首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
提出利用国际参考电离层附加虚拟观测值对总电子含量值为负数的地区、赤道异常区域和南半球区域电离层进行约束,在日固地磁参考系下采用15阶次的球谐展开建立全球电离层模型,解算得单位权中误差约为1.6TECU,残差绝对值小于3TECU的比例达90%以上,且全球电离层图与IGS电离层工作组的电离层产品精度相当,偏差RMS约为3.7TECU,卫星差分码偏差与欧洲定轨中心相比优于0.1ns,与IGS相比优于0.2ns,接收机差分码偏差与欧洲定轨中心相比优于1ns(大部分优于0.5ns),与IGS相比优于1.5ns。实验结果表明,附有国际参考电离层约束的全球电离层模型确保了全球各个地区的电离层总电子含量为正值,且有效提高了全球电离层模型在赤道异常区域、海洋地区和南半球的精度。  相似文献   

2.
基于球谐函数模型的GPS差分码延迟估计   总被引:1,自引:0,他引:1  
电离层延迟是GNSS观测值中最大的误差源,因此如何利用GNSS观测值确定高精度电离层模型逐渐成为实时导航、定位及大气相关研究的重要内容。在通常采用组合观测值建立模型的方法中,精确估计电离层总电子含量(TEC)的重要误差之一是差分码硬件延迟(DCBs)。为了实时得到P1、P2、C2相互间硬件差分码延迟偏差,本文采用IGS跟踪站的观测数据并利用载波平滑后的差分伪距建立观测方程,对卫星和接收机硬件差分码延迟偏差进行实时解算。经比较模型解算DCB值与IGS最大差异不超过0.8 ns,C1、P1码延迟偏差72%差异值小于0.3 ns,P1、P2的74%差异值小于0.3 ns。  相似文献   

3.
为全面分析和评估Galileo电离层全球建模和卫星差分码偏差的精度,该文选取全球364个GNSS观测站,利用15阶球谐函数构造高精度的电离层格网模型,并以CODE发布的电离层产品为基准,将其与该文建立的电离层网格模型按照不同纬度进行验证和分析。此外,该文将计算的差分码偏差与现有偏差产品进行对比分析。实验结果表明,Galileo建立的电离层模型在平静日状态下与CODE的平均偏差在2 TECU以内、均方根误差在3 TECU以内;在活跃日状态下的结果与CODE的平均偏差在3 TECU以内、RMSE在4 TECU以内。解算的卫星差分码偏差与现有偏差产品进行对比分析的结果表明,平静日的偏差在0.1 ns以内,活跃日的偏差在0.2 ns以内,两种状态下的STD均在0.1 ns以内。所以,采用Galileo进行电离层建模可以精确表现电离层。  相似文献   

4.
差分码偏差(DCB)是电离层总电子含量(TEC)监测和建模的主要系统误差,卫星DCB也是卫星导航系统导航电文的重要参数。研究了卫星DCB的估计算法,推导了不同基准下DCB的转换公式,利用北斗观测实验网解算了2013年北斗卫星的DCB。在同一基准下分析了北斗卫星DCB的稳定性,并与MGEX发布的DCB产品进行了比较分析。实验结果表明,该方法解算的北斗卫星B1-B2DCB在-9~17ns之间,北斗卫星DCB的稳定性优于0.4ns;北斗倾斜地球同步轨道卫星(IGSO)卫星稳定性优于地球静止轨道卫星(GEO)和中圆地球轨道卫星(MEO);利用北斗观测实验网解算的北斗卫星DCB与MGEX解算结果存在最大约1.7ns的系统偏差,可能由于测距码的不一致性所致;接收机硬件材质的不同是导致接收机DCB差异的主要影响因素。  相似文献   

5.
为提高区域电离层模型和导航定位服务的精度,利用河北省连续运行参考站系统(CORS) 6个基准站的GPS卫星观测数据进行区域电离层建模和接收机差分码偏差(DCB)估计,并引入中国科学院(CAS)发布的电离层产品内插得到的垂直总电子含量(VTEC)进行区域电离层模型精度验证。实验结果表明,估计的单日GPS卫星DCB与产品值精度相当,偏差控制在0.5 ns以内;河北省CORS站GPS系统接收机DCB稳定性较好,5 d的标准偏差均小于0.1 ns;利用河北省CORS建立的区域电离层TEC在地磁平静期与磁暴期均与CAS产品值具有较高的一致性,TEC偏差控制在2 TECU以内。河北省区域电离层模型能有效监测电离层TEC在不同地磁状态下的时空变化,提高区域导航定位服务水平。  相似文献   

6.
为了提高接收机码间偏差的计算效率和精度,利用CODE中心发布的全球VTEC地图和卫星码间偏差,通过内"预测-校正"法快速解算接收机码间偏差,并结合VTEC多项式对内插结果进行误差项改正。新算法解算的码间偏差与IGS发布的数据差值基本维持在0.2 ns以内,表明该算法计算精度较高,且效率明显高于传统方法。  相似文献   

7.
研究了联合BDS/GPS观测数据基于球冠谐函数的中国区域电离层建模,并精确估计了北斗卫星和接收机DCB。联合解算得到的GPS卫星DCB相对CODE精度优于0.2 ns,GPS接收机DCB相对CODE精度优于1 ns;联合解算得到的中国区域上空VTEC相对CODE事后产品的精度可达2~3 TECU。  相似文献   

8.
电离层延迟是影响导航定位精度的最主要因素。北斗卫星导航系统采用Klobuchar模型修正单频接收机用户的电离层延迟误差,对于双频接收机,可以利用不同频率信号的伪距观测数据解算得到电离层延迟值。为比较两种方法在天津地区的电离层延迟修正效果,利用NovAtel GPStation6接收机(GNSS电离层闪烁和TEC监测接收机)采集到的卫星实测数据进行计算。以国际全球导航卫星系统服务组织(IGS)发布的全球电离层格网数据为参考,对两种方法的修正效果进行比较分析。结果表明,在天津地区,利用双频观测值解算电离层延迟比Klobuchar模型计算结果更加精确,且平均每天的修正值达到IGS发布数据的82.11%,比Klobuchar模型计算值高948%   相似文献   

9.
为满足GNSS数据处理效率不断提升的需求,提出并开发了一套分布式并行计算框架,并基于该框架实现了全球电离层模型的分布式并行解算。采用2台服务器和4台台式机,对全球电离层建模分别测试了单机多线程、多机分布式等并行计算方案,并分析了不同方案建模的数据处理效率。结果表明,采用多线程并行计算可以大幅提高数据处理效率,且当开启线程数与计算机CPU核心数一致时效率提升最佳;采用多机分布式并行计算可进一步提高数据处理效率,使用4台台式机相对于单台台式机解算时间减少约60%,使用2台服务器相对于单台服务器解算时间减少约18%;采用分布式并行计算方案,可充分利用多台计算机资源来提高全球电离层建模效率,对电离层产品快速发布、建模算法的测试等具有重要的意义,对多系统GNSS精密定轨与定位、大网解算也具有很好的参考价值。  相似文献   

10.
对全球电离层反演数据处理中的计算密集型任务进行分析,针对数据预处理、组建法方程矩阵、参数预消除和法方程矩阵求逆等主要模块设计了基于OpenMP(Open Multi-Processing)的并行计算方案。该实验方案在单台服务器下实施,通过算例验证了本文并行计算方案的有效性和可靠性。实验结果表明:采用并行计算后,全球电离层快速解执行时间只需要10~13 min,计算速度加快了约6倍;最终解执行时间只需要39~47 min,计算速度加快了约5倍。本文全球电离层模型精度约为2.8~3.8 TECU,最终解模型精度相比快速解精度提高了约0.2 TECU,与IGS各个分析中心电离层产品精度基本相当。  相似文献   

11.
Global navigation satellite systems (GNSS) have been widely used to monitor variations in the earth’s ionosphere by estimating total electron content (TEC) using dual-frequency observations. Differential code biases (DCBs) are one of the important error sources in estimating precise TEC from GNSS data. The International GNSS Service (IGS) Analysis Centers have routinely provided DCB estimates for GNSS satellites and IGS ground receivers, but the DCBs for regional and local network receivers are not provided. Furthermore, the DCB values of GNSS satellites or receivers are assumed to be constant over 1?day or 1?month, which is not always the case. We describe Matlab code to estimate GNSS satellite and receiver DCBs for time intervals from hours to days; the software is called M_DCB. The DCBs of GNSS satellites and ground receivers are tested and evaluated using data from the IGS GNSS network. The estimates from M_DCB show good agreement with the IGS Analysis Centers with a mean difference of less than 0.7?ns and an RMS of less than 0.4?ns, even for a single station DCB estimate.  相似文献   

12.
This article is based on a position paper presented at the IGS Network, Data and Analysis Center Workshop 2002 in Ottawa, Canada, 8–11 April 2002, and introduces the IGS Ionosphere Working Group (Iono_WG). Detailed information about the IGS in general can be found on the IGS Central Bureau Web page: http://igscb.jpl.nasa.gov. The Iono_WG commenced working in June 1998. The working group's main activity currently is the routine production of ionosphere Total Electron Content (TEC) maps with a 2-h time resolution and daily sets of GPS satellite and receiver hardware differential code bias (DCB) values. The TEC maps and DCB sets are derived from GPS dual-frequency tracking data recorded with the global IGS tracking network. In the medium- and long-term, the working group intends to refine algorithms for the mapping of ionospheric parameters from GPS measurements and to realize near–real–time availability of IGS ionosphere products. The paper will give an overview of the Iono_WG activities that include a summary of activities since its establishment, achievements and future plans. Electronic Publication  相似文献   

13.
Experimental analysis was performed using multiplicative algebraic reconstruction technique (MART) to map the ionosphere over Brazil. Code and phase observations from the global navigation satellite system (GNSS) together with the international reference ionosphere (IRI) enabled the estimation of ionospheric profiles and total electron content (TEC) over the entire region. Twenty-four days of data collected from existing ground-based GNSS receivers during the recent solar maximum period were used to analyze the performance of the MART algorithm. The results were compared with four ionosondes. It was demonstrated that MART estimated the electron density peak with the same degree of accuracy as the IRI model in regions with appropriate geometrical coverage by GNSS receivers for tomographic reconstruction. In addition, the slant TEC, as estimated with MART, presented lower root-mean-square error than the TEC calculated by ionospheric maps available from the International GNSS Service (IGS). Furthermore, the daily variations of the ionosphere were better represented with the algebraic techniques, compared to the IRI model and IGS maps, enabling a correlation of the elevation of the ionosphere at higher altitudes with the equatorial ionization anomaly intensification. The tomographic representations also enabled the detection of high vertical gradients at the same instants in which ionospheric irregularities were evident.  相似文献   

14.
基于球谐函数区域电离层模型建立   总被引:1,自引:0,他引:1  
利用GPS双频观测数据建立高精度、准实时的区域电离层总电子含量(TEC)模型是电离层研究的一个重要手段。文中探讨IGS观测站数据结合4阶球谐函数建立区域电离层格网模型的方法,并对硬件延迟(DCB)和TEC建模结果的可靠性进行分析,结果表明,DCB解算精度在0.4ns以内,TEC内外精度优于1.4TECU(1TECU=1016电子数/m2)和1.5TECU,满足导航定位中电离层改正的需要。  相似文献   

15.
The Global Navigation Satellite System presents a plausible and cost-effective way of computing the total electron content (TEC). But TEC estimated value could be seriously affected by the differential code biases (DCB) of frequency-dependent satellites and receivers. Unlike GPS and other satellite systems, GLONASS adopts a frequency-division multiplexing access mode to distinguish different satellites. This strategy leads to different wavelengths and inter-frequency biases (IFBs) for both pseudo-range and carrier phase observations, whose impacts are rarely considered in ionospheric modeling. We obtained observations from four groups of co-stations to analyze the characteristics of the GLONASS receiver P1P2 pseudo-range IFB with a double-difference method. The results showed that the GLONASS P1P2 pseudo-range IFB remained stable for a period of time and could catch up to several meters, which cannot be absorbed by the receiver DCB during ionospheric modeling. Given the characteristics of the GLONASS P1P2 pseudo-range IFB, we proposed a two-step ionosphere modeling method with the priori IFB information. The experimental analysis showed that the new algorithm can effectively eliminate the adverse effects on ionospheric model and hardware delay parameters estimation in different space environments. During high solar activity period, compared to the traditional GPS + GLONASS modeling algorithm, the absolute average deviation of TEC decreased from 2.17 to 2.07 TECu (TEC unit); simultaneously, the average RMS of GPS satellite DCB decreased from 0.225 to 0.219 ns, and the average deviation of GLONASS satellite DCB decreased from 0.253 to 0.113 ns with a great improvement in over 55%.  相似文献   

16.
A new algorithm for single receiver DCB estimation using IGS TEC maps   总被引:5,自引:2,他引:3  
Maxim Keshin 《GPS Solutions》2012,16(3):283-292
A new algorithm for single receiver DCB estimation using GIM vertical TEC gridded values is proposed. It estimates receiver DCB and vertical residual ionospheric delays using the least squares approach with linear constraints. The performance of the proposed algorithm was assessed by comparing estimated receiver DCBs with those provided by the IGS. The same comparisons were done using two other algorithms for receiver DCB estimation. It is demonstrated that the proposed algorithm is capable of reproducing IGS DCB values at the level of 0.1?C0.3?ns, which is better than the level of agreement observed for the other two algorithms. For our tests, we considered data from more than 100 IGS stations, daily, such that all major regions of the world were covered. Besides, both ionospherically quiet and disturbed days were considered. It provides some evidence that the aforementioned level of agreement with IGS receiver DCB values does not significantly dependent on geographical region and the state of the ionosphere. The algorithm is easy to implement and can be considered for online use.  相似文献   

17.
In Global Navigation Satellite Systems (GNSS) using L-band frequencies, the ionosphere causes signal delays that correspond with link related range errors of up to 100 m. In a first order approximation the range error is proportional to the total electron content (TEC) of the ionosphere. Whereas this first order range error can be corrected in dual-frequency measurements by a linear combination of carrier phase- or code-ranges of both frequencies, single-frequency users need additional information to mitigate the ionospheric error. This information can be provided by TEC maps deduced from corresponding GNSS measurements or by ionospheric models. In this paper we discuss and compare different ionospheric correction methods for single-frequency users. The focus is on the comparison of the positioning quality using dual-frequency measurements, the Klobuchar model, the NeQuick model, the IGS TEC maps, the Neustrelitz TEC Model (NTCM-GL) and the reconstructed NTCM-GL TEC maps both provided via the ionosphere data service SWACI (http://swaciweb.dlr.de) in near real-time. For that purpose, data from different locations covering several days in 2011 and 2012 are investigated, including periods of quiet and disturbed ionospheric conditions. In applying the NTCM-GL based corrections instead of the Klobuchar model, positioning accuracy improvements up to several meters have been found for the European region in dependence on the ionospheric conditions. Further in mid- and low-latitudes the NTCM-GL model provides results comparable to NeQuick during the considered time periods. Moreover, in regions with a dense GNSS ground station network the reconstructed NTCM-GL TEC maps are partly at the same level as the final IGS TEC maps.  相似文献   

18.
When using predicted total electron content (TEC) products to generate preliminary real-time global ionospheric maps (GIMs), validation of these ionospheric predicted products is essential. In this study, we evaluate the accuracy of five predicted GIMs, provided by the international GNSS service (IGS), over continental and oceanic regions during the period from September 2009 to September 2015. Over continental regions, the GPS TEC data collected from 41 IGS continuous tracking stations are used as a reference data set. Over oceanic regions, the TEC data from the JASON altimeter are used for comparison. An initial performance comparison between the IGS combined final GIM product and the predicted GIMs is also included in this study. The evaluation results show that the predicted GIMs produced by CODE outperform the other predicted GIMs for all three validation results. The accuracy of the 1-day predicted GIMs, produced by the IGS associate analysis centers (IAACs), is higher than that of the 2-day predicted GIMs. Compared to the 2-day UPC predicted GIMs, the 2-day ESA predicted GIMs are observed to have slightly worse performances over ocean regions and better positioning performances over continental regions.  相似文献   

19.
20.
差分码偏差(DCB)是电离层建模与导航定位授时的主要误差源,北斗多频多通道信号衍生出一系列新的DCB。本文首先分析了北斗三号卫星的码观测值组合及可估的DCB类型,建立了北斗三号卫星多频码偏差估计的数学模型,利用IGS实测数据首次估计得到了22种不同类型的北斗DCB。在此基础上,全面比较分析了各类DCB的内符合精度、外符合精度及月稳定度。结果表明,北斗三号卫星各类DCB的闭合差基本都在0.2 ns以内,具有较好的内符合精度;估计结果与中科院(CAS)、德国宇航中心(DLR)提供的DCB产品具有一致性,与CAS的6种DCB偏差基本在0.1 ns以内,与DLR的4种DCB偏差基本在0.2 ns以内;由于误差传递的影响,通过线性转换得到DCB值的精度和可靠性不及DCB直接估计量;北斗三号卫星各类DCB的月平均标准差为0.083 ns,具有较好的中长期稳定性;相较于北斗二号卫星,北斗三号卫星的DCB稳定性相对更优。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号