首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Seismic anisotropy and its main features along the convergent boundary between Africa and Iberia are detected through the analysis of teleseismic shear-wave splitting.Waveform data generated by 95 teleseismic events recorded at 17 broadband stations deployed in the western Mediterranean region are used in the present study.Although the station coverage is not uniform in the Iberian Peninsula and northwest Africa,significant variations in the fast polarization directions and delay times are observed at stations located at different tectonic domains.Fast polarization directions are oriented predominantly NW-SE at most stations which are close to the plate boundary and in central Iberia;being consistent with the absolute plate motion in the region.In the northern part of the Iberian Peninsula,fast velocity directions are oriented nearly E—W;coincident with previous results.Few stations located slightly north of the plate boundary and to the southeast of Iberia show E—W to NE-SW fast velocity directions,which may be related to the Alpine Orogeny and the extension direction in Iberia.Delay times vary significantly between 0.2 and 1.9 s for individual measurements,reflecting a highly anisotropic structure beneath the recording stations.The relative motion between Africa and Iberia represents the main reason for the observed NW-SE orientations of the fast velocity directions.However,different causes of anisotropy have also to be considered to explain the wide range of the splitting pattern observed in the western Mediterranean region.Many geophysical observations such as the low Pn velocity,lower lithospheric Q values,higher heat flow and the presence of high conductive features support the mantle How in the western Mediterranean,which may contribute and even modify the splitting pattern beneath the studied region.  相似文献   

2.
Teleseismic earthquake data recorded by 11 broadband digital seismic stations deployed in the India–Asia collision zone in the eastern extremity of the Himalayan orogen (Tidding Suture) are analyzed to investigate the seismic anisotropy in the upper mantle. Shear-wave splitting parameters (Φ and δt) derived from the analysis of core-refracted SKS phases provide first hand information about seismic anisotropy and deformation in the upper mantle beneath the region. The analysis shows considerable strength of anisotropy (delay time ~0.85–1.9 s) with average ENE–WSW-oriented fast polarization direction (FPD) at most of the stations. The FPD observed at stations close to the Tidding Suture aligns parallel to the strike of local geological faults and orthogonal to absolute plate motion direction of the Indian plate. The average trend of FPD at each station indicates that the anisotropy is primarily originated by lithospheric deformation due to India–Asia collision. The splitting data analyzed at closely spaced stations suggest a shallow source of anisotropy originated in the crust and upper mantle. The observed delay times indicate that the primary source of anisotropy is located in the upper mantle. The shear-wave splitting analysis in the Eastern Himalayan syntaxis (EHS) and surrounding regions suggests complex strain partitioning in the mantle which is accountable for evolution of the EHS and complicated syntaxial tectonics.  相似文献   

3.
The presence of two regional seismic networks in southeastern France provides us high-quality data to investigate upper mantle flow by measuring the splitting of teleseismic shear waves induced by seismic anisotropy. The 10 three-component and broadband stations installed in Corsica, Provence, and western Alps efficiently complete the geographic coverage of anisotropy measurements performed in southern France using temporary experiments deployed on geodynamic targets such as the Pyrenees and the Massif Central. Teleseismic shear waves (mainly SKS and SKKS) are used to determine the splitting parameters: the fast polarization direction and the delay time. Delay times ranging between 1.0 and 1.5 s have been observed at most sites, but some larger delay times, above 2.0 s, have been observed at some stations, such as in northern Alps or Corsica, suggesting the presence of high strain zones in the upper mantle. The azimuths of the fast split shear waves define a simple and smooth pattern, trending homogeneously WNW–ESE in the Nice area and progressively rotating to NW–SE and to NS for stations located further North in the Alps. This pattern is in continuity with the measurements performed in the southern Massif Central and could be related to a large asthenospheric flow induced by the rotation of the Corsica–Sardinia lithospheric block and the retreat of the Apenninic slab. We show that seismic anisotropy nicely maps the route of the slab from the initial rifting phase along the Gulf of Lion (30–22 Ma) to the drifting of the Corsica–Sardinia lithospheric block accompanied by the creation of new oceanic lithosphere in the Liguro–Provençal basin (22–17 Ma). In the external and internal Alps, the pattern of the azimuth of the fast split waves follows the bend of the alpine arc. We propose that the mantle flow beneath this area could be influenced or perhaps controlled by the Alpine deep penetrative structures and that the Alpine lithospheric roots may have deflected part of the horizontal asthenospheric flow around its southernmost tip.  相似文献   

4.
We conduct shear wave splitting measurements on waveform data from the Hi-net and the broadband F-net seismic stations in Kanto and SW Japan generated by shallow and intermediate-depth earthquakes occurring in the subducting Philippine Sea and Pacific slabs. We obtain 1115 shear wave splitting parameter pairs. The results are divided into those from the shallow (depth < 50 km) and the deep (depth > 50 km) events. The deep events beneath Kanto are further divided into PHS1 and PHS2 (upper and lower planes of the double seismic zone in the Philippine Sea slab, respectively), PAC1 and PAC2 (western and eastern Pacific slab, respectively) events. The results from the shallow events represent the crustal anisotropy, and their fast directions are more or less aligned in the σHmax directions, implying that the anisotropy is produced by the alignment of the vertical cracks in the crust induced by the compressive stresses. In Kanto, Kii Peninsula and Kyushu regions, the results from the deep events suggest a contribution from the mantle wedge anisotropy. Events from all groups beneath Kanto show NW, NE and EW fast directions. This complex pattern seems to be produced by the corner flows induced by both the WNW PAC plate subduction and the oblique NNW PHS slab subduction with the associated olivine lattice-preferred orientations (LPOs), and the anisotropy frozen in the PHS slab. The deep events beneath Kii Peninsula show NE and NW fast directions and may be produced by the corner flow produced by the NNW PHS slab subduction with the associated olivine LPOs. The NE directions might also be produced by the segregated melts in the thin layers parallel to the PHS slab subduction. The deep events beneath N Kyushu show NNW fast directions, which may result from the southeastward flow in the upper mantle inferred from the stresses in the upper plate. Results from the deep events beneath middle-south Kyushu show dominantly E–W fast directions, in both the fore- and back-arcs. They may be produced by the corner flow of the westward PHS slab subduction with the olivine LPOs. Because the source regions with multiple fast directions are not resolved in this study, further detailed analyses of shear wave splitting are necessary for a better understanding of the stress state, the induced mantle flow, and the melt-segregation processes.  相似文献   

5.
Shear-wave splitting measurements from local and teleseismic earthquakes are used to investigate the seismic anisotropy in the upper mantle beneath the Rwenzori region of the East African Rift system. At most stations, shear-wave splitting parameters obtained from individual earthquakes exhibit only minor variations with backazimuth. We therefore employ a joint inversion of SKS waveforms to derive hypothetical one-layer parameters. The corresponding fast polarizations are generally rift parallel and the average delay time is about 1 s. Shear phases from local events within the crust are characterized by an average delay time of 0.04 s. Delay times from local mantle earthquakes are in the range of 0.2 s. This observation suggests that the dominant source region for seismic anisotropy beneath the rift is located within the mantle. We use finite-frequency waveform modeling to test different models of anisotropy within the lithosphere/asthenosphere system of the rift. The results show that the rift-parallel fast polarizations are consistent with horizontal transverse isotropy (HTI anisotropy) caused by rift-parallel magmatic intrusions or lenses located within the lithospheric mantle—as it would be expected during the early stages of continental rifting. Furthermore, the short-scale spatial variations in the fast polarizations observed in the southern part of the study area can be explained by effects due to sedimentary basins of low isotropic velocity in combination with a shift in the orientation of anisotropic fabrics in the upper mantle. A uniform anisotropic layer in relation to large-scale asthenospheric mantle flow is less consistent with the observed splitting parameters.  相似文献   

6.
《Gondwana Research》2014,25(3-4):946-957
In addition to crustal thickening, distinctly different mechanisms have been suggested to accommodate the huge convergences caused by the continental collision between India and Eurasia. As the transition zone between the two grand tectonic domains of Asia, the Tethys and the Pacific, east Tibet and its surrounding regions are the ideal places to study continental deformation. Pervasive rock deformation may produce anisotropy on the scale of seismic wavelengths; thus, seismic anisotropy provides insight into the deformation of the crust and mantle beneath tectonically active domains. In this study, we calculated receiver function pairs of radial- and transverse-components at 98 stations located in Sichuan and Yunnan provinces, China. We selected 7423 pairs with high signal-to-noise ratio (SNR) and unambiguous Moho converted Ps phases (Pms) to measure the Pms splitting owing to the crustal anisotropy. Both the crustal thickness and the average crustal Vp/Vs ratio were calculated simultaneously by the Hk stacking method. The geodynamic implications were also investigated in relation to surface geological features, GPS velocities, absolute plate motion (APM), SKS/SKKS splitting, and other seismological observations. In addition to the fast polarization directions (FPDs) of the crustal anisotropy, we observed a conspicuous sharper clockwise rotation around the eastern Himalayan syntaxis than was revealed by GPS velocities. The distributed FPDs within and near the main active fault zones also favored the directions parallel to the faults. This implied that the deformation of a continuous medium revealed by GPS motions is a proxy for the deformation of the brittle shallow crust only, while the main active faults and the deep crustal interiors both play important roles in the deep deformation. Our results suggest that the deformation between the crust and upper mantle within the northernmost section of the Indochina block is decoupled due to the large difference in the directions between the observations related to the crust (GPS and crustal anisotropy) and mantle (APM and mantle anisotropy). Focusing on the transition zone between the plateau and the South China and Indochina blocks, we suggest that the motion of the Central Yunnan sub-block is a southeastward extrusion by way of tectonic escape. There is less deformation in the deep crust and the motion is controlled by the active boundary faults of the Ailaoshan–Red River shear zone to the west and the Xianshuihe–Xiaojiang fault to the east; the lower crustal flow within the plateau southeastward reached the Lijiang–Xiaojinhe fault, but further south it was obstructed by the Central Yunnan sub-block.  相似文献   

7.
The seismic anisotropy of the mantle is studied based on the data of S and ScS waves from earthquakes occurred in the mantle transition zone over the period of 2007–2013 and recorded by seismic stations in the continental margin of Asia, on Sakhalin Island, and in the southern part of the Kamchatka Peninsula. The measurements of the azimuths of polarization of the fast S and ScS waves in the continental margin of Asia show that they are predominantly oriented in the E–SE directions. Based on the distribution of the shear wave splitting parameters, the symmetry of the medium can be described in terms of a transversely isotropic model with a horizontal symmetry axis and may correspond to horizontal flow in the upper mantle beneath the Amur Plate. The fast azimuths of polarization of ScS wave, which were determined to be of N–NE directions in the northern area of Sakhalin Island and in the continental part of Asia, may correspond to an inclined flow under the conditions of oblique subduction and complex geometry of the downgoing Pacific Plate. In the south of the Kamchatka Peninsula, the S- and ScS-wave azimuths of polarization from the M 8.4 Sea of Okhotsk earthquake are determined to be oriented along the direction of the Pacific Plate motion. The fast-S-wave azimuths of polarization from the aftershocks of the Sea of Okhotsk earthquake and from other large events of 2008–2009 are determined to be nearly parallel to the motion trend of the Pacific Plate, but orthogonal to it for the events of 2008–2009. On the basis of the distribution of azimuths of polarization of the fast S waves, the symmetry of the medium can be described in terms of a transversely isotropic model with the symmetry axis inclined orthogonally to the plane of downgoing plate and oriented westward orthogonally to the trench strike.  相似文献   

8.
青藏高原东部及其邻区力学耦合的岩石圈变形模式   总被引:1,自引:0,他引:1  
根据青藏高原东部及其邻区布设的143个宽频带固定和流动地震台站的远震记录的SKS波分裂分析获得了各台站的快波偏振方向和快慢波之间的时间延迟。SKS分裂分析结果总体上反映了高原东部的上地幔物质流动方向,即高原内部表现为环绕喜马拉雅东构造结的顺时针旋转。在造山运动过程中有关岩石圈地壳和地幔力学耦合的造山变形方式,用从GPS和第四纪断裂滑动速率数据确定的地面变形场和由地震波各向异性数据推断的地幔变形场联合分析来定量求得。在青藏高原东部和云南、四川等地区新近快速增加的GPS和SKS波分裂观测数据,提供了对青藏高原岩石圈地幔实际变形方式的检验。这些新的数据不仅加强了高原内部力学耦合岩石圈的证据,而且也解释了高原外部相同的耦合特征。文中引入简单剪切变形和纯剪切变形的概念,用于解释高原内外不同的耦合变形特征。青藏高原和周围区域力学耦合岩石圈的垂直连贯变形有两个方面的大陆动力学含义:第一,岩石圈垂直强度剖面被一个重要的条件所约束,即要求与重力势能变化相关的应力能够从地壳传递到地幔;第二,青藏高原各向异性的空间变化反映了一个岩石圈变形的大尺度模式,以及从高原内部的简单剪切变形向高原外部的纯剪切变形的过渡带。文中提出的力学耦合岩石圈变形模型与当前已有的多种造山运动变形模型具有不同的变形含义,因此,地幔变形在青藏高原隆升过程中起主要作用。  相似文献   

9.
南北构造带北段位于青藏高原东北缘及其向北东方向扩展的区域,其岩石圈变形特征对于探讨青藏高原东北缘变形机制及其扩展范围具有非常关键的意义。地震波各向异性能很好地反映上地幔的变形特征。因此,本文对布设在南北构造带北段的流动地震台站记录的远震波形资料进行S波分裂研究,获得了研究区上地幔各向异性图像以及该区岩石圈地幔的变形特征信息。S波分裂研究结果表明,研究区地震波各向异性来自于上地幔,区内不同构造单元上地幔各向异性方向不尽相同。快波方向分布显示,青藏高原东北缘,鄂尔多斯西缘以及贺兰构造带北段的快波方向主要表现为NW-SE向,与前人在银川地堑和贺兰构造带中、北部得到的NW-SE向的上地幔各向异性方向一致,显示这些地区岩石圈地幔变形一致,该结果表明青藏高原东北缘向北东方向扩展的影响范围已到达贺兰构造带北段。阿拉善地块内部快波方向显示为NE-SW向,与阿拉善地块北部存在的北东向展布的晚古生代岩浆岩方向一致,表明该NE-SW向的快波方向可能代表地是“化石”各向异性,是晚古生代阿拉善地块受到古亚洲洋闭合作用的结果。此外,鄂尔多斯地块内也存在NE-SW向的各向异性方向,与区内中-晚侏罗世存在的NE-SW向逆冲推覆构造方向一致,因此该各向异性方向也代表了“化石”各向异性,是鄂尔多斯地块受到古特提斯构造域的块体碰撞、古太平洋板块北西向俯冲以及西伯利亚板块向南俯冲共同作用的结果。  相似文献   

10.
We have measured shear wave splitting at three temporary three-component short period stations that were deployed in southern Chile above the subducted Chile Rise spreading centre (Taitao Peninsula and environs). Subduction of the Chile Rise has been occurring beneath South America for at least the past 14 m.y. Previously published models of the ridge subduction posit the existence of ‘slab windows’, asthenosphere-filled gaps between subducted lithosphere segments of the spreading ridge, through which mantle might flow. Our preliminary results include two consistent fast polarization directions of splitting in the study region. Delay times between fast and slow split shear waves average around 1.0 s for all phases (ScS, PcS, SKS, and SKKS) that we measured. Fast-axis azimuths vary systematically among the three stations: near the coast, fast axes are parallel to the spreading ridge segments of the Chile Rise (approximately N-trending). This splitting fast-axis direction probably reflects either along-axis asthenospheric flow or results from the preferential attenuation effects of aligned pockets of melt at the subducted ridge segment. At one inland station above the slab window, we find two splitting fast-axis directions, one parallel to the subducted Chile Rise ridge segments, and a second trending NW–SE. We infer that upper mantle deformation in the vicinity of a well developed slab window is complicated and probably involves two superposed directions of upper mantle deformation. One of these directions (NW–SE) may indicate anomalous flow of asthenospheric mantle in the vicinity of the slab window gap.  相似文献   

11.
华北克拉通上地幔变形及其动力学意义   总被引:1,自引:0,他引:1       下载免费PDF全文
赵亮  郑天愉 《地质科学》2009,44(3):865-876
华北克拉通从稳定到破坏的演化过程对有关地球动力学的经典理论提出了挑战,研究其独特的演化历史是固体地球科学研究的一项重要内容。上地幔矿物晶体的各向异性记录了上地幔发生构造变形的信息,研究上地幔地震波各向异性能够揭示现今和构造历史时期所发生的构造运动。本文总结了近年来作者在华北克拉通地区所进行的高密度、覆盖广泛的地震波横波分裂观测研究结果。横波分裂的快轴方向与绝对板块运动方向的不一致,以及横波分裂参数快速的空间变化特征表明了华北克拉通的SKS横波分裂主要反映上地幔的变形。观测结果表明:鄂尔多斯块体保留了克拉通较弱的各向异性特征,其西端体现了元古代克拉通拼合的变形特征; 中新生代华北克拉通破坏事件以不同的机制主导了华北克拉通中部和东部的上地幔变形,在东部地区北西-南东向的拉张应力作用使得快轴方向平行于拉张方向,而在中部则因受到较厚岩石圈的阻挡使得地幔流动改变了方向,因此造成了北东和北北东向的岩石圈拉张。  相似文献   

12.
《地学前缘(英文版)》2018,9(6):1911-1920
We estimate the shear wave splitting parameters vis-à-vis the thicknesses of the continental lithosphere beneath the two permanent seismic broadband stations located at Dhanbad (DHN) and Bokaro (BOKR) in the Eastern Indian Shield region. Broadband seismic data of 146 and 131 teleseismic earthquake events recorded at DHN and BOKR stations during 2007–2014 were analyzed for the present measurements. The study is carried out using rotation-correlation and transverse component minimization methods. We retain our “Good”, “Fair” and “Null” measurements, and estimate the splitting parameters using 13 “Good” results for DHN and 10 “Good” results for BOKR stations. The average splitting parameters (ϕ, δt) for DHN and BOKR stations are found to be 50.76°±5.46° and 0.82 ± 0.2 s and 56.30°±5.07° and 0.95 ± 0.17 s, and the estimated average thicknesses of the anisotropic layers beneath these two stations are ∼ 94 and ∼109 km, respectively. The measured deviation of azimuth of the fast axis direction (ϕ) from the absolute motion of the Indian plate ranges from ∼8° to 14°. The measured deviation of azimuth of the fast axis direction (ϕ) from the absolute motion of the Indian plate ranges from ∼8° to 14°. The eastward deviation of the fast axis azimuths from absolute plate motion direction is interpreted to be caused by induced outflow from the asthenosphere. Further, the delay time found in the present analysis is close to the global average for continental shield areas, and also coherent with other studies for Indian shield regions. The five “Null” results and the lower delay time of ∼0.5–0.6 s might be indicating multilayer anisotropy existing in the mantle lithosphere beneath the study area.  相似文献   

13.
Interaction between the subducting slab, the overriding continental lithosphere and mantle flow are fundamental geodynamic processes of subduction systems. Eastern China is an ideal natural laboratory to investigate the behavior and evolution of cratonic blocks within a subduction system. In this study, we investigate deformation of the upper mantle beneath eastern China. We present seismic shear wave splitting measurements from three networks consisting of over 483 broadband stations, with 157 stations giving a total of 516 results. The splitting parameters exhibit complex regional patterns but are relatively coherent within individual tectonic units. Tectonic blocks exhibited distinctive fast directions relative to regional features. The dominant attitude of fast directions for the North China Craton was subparallel to the direction of subduction, whereas fast directions for Southeastern China were perpendicular to the direction of subduction. The shear wave splitting measurements were interpreted according to a high resolution tomographic body-wave velocity model. Combining these two datasets showed that the predominant geodynamic models for the region (mantle plume, mantle wedge and flat-slab subduction models) are incompatible with the observations presented here. We suggest that the North China Craton, Yangtze Craton and the Cathaysia block have undergone different deformational events due to differing mantle flow patterns, and distinct spatial and temporal subduction histories of the Pacific and Philippine Sea plates.  相似文献   

14.
The measurements of the parameters of split shear (S) waves from local deep-focus earthquakes recorded in 2005–2007 by a network of 12 seismic stations in Southern Sakhalin are presented. The results revealed the heterogeneous distribution of the anisotropic properties beneath Southern Sakhalin. The azimuths of the fast S-wave polarization beneath the stations in the central part of the peninsula are oriented along the NNW and NNE-NE directions normal to and along the Kuril Trench. Beneath the stations located along the western and eastern coasts, the azimuths of the fast S-wave polarization change their direction from NNW in the northern area to E-SE in the southern area. The highest anisotropy degree (up to 0.9–1.5%) is recorded beneath the central part of Southern Sakhalin. The maximum values of the discrepancy in the arrival time of the split S-waves are observed when the azimuth of the fast S-wave is oriented along the NNE beneath the active fault zones. The analysis of the variations of the S-wave lag time shows their weak depth dependence. The highest anisotropy is assumed in the upper layers of the medium (down to a depth of about 250 km). The results obtained for the dominating wave frequency of 1–5 Hz represent mainly the medium-scale anisotropy of the top of the studied region.  相似文献   

15.
We study high-resolution three-dimensional P-wave velocity (Vp) tomography and anisotropic structure of the crust and uppermost mantle under the Helan–Liupan–Ordos western margin tectonic belt in North-Central China using 13,506 high-quality P-wave arrival times from 2666 local earthquakes recorded by 87 seismic stations during 1980–2008. Our results show that prominent low-velocity (low-V) anomalies exist widely in the lower crust beneath the study region and the low-V zones extend to the uppermost mantle in some local areas, suggesting that the lower crust contains higher-temperature materials and fluids. The major fault zones, especially the large boundary faults of major tectonic units, are located at the edge portion of the low-V anomalies or transition zones between the low-V and high-V anomalies in the upper crust, whereas low-V anomalies are revealed in the lower crust under most of the faults. Most of large historical earthquakes are located in the boundary zones where P-wave velocity changes drastically in a short distance. Beneath the source zones of most of the large historical earthquakes, prominent low-V anomalies are visible in the lower crust. Significant P-wave azimuthal anisotropy is revealed in the study region, and the pattern of anisotropy in the upper crust is consistent with the surface geologic features. In the lower crust and uppermost mantle, the predominant fast velocity direction (FVD) is NNE–SSW under the Yinchuan Graben and NWW–SEE or NW–SE beneath the Corridor transitional zone, Qilian Orogenic Belt and Western Qinling Orogenic Belt, and the FVD is NE–SW under the eastern Qilian Orogenic Belt. The anisotropy in the lower crust may be caused by the lattice-preferred orientation of minerals, which may reflect the lower-crustal ductile flow with varied directions. The present results shed new light on the seismotectonics and geodynamic processes of the Qinghai–Tibetan Plateau and its northeastern margin.  相似文献   

16.
Shear wave splitting parameters from local deep-focus and crustal earthquakes beneath southern Sakhalin and northern Hokkaido have been measured. The study of the split shear wave amplitude, polarization, and splitting parameter distribution revealed their correlation with the geometry of the subsiding Pacific Plate and horizontal heterogeneity of the rheological properties and viscosity of the medium. Comparison of the observed data with those modeled in anisotropic media allows the mantle flow to be oriented NNW beneath southern Sakhalin and northern Hokkaido. Based on the split shear wave time delays, the degree of mantle anisotropy is estimated to be around 1–2% beneath southern Sakhalin and 1.5–2.5% beneath northern Hokkaido. A relatively high anisotropy (2–15%) from local crustal earthquakes is found beneath the Central Sakhalin Fault.  相似文献   

17.
We explore the variations of Rayleigh-wave phase-velocity beneath the East China Sea in a broad period range (5–200 s). Rayleigh-wave dispersion curves are measured by the two-station technique for a total of 373 interstation paths using vertical-component broad-band waveforms at 32 seismic stations around the East China Sea from 6891 global earthquakes.The resulting maps of Rayleigh-wave phase velocity and azimuthal anisotropy provide a high resolution model of the lithospheric mantle beneath the East China Sea. The model exhibits four regions with different isotropic and anisotropic patterns: the Bohai Sea, belonging to the North China Craton, displays a continental signature with fast velocities at short periods; the Yellow Sea, very stable unit associated with low deformation, exhibits fast velocities and limited anisotropy; the southern part of the East China Sea, with high deformation and many fractures and faults, is related to slow velocities and high anisotropic signature; and the Ryukyu Trench shows high-velocity perturbations and slab parallel anisotropy.  相似文献   

18.
In this study, we used data recorded by two consecutive passive broadband deployments on the Gulf of Aden northern margin, Dhofar region, Sultanate of Oman. The objective of these deployments is to map the young eastern Gulf of Aden passive continental margin crust and upper mantle structure and rheology. In this study, we use shear-wave splitting analysis to map lateral variations of upper mantle anisotropy beneath the study area. In this study, we found splitting magnitudes to vary between 0.33 and 1.0 s delay times, averaging about 0.6 s for a total of 17 stations from both deployment periods. Results show distinct abrupt lateral anisotropy variation along the study area. Three anisotropy zones are identified: a western zone dominated by NW–SE anisotropy orientations, an eastern zone dominated with NE–SW anisotropy orientations, and central zone with mixed anisotropy orientations similar to the east and west zones. We interpret these shorter wavelength anisotropy zones to possibly represent fossil lithospheric mantle anisotropy. We postulate that the central anisotropy zone may be representing a Proterozoic suture zone that separates two terranes to the east and west of it. The anisotropy zones west and east were being used indicative of different terranes with different upper mantle anisotropy signatures.  相似文献   

19.
Data from the temporary TRANSALP seismic network were analysed to investigate the seismic anisotropy in the upper mantle beneath the Eastern Alps. We operated mostly short period and some broadband stations in a dense linear array, which transects the Eastern Alps at 12° E longitude. Recorded SKS and SKKS phases with different backazimuths were used simultaneously to calculate the splitting parameters of delay time and fast axis direction for each seismic station. While we found variations in the delay times between 0.8 and 2.0 s, the determined fast axis directions prove to be rather consistent along the profile (60°–70° N). They coincide well with the trend of the Eastern Alps, thus suggesting orogen-parallel flow in the upper mantle. Our findings support the earlier proposed idea that the Adriatic indenter which was forced northwards into the European plate during the late stage of the Alpine orogeny, triggered an escape movement to the less constrained Pannonian basin to the east.  相似文献   

20.
Measurements of shear wave splitting of the waveforms of SKS, SKKS phases recorded at all WWSSN stations (1977–1988) in the Indian shield located on diverse geotectonic units are used to retrieve the anisotropic properties of the sub-Continental lithosphere beneath these regions. The azimuth of fast polarization direction (FPD) ‘α’ and delay time ‘δt’ of the split shear waves with their uncertainties are estimated. Events well distributed in azimuth yield tightly constrained average splitting parameters of α, δt that are roughly:KOD (ENE. 0.50s); HYB (NNE, 145s); POO (N-S, 0.9s); NDI (NE, 0.95s). No consistent anisotropic direction was found at SHL, though the phenomenon of shear wave splitting was clearly observed. In order to test the utility of analog data to document such secondary effects and to authenticate our digitizing procedures, results from GEOSCOPE digital data at HYB were compared with analog data results from the same location. Presence of detectable anisotropy at all the stations is explained either in terms of past and present deformations by tectonic episodes or by plate motion related strain which forms the two end member models in interpreting the observed azimuthal anisotropy. Knowledge of surface geology and maximum horizontal compressive stress (MHS) orientations are invoked to constrain the most plausible hypothesis that explains the observed anisotropic signatures at each of these locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号