向压应力;景泰地区主压应力方向约北东45°,绝大多数地震为走滑型。天祝-古浪地区有相当部分的逆断层地震分布,主压应力方向约60°,P 轴仰角在10°左右优势分布,大致为水平应力场。这与大区域构造应力场和断层实际分布基本一致。  相似文献   

19.
利用哥伦比亚大学GCMT目录给出的祁连山中东段地区中强地震震源机制资料,研究较大区域(34°-41°N,100°-106°E)的应力场;利用该地区布设的中法微震数字监测台网多年监测资料和甘肃数字监测台网资料,使用P波和S波初动及振幅比联合反演方法,反演中小地震震源机制解和发震应力场。结果表明,地区构造应力大致为北东40°-45°水平向压应力;景泰地区主压应力方向约北东45°,绝大多数地震为走滑型。天祝-古浪地区有相当部分的逆断层地震分布,主压应力方向约60°,P轴仰角在10°左右优势分布,大致为水平应力场。这与大区域构造应力场和断层实际分布基本一致。  相似文献   

20.
微地震震源机制解包含储层及裂缝特征信息,对于地质力学建模和水力压裂储层评价都有十分重要意义.然而,目前微地震震源机制类型仍存在争议,该方面的基础实验仍需要进一步的研究.本文针对花岗岩和页岩两类岩石,开展了水力压裂微地震实验研究.在实验进行前,分析了实验条件和数据采集方式.根据实验室测定的岩石物性参数和各级检波器微震事件的P波初动信息等,利用射线追踪进行微震事件的反演定位.定位的结果同岩石CT扫描观测到的裂缝有较高吻合度.利用微震事件在各级检波器处的P波初动极性及检波器在岩石表面的位置信息,进行微地震事件的震源机制反演,得出了水力压裂实验下微地震震源机制以剪切型占优的结论.结合微地震事件定位结果,震源机制反演结果和岩石CT扫描裂缝结果等,进行对比和分析,得出了一些新的结论和认识,为今后的实际微地震监测裂缝解释提供指导意见.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号