首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary This study investigates the impacts of five recent ENSO events on southern Africa, the associated circulation anomalies and the ability of an atmospheric general circulation model (UKMO HadAM3) to represent these impacts when forced by observed sea-surface temperature (SST). It is found that the model is most successful for the 1997/8 El Niño but does less well for the 1991/2 and 2002/3 El Niños and the 1995/6 and 1999/00 La Niña events. Diagnostics from the model and NCEP re-analyses suggest that modulations to the Angola low, an important centre of tropical convection over southern Africa during austral summer, are often important for influencing the rainfall impacts of ENSO over subtropical southern Africa. Since the model has difficulty in adequately representing this regional circulation feature and its variability, it has problems in capturing ENSO rainfall impacts over southern Africa. During 1997/8, modulations to the Angola low were weak and Indian Ocean SST forcing strong and the model is relatively successful. The implications of these results for dynamical model based seasonal forecasting of the region are discussed.Current affiliation: CSIR Centre for Mathematical Modelling and Computer Simulation, Bangalore, India.  相似文献   

2.
The North Atlantic Oscillation (NAO) is a major winter climate mode, describing one-third of the inter-annual variability of the upper-level flow in the Atlantic European mid-latitudes. It provides a statistically well-defined pattern to study the predictability of the European winter climate. In this paper, the predictability of the NAO and the associated surface temperature variations are considered using a dynamical prediction approach. Two state-of-the-art coupled atmosphere–ocean ensemble forecast systems are used, namely the seasonal forecast system 2 from the European Centre for Medium Range Weather Forecast (ECMWF) and the multi-model system developed within the joint European project DEMETER (Development of a European Multi-Model Ensemble Prediction System for Seasonal to Inter-annual Prediction). The predictability is defined in probabilistic space using the debiased ranked probability skill score with adapted discretization (RPSSD). The potential predictability of the NAO and its impact are also investigated in a perfect model approach, where each ensemble member is used once as observation. This approach assumes that the climate system is fully represented by the model physics. Using the perfect model approach for the period 1959–2001, it is shown that the mean winter NAO index is potentially predictable with a lead time of 1 month (i.e. from 1st of November). The prediction benefit is rather small (6% skill relative to a reference climatology) but statistically significant. A similar conclusion holds for the near surface temperature variability related to the NAO. Again, the potential benefit is small (5%) but statistically significant. Using the forecast approach, the NAO skill is not statistically significant for the period 1959–2001, while for the period 1987–2001 the skill is surprisingly large (15% relative to a climate prediction). Furthermore, a weak relation is found between the strength of the NAO amplitude and the skill of the NAO. This contrasts with El Niño/Southern Oscillation (ENSO) variability, where the forecast skill is strongly amplitude dependent. In general, robust results are only achieved if the sensitivity with respect to the sample size (both the ensemble size and length of the period) is correctly taken into account.
This revised version was published online in May 2005. Some black and white figures were replaced by coloured figures.  相似文献   

3.
Summary The impact of pronounced positive and negative sea surface temperature (STT) anomalies in the tropical Pacific associated with the El Niño/Southern Oscillation (ENSO) phenomenon on the atmospheric circulation in the Northern Hemisphere extratropics during the boreal winter season is investigated. This includes both the impact on the seasonal mean flow and on the intraseasonal variability on synoptic time scales. Moreover, the interaction between the transient fluctuations on these times scales and the mean circulation is examined. Both data from an ensemble of five simulations with the ECHAM3 atmospheric general circulation model at a horizontal resolution of T42 each covering the period from 1979 through 1992 and operational analyses from ECMWF for the corresponding period are examined. In each of the simulations observed SSTs for the period of investigation are given as lower boundary forcing, but different atmospheric initial conditions are prescribed.The simulations with ECHAM3 reveal a distinct impact of the pronounced SST-anomalies in the tropical Pacific on the atmospheric circulation in the Northern Hemisphere extratropics during El Niño as well as during La Niña events. These changes in the atmospheric circulation, which are found to be highly significant in the Pacific/North American as well as in the Atlantic/European region, are consistent with the essential results obtained from the analyses. The pronounced SST-anomalies in the tropical Pacific lead to changes in the mean circulation, which are characterized by typical circulation patterns. These changes in the mean circulation are accompanied by marked variations of the activity of the transient fluctuations on synoptic time scales, that are changes in both the kinetic energy on these time scales and the atmospheric transports of momentum and heat accomplished by the short baroclinic waves. The synoptic disturbances, on the other hand, play also an important role in controlling the changes in the mean circulation associated with the ENSO phenomenon. They maintain these typical circulation patterns via barotropic, but counteract them via baroclinic processes.The hypothesis of an impact of the ENSO phenomenon in the Atlantic/European region can be supported. As the determining factor the intensification (reduction) of the Aleutian low and the simultaneous reduction (intensification) of the Icelandic low during El Niño and during La Niña events respectively, is identified. The changes in the intensity of the Aleutian low during the ENSO-events are accompanied by an alteration of the transport of momentum caused by the short baroclinic waves over the North American continent in such a way that the changes in the intensity of the Icelandic low during El Niño as well as during La Niña events are maintained.With 16 Figures  相似文献   

4.
Sea surface temperature associations with the late Indian summer monsoon   总被引:1,自引:1,他引:0  
Recent gridded and historical data are used in order to assess the relationships between interannual variability of the Indian summer monsoon (ISM) and sea surface temperature (SST) anomaly patterns over the Indian and Pacific oceans. Interannual variability of ISM rainfall and dynamical indices for the traditional summer monsoon season (June–September) are strongly influenced by rainfall and circulation anomalies observed during August and September, or the late Indian summer monsoon (LISM). Anomalous monsoons are linked to well-defined LISM rainfall and large-scale circulation anomalies. The east-west Walker and local Hadley circulations fluctuate during the LISM of anomalous ISM years. LISM circulation is weakened and shifted eastward during weak ISM years. Therefore, we focus on the predictability of the LISM. Strong (weak) (L)ISMs are preceded by significant positive (negative) SST anomalies in the southeastern subtropical Indian Ocean, off Australia, during boreal winter. These SST anomalies are mainly linked to south Indian Ocean dipole events, studied by Besera and Yamagata (2001) and to the El Niño-Southern Oscillation (ENSO) phenomenon. These SST anomalies are highly persistent and affect the northwestward translation of the Mascarene High from austral to boreal summer. The southeastward (northwestward) shift of this subtropical high associated with cold (warm) SST anomalies off Australia causes a weakening (strengthening) of the whole monsoon circulation through a modulation of the local Hadley cell during the LISM. Furthermore, it is suggested that the Mascarene High interacts with the underlying SST anomalies through a positive dynamical feedback mechanism, maintaining its anomalous position during the LISM. Our results also explain why a strong ISM is preceded by a transition in boreal spring from an El Niño to a La Niña state in the Pacific and vice versa. An El Niño event and the associated warm SST anomalies over the southeastern Indian Ocean during boreal winter may play a key role in the development of a strong ISM by strengthening the local Hadley circulation during the LISM. On the other hand, a developing La Niña event in boreal spring and summer may also enhance the east–west Walker circulation and the monsoon as demonstrated in many previous studies.  相似文献   

5.
Since the devastating southern Africa drought of 1991/92 awareness has grown of the potential to better manage climate variability in the region through seasonal climate forecasting and monitoring of El Niño and the Southern Oscillation (ENSO). While other factors besides ENSO affect southern Africa's climate, and climate forecasting for the region is not based exclusively on ENSO, a major El Niño beginning in 1997 captured the attention of policy-makers and the public. Awareness of drought risks associated with the 1997/98 event was greater than during previous El Niños in 1991/92 and 1994/95. Mitigation and planning efforts also began earlier, with drought early warnings widely available and being taken seriously prior to the 1997/98 agricultural season. Actions taken include issuance of guidance to the public, on-going monitoring and preparedness efforts including the development of national preparedness plans in some countries, pre-positioning of food stocks, donor coordination, and greater reliance on the private-sector for meeting regional food needs. Although 1998 regional crop production was slightly below average, a major drought did not materialize. Nonetheless the experience is likely to ultimately strengthen capacity within the region to manage climate variability over the long term.  相似文献   

6.
Summary Two lines of research into climate change and El Niño/Southern Oscillation (ENSO) converge on the conclusion that changes in ENSO statistics occur as a response to global climate (temperature) fluctuations. One approach focuses on the statistics of temperature fluctuations interpreted within the framework of random walks. The second is based on the discovery of correlation between the recurrence frequency of El Niño and temperature change, while developing physical arguments to explain several phenomena associated with changes in El Niño frequency. Consideration of both perspectives leads to greater confidence in, and guidance for, the physical interpretation of the relationship between ENSO and global climate change. Topics considered include global dynamics of ENSO, ENSO triggers, and climate prediction and predictability.Revised November 14, 2002; accepted November 28, 2002 Published online: June 12, 2003  相似文献   

7.
BCC二代气候系统模式的季节预测评估和可预报性分析   总被引:6,自引:3,他引:3  
吴捷  任宏利  张帅  刘颖  刘向文 《大气科学》2017,41(6):1300-1315
本文利用国家气候中心(BCC)第二代季节预测模式系统历史回报数据,从确定性预报和概率预报两个方面系统地评估了该模式对气温、降水和大气环流的季节预报性能,并与BCC一代气候预测模式的结果进行了对比,重点分析了二代模式的季节可预报性问题。结果显示,BCC二代模式对全球气温、降水和环流的预报性能整体上优于一代模式,特别在热带中东太平洋、印度洋和海洋大陆地区的温度和降水的预报效果改进尤为明显。这些热带地区降水预报的改进,可以通过激发太平洋—北美型(PNA)、东亚—太平洋型(EAP)等遥相关波列提升该模式在中高纬地区的季节预报技巧。分析表明,厄尔尼诺和南方涛动(ENSO)信号在热带和热带外地区均是模式季节可预报性的重要来源,BCC二代模式能够较好把握全球大气环流对ENSO信号的响应特征,从而通过对ENSO预报技巧的改进有效地提升了模式整体的预报性能。从概率预报来看,BCC二代模式对我国冬季气温和夏季降水具备一定的预报能力,特别是对我国东部大部分地区冬季气温正异常和负异常事件预报的可靠性和辨析度相对较高。因此,进一步提高模式对热带大尺度异常信号和大气主要模态的预报能力、加强概率预报产品释用对提高季节气候预测水平具有重要意义。  相似文献   

8.
Summary This paper presents the results of the Florida State University atmospheric general circulation model that addresses the impact of sea surface temperature anomalies on an El Niño year. Northern Hemisphere winter season simulation. Specifically, our interest is in the simulation of seasonal winter monsoonal rainfall, the planetary scale divergent motions and the westerly wind anomalies of an El Niño year.The El Niño episode of 1982–1983 was interesting due to its higher than average amplitude and its overall evolution. By late 1982 the anomalous circulations associated with the sea surface temperature forcing had begun to take shape even though the anomalies did not attain their peak amplitude until February 1983. The atmosphere-ocean teleconnections set up a strong pattern of geopotential height anomalies during the Northern Hemisphere winter that coincides with El Niño conditions in the tropical Pacific Ocean.Wallace and Gutzler (1981) defined a Pacific North American (PNA) teleconnection pattern index based on data from within this region. The El Niño episode of 1982–1983 has been shown to be strong via the PNA Index and illustrates an importance for climate models to correctly simulate these teleconnections. The importance of the forced anomalies can be seen in the long-range forecasting of conditions over North America as well as the winter monsoon intensity and location.In this study, we utilize a general circulation model with a resolution of triangular truncation at 42 waves to investigate the effects of prescribed sea surface temperature anomalies. We are able to simulate the majority of the large-scale atmospheric response although on regional climatic scales some phase shifts seem apparent.With 7 Figures  相似文献   

9.
Summary The transition from a cold to a warm state of the E1 Niño-Southern Oscillation (ENSO) cycle is studied using Comprehensive Ocean-Atmosphere Data Sets (COADS) for the period 1950–1992.The onset of El Niño (November to December of the year preceding the El Niño) is characterized by an occurrence of minimum sea-level pressure anomalies in the subtropics around the node line of the Southern Oscillation. This pressure fall favors the formation of the anomalous cyclonic circulations over the western Pacific and leads to the establishment of anomalous westerlies in the western equatorial Pacific during the boreal spring of the El Niño year. The westerly anomalies then intensify and propagate into the central Pacific by the end of the El Niño year. This is an essential feature of the development of a basin-wide warming.It is argued that the development of the equatorial westerly anomalies over the western Pacific may result from the thermodynamic coupling between the atmosphere and ocean. In boreal winter and spring the mean zonal winds change from westerly to casterly over the western equatorial Pacific. A moderate equatorial westerly anomaly initially imposed on such a mean state may create eastward SST gradients via changing rates of evaporational cooling and turbulent mixing. The equatorial SST gradients would, in turn, induce differential heating and zonal pressure gradients which reinforce the westerly anomalies. The feedback between the eastward SST gradients and westerly anomalies promotes the eastward propagation of the westerly anomalies.With 9 Figures  相似文献   

10.
Potential predictability and skill of simulated Eurasian snow cover are explored using a suite of seasonal ensemble hindcasts (i.e. retrospective forecasts), an ensemble climate simulation (spanning the years 1982–1998) and observations. Using remotely sensed observations of snow cover, we find significant point-wise correlation over the North Atlantic and North Pacific between winter and spring averaged sea-surface temperatures and Eurasian snow cover area. The observed correlation shows no discernible pattern related to the El Niño-Southern Oscillation (ENSO). The hindcasts show correlation patterns similar to the observations. However, the climate simulation shows an exaggerated ENSO pattern. The results underscore the importance of initialization in seasonal climate forecasts, and that the observed potential predictability of Eurasian snowcover cannot be solely attributed to ENSO.  相似文献   

11.
Remotely forced variability in the tropical Atlantic Ocean   总被引:1,自引:1,他引:1  
An ensemble of eight hindcasts has been conducted using an ocean-atmosphere general circulation model fully coupled only within the Atlantic basin, with prescribed observational sea surface temperature (SST) for 1950–1998 in the global ocean outside the Atlantic basin. The purpose of these experiments is to understand the influence of the external SST anomalies on the interannual variability in the tropical Atlantic Ocean. Statistical methods, including empirical orthogonal function analysis with maximized signal-to-noise ratio, have been used to extract the remotely forced Atlantic signals from the ensemble of simulations. It is found that the leading external source on the interannual time scales is the El Niño/Southern Oscillation (ENSO) in the Pacific Ocean. The ENSO signal in the tropical Atlantic shows a distinct progression from season to season. During the boreal winter of a maturing El Niño event, the model shows a major warm center in the southern subtropical Atlantic together with warm anomalies in the northern subtropical Atlantic. The southern subtropical SST anomalies is caused by a weakening of the southeast trade winds, which are partly associated with the influence of an atmospheric wave train generated in the western Pacific Ocean and propagating into the Atlantic basin in the Southern Hemisphere during boreal fall. In the boreal spring, the northern tropical Atlantic Ocean is warmed up by a weakening of the northeast trade winds, which is also associated with a wave train generated in the central tropical Pacific during the winter season of an El Niño event. Apart from the atmospheric planetary waves, these SST anomalies are also related to the sea level pressure (SLP) increase in the eastern tropical Atlantic due to the global adjustment to the maturing El Niño in the tropical Pacific. The tropical SLP anomalies are further enhanced in boreal spring, which induce anomalous easterlies on and to the south of the equator and lead to a dynamical oceanic response that causes cold SST anomalies in the eastern and equatorial Atlantic from boreal spring to summer. Most of these SST anomalies persist into the boreal fall season.
B. HuangEmail:
  相似文献   

12.
The focus of this study is to document the possible role of the southern subtropical Indian Ocean in the transitions of the monsoon-ENSO system during recent decades. Composite analyses of sea surface temperature (SST) fields prior to El Niño-Southern Oscillation (ENSO), Indian summer monsoon (ISM), Australian summer monsoon (AUSM), tropical Indian Ocean dipole (TIOD) and Maritime Continent rainfall (MCR) indices reveal the southeast Indian Ocean (SEIO) SSTs during late boreal winter as the unique common SST precursor of these various phenomena after the 1976–1977 regime shift. Weak (strong) ISMs and AUSMs, El Niños (La Niñas) and positive (negative) TIOD events are preceded by significant negative (positive) SST anomalies in the SEIO, off Australia during boreal winter. These SST anomalies are mainly linked to subtropical Indian Ocean dipole events, recently studied by Behera and Yamagata (Geophys Res Lett 28:327–330, 2001). A wavelet analysis of a February–March SEIO SST time series shows significant spectral peaks at 2 and 4–8 years time scales as for ENSO, ISM or AUSM indices. A composite analysis with respect to February–March SEIO SSTs shows that cold (warm) SEIO SST anomalies are highly persistent and affect the westward translation of the Mascarene high from austral to boreal summer, inducing a weakening (strengthening) of the whole ISM circulation through a modulation of the local Hadley cell during late boreal summer. At the same time, these subtropical SST anomalies and the associated SEIO anomalous anticyclone may be a trigger for both the wind-evaporation-SST and wind-thermocline-SST positive feedbacks between Australia and Sumatra during boreal spring and early summer. These positive feedbacks explain the extraordinary persistence of the SEIO anomalous anticyclone from boreal spring to fall. Meanwhile, the SEIO anomalous anticyclone favors persistent southeasterly wind anomalies along the west coast of Sumatra and westerly wind anomalies over the western Pacific, which are well-known key factors for the evolution of positive TIOD and El Niño events, respectively. A correlation analysis supports these results and shows that SEIO SSTs in February–March has higher predictive skill than other well-established ENSO predictors for forecasting Niño3.4 SST at the end of the year. This suggests again that SEIO SST anomalies exert a fundamental influence on the transitions of the whole monsoon-ENSO system during recent decades.  相似文献   

13.
We document the characteristic time scales of variability for seven climate indices whose time-dependent behavior is sensitive to some aspect of the El Niño/Southern Oscillation (ENSO). The ENSO sensitivity arises from the location of these long-term records on the periphery of the Indian and Pacific Oceans. Three of the indices are derived principally from historical sources, three others consist of tree-ring reconstructions (one of summer temperature, and the other two of winter rainfall), and one is an annual record of oxygen isotopic composition for a high-elevation glacier in Peru. Five of the seven indices sample at least portions of the Medieval Warm Period (~ A.D. 950 to 1250).Time series spectral analysis was used to identify the major time scales of variability among the different indices. We focus on two principal time scales: a high frequency band (~ 2–10 yr), which comprises most of the variability found in the modern record of ENSO activity, and a low frequency band to highlight variations on decadal to century time scales (11 <P < 150 yr). This last spectral band contains variability on time scales that are of general interest with respect to possible changes in large-scale air-sea exchanges. A technique called evolutive spectral analysis (ESA) is used to ascertain how stable each spectral peak is in time. Coherence and phase spectra are also calculated among the different indices over each full common period, and following a 91-yr window through time to examine whether the relationships change.In general, spectral power on time scales of ~ 2–6 yr is statistically significant and persists throughout most of the time intervals sampled by the different indices. Assuming that the ENSO phenomenon is the source of much of the variability at these time scales, this indicates that ENSO has been an important part of interannual climatic variations over broad areas of the circum-Pacific region throughout the last millennium. Significant coherence values were found for El Niño and reconstructed Sierra Nevada winter precipitation at ~ 2–4 yr throughout much of their common record (late 1500s to present) and between 6 and 7 yr from the mid-18th to the early 20th century.At decadal time scales each record generally tends to exhibit significant spectral power over different periods at different times. Both the Quelccaya Ice Cap 18O series and the Quinn El Niño event record exhibit significant spectral power over frequencies ~ 35 to 45 yr; however, there is low coherence between these two series at those frequencies over their common record. The Sierra Nevada winter rainfall reconstruction exhibits consistently strong variability at periods of ~ 30–60 yr.  相似文献   

14.
The climate and variability of seasonal ensemble integrations, made with a recent version of ECMWF model (used for ERA-40 production) at relatively high horizontal resolution (TL159), have been studied for the 10-year period, 1980–1989. The model systematic error over the Atlantic-European region has been substantially improved when compared with the earlier model versions (e.g. from the PROVOST and AMIP-2 projects). However, it has worsened over the Pacific-North American region. This systematic error reduces the amplitude of planetary waves and has a negative impact on intraseasonal variability and predictability of the PNA mode. The signal-to-noise analysis yields results similar to earlier model versions: only during relatively strong ENSO events do some parts of the extratropics exhibit potential predictability. For precipitation, there is more disagreement between observed and model climatologies over sea than over land, but interannual variations over many parts of the tropical ocean are reasonably well represented. The south Asian monsoon in the model is severely weakened when compared to observations; this is seen in both poor climatology and interannual variability. Overall, comparing the ERA-40 model with earlier versions, there seems to be a balance between model improvements and deteriorations due to systematic errors. For the seasonal time-scale predictability, it is not clear that this model cycle constitutes an advantage over the earlier versions. Therefore, since it is not always possible to achieve distinct improvements in model climate and variability, a careful and detailed strategy ought to be considered when introducing a new model version for operational seasonal forecasting.  相似文献   

15.
Two ten-members ensemble experiments using a coupled ocean-atmosphere general circulation model are performed to study the dynamical response to a strong westerly wind event (WWE) when the tropical Pacific has initial conditions favourable to the development of a warm event. In the reference ensemble (CREF), no wind perturbation is introduced, whereas a strong westerly wind event anomaly is introduced in boreal winter over the western Pacific in the perturbed ensemble (CWWE). Our results demonstrate that an intense WWE is capable of establishing the conditions under which a strong El Niño event can occur. First, it generates a strong downwelling Kelvin wave that generates a positive sea surface temperature (SST) anomaly in the central-eastern Pacific amplified through a coupled ocean-atmosphere interaction. This anomaly can be as large as 2.5°C 60 days after the WWE. Secondly, this WWE also initiates an eastward displacement of the warm-pool that promotes the occurrence of subsequent WWEs in the following months. These events reinforce the initial warming through the generation of additional Kelvin waves and generate intense surface jets at the eastern edge of the warm-pool that act to further shift warm waters eastward. The use of a ten-members ensemble however reveals substantial differences in the coupled response to a WWE. Whereas four members of CWWE ensemble develop into intense El Niño warming as described above, four others display a moderate warming and two remains in neutral conditions. This diversity between the members appears to be due to the internal atmospheric variability during and following the inserted WWE. In the four moderate warm cases, the warm-pool is initially shifted eastward following the inserted WWE, but the subsequent weak WWE activity (when compared to the strong warming cases) prevents to further shift the warm-pool eastwards. The seasonal strengthening of trade winds in June–July can therefore act to shift warm waters back into the western Pacific, reducing the central-eastern Pacific warming. This strong sensitivity of the coupled response to WWEs may therefore limit the predictability of El Niño events, as the high frequency wind variability over the warm pool region remains largely unpredictable even at short time lead.  相似文献   

16.
ENSO Events Recorded in the Guliya Ice Core   总被引:7,自引:0,他引:7  
Based on the ENSO chronology and climatic information recovered from the Guliya ice core in the Tibetan Plateau, China, the ENSO teleconnection was investigated. The results showed that the negative precipitation anomalies are significantly associated with El Niño years but poorly with negative anomaly of 18O. Thus, the ice core records can be used as an archive of extremely global climate anomalies such as ENSO events.  相似文献   

17.
Summary Observational data are used to explore the relationship between surface air temperature anomaly gradients and Indian summer monsoon rainfall (ISMR). The meridional temperature anomaly gradient across Eurasia during January directed towards equator (pole) is a very good precursor of subsequent excess (deficient) Indian summer monsoon rainfall (ISMR). This gradient directed towards equator (pole) indicates below (above) normal blocking activity over Eurasia, which leads to less (more) than normal southward penetration of dry and cold mid latitude westerlies over the Indian monsoon region, which ultimately strengthens (weakens) the normal monsoon circulation. These findings suggest a mechanism for the weakening of relationship between El Niño and ISMR.Though there is a strong fundamental association between El Niño (warm ENSO) and deficient Indian summer monsoon rainfall (ISMR), this relationship was weak during the period 1921–1940 and the recent decade (1991–1998). During the El Niño years of 1921–1940 and 1901–1998, the meridional temperature anomaly gradient across Eurasia (Eurasian forcing) during January was directed towards equator. On the other hand, during the El Niño years of 1901–1920 and 1941–1990 this gradient was directed towards pole. Thus during 1921–1940 and 1991–1998, the adverse impact of El Niño on Indian monsoon was reduced by the favorable Eurasian forcing resulting in the weak association between El Niño and ISMR. This finding disagrees with the hypothesis of winter warming over the Eurasian continent as the reason for the observed weakening of this relationship during recent decade.  相似文献   

18.
The frequent coincidence of volcanic forcing with El Niño events disables the clear assignment of climate anomalies to either volcanic or El Niño forcing. In order to select the signals, a set of four different perpetual January GCM experiments was performed (control, volcano case, El Niño case and combined volcano/El Niño case) and studied with advanced statistical methods for the Northern Hemisphere winter. The results were compared with observations. The signals for the different forcings are discussed for three variables (temperature, zonal wind and geopotential height) and five levels (surface, 850 hPa, 500 hPa, 200 hPa and 50 hPa). The global El Niño signal can be selected more clearly in the troposphere than in the stratosphere. In contrast, the global volcano signal is strongest in the stratospheric temperature field. The amplitude of the perturbation for the volcano case is largest in the Atlantic region. The observed effect of local cooling due to the volcanic reduction of shortwave radiation over large land areas (like Asia) in subtropical regions, the observed advective warming over Eurasia and the advective cooling over Greenland are well simulated in the model. The radiative cooling near the surface is important for the volcano signal in the subtropics, but it is weak in high latitudes during winter. A statistically significant tropospheric signal of El Niño forcing occurs in the subtropics and in the midlatitudes of the North Pacific. The local anomalies in the El Niño forcing region in the tropics, and the warming over North America in middle and high latitudes are simulated as observed. The combined signal is different from a simple linear combination of the separate signals. It leads to a climate perturbation stronger than for forcing with El Niño or stratospheric aerosol alone and to a somewhat modified pattern.  相似文献   

19.
The NASA/Goddard Institute for Space Studies (GISS) climatemodel is forced with globally observed sea-surfacetemperatures (SST) in five simulations, 1969–1991,with individual runs beginning from altered initialatmospheric conditions. The interannual variability ofmodeled anomalies of the Southern Oscillation Index,mid-tropospheric temperatures, 850 mb zonal winds andOutgoing Longwave Radiation over the tropical PacificOcean, which has the largest SST anomaly forcing, arestrongly correlated with observed trends which reflectENSO cycles. The model's rainfall variability overthree agriculturally intensive regions, two tropicaland one mid-latitude, is investigated in order toevaluate the potential usefulness of GCM predictionsfor agricultural planning. The correct sign ofZimbabwe seasonal precipitation anomalies was hindcastwithin a useful range of consensus only for selectseasons corresponding to extreme ENSO events for whichanomalous circulation patterns were ratherrealistically simulated. The correlation betweenhindcasts of Nordeste monthly precipitation andobservations increases with time smoothing, reaching0.64 for 5-month running means. Consensus betweenindividual runs is directly proportional to theabsolute value of Niño3 SST so that during ElNiño and La Niña years most simulations agreeon the sign of predicted Nordeste rainfall anomalies.We show that during selected seasons the uppertropospheric divergent circulation and near surfacemeridional displacements of the ITCZ are realisticallyrepresented by the ensemble mean of the simulations.This realistic simulation of both the synopticmechanisms and the resulting precipitation changesincreases confidence in the GCM's potential forseasonal climate prediction.  相似文献   

20.
Despite the strong signal of El Niño/Southern Oscillation (ENSO) events on climate in the Indo-Pacific region, models linking ENSO-based climate variability to seasonal rice production and food security in the region have not been well developed or widely used in a policy context. This study successfully measures the connections among sea surface temperature anomalies (SSTAs), rainfall, and rice production in Indonesia during the past three decades. Regression results show particularly strong connections on Java, where 55% of the country's rice is grown. Two-thirds of the interannual variance in rice plantings and 40% of the interannual variance in rice production during the main (wet) season on Java are explained by year-to-year fluctuations in SSTAs measured 4 and 8 months in advance, respectively. These effects are cumulative; during strong El Niño years, production shortfalls in the wet season are not made up later in the crop year. The analysis demonstrates that quantitative predictions of ENSO's effects on rice harvests can provide an additional tool for managing food security in one of the world's most populous and important rice-producing countries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号