首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Two lichenometric techniques were compared in a study of lichen growth–rate in northern Sweden. The first technique, based on the maximum lichen diameter on glacier moraines, was identical to the technique used in the 1970s, whereas the other utilized the lichen diameter measured on 100 randomly selected boulders. The results indicate that it does not matter which technique is chosen, as long as the technique is used consistently on both the calibration surfaces and the surfaces to be dated. The use of data from both the 1970s and the 2000s increased the number of calibration surfaces available. The new calibration curve indicates that the age of Little Ice Age moraines was underestimated by up to about 30 years in the study conducted in the 1970s.  相似文献   

2.
Contemporary variants of the lichenometric dating technique depend upon statistical correlations between surface age and maximum lichen sizes, rather than an understanding of lichen biology. To date three terminal moraines of an Alaskan glacier, we used a new lichenometric technique in which surfaces are dated by comparing lichen population distributions with the predictions of ecological demography models with explicit rules for the biological processes that govern lichen populations: colonization, growth, and survival. These rules were inferred from size–frequency distributions of lichens on calibration surfaces, but could be taken directly from biological studies. Working with two lichen taxa, we used multinomial‐based likelihood functions to compare model predictions with measured lichen populations, using only the thalli in the largest 25% of the size distribution. Joint likelihoods that combine the results of both species estimated moraine ages of ad 1938, 1917, and 1816. Ages predicted by Rhizocarpon alone were older than those of P. pubescens. Predicted ages are geologically plausible, and reveal glacier terminus retreat after a Little Ice Age maximum advance around ad 1816, with accelerated retreat starting in the early to mid twentieth century. Importantly, our technique permits calculation of prediction and model uncertainty. We attribute large confidence intervals for some dates to the use of the biologically variable Rhizocarpon subgenus, small sample sizes, and high inferred lichen mortality. We also suggest the need for improvement in demographic models. A primary advantage of our technique is that a process‐based approach to lichenometry will allow direct incorporation of ongoing advances in lichen biology.  相似文献   

3.
In Alaska, lichenometry continues to be an important technique for dating late Holocene moraines. Research completed during the 1970s through the early 1990s developed lichen dating curves for five regions in the Arctic and subarctic mountain ranges beyond altitudinal and latitudinal treelines. Although these dating curves are still in use across Alaska, little progress has been made in the past decade in updating or extending them or in developing new curves. Comparison of results from recent moraine-dating studies based on these five lichen dating curves with tree-ring based glacier histories from southern Alaska shows generally good agreement, albeit with greater scatter in the lichen-based ages. Cosmogenic surface-exposure dating of Holocene moraines has the potential to test some of the assumptions of the lichenometric technique and to facilitate the development of a new set of improved lichen dating curves for Alaska.  相似文献   

4.
Moraine ridges are commonly used to identify past glacier ice margins and so infer glacier mass balance changes in response to climatic variability. However, differences in the form of past ice margins and post-depositional modification of moraine surfaces can complicate these geomorphic records. As a result, simple relationships, such as distance from current ice margin, or linear alignments, may not necessarily indicate moraines deposited contemporaneously. These disturbances can also modify the size distribution of lichen populations, providing a distinctive signature for surfaces with similar histories and a means of identifying contemporaneous moraine surfaces. In this paper, statistical analysis of lichen size distributions is used to identify moraine surfaces with similar histories from complex suites of Little Ice Age moraine fragments in the proglacial areas of Skálafellsjökull (including Sultartungnajökull) and Heinabergsjökull, southeast Iceland. The analysis is based on a novel use of the goodness-of-fit statistic, Watson's U2 which provides a measure of 'closeness' between two sample distributions. Moraine fragments with similar histories are identified using cluster analysis of the U2 closeness values. The spatial pattern of the clustered moraines suggests three distinct phases of moraine deposition at Skálafellsjökull and Heinabergsjökull, four phases at Sultartungnajökull and a digitate planform margin at Heinabergsjökull. These spatial patterns are corroborated with tephrochronology. The success of the U2 statistical analysis in identifying surfaces with similar histories using lichen size distributions suggests that the technique may be useful in augmenting lichenometric surface dating as well as differentiating between other surfaces that support lichen populations, such as rock avalanche deposits.  相似文献   

5.
The recently observed recession of glaciers on King George Island is associated with decades of climate warming in the Antarctic Peninsula region. However, with only 60 years of glaciological observations in the study area ages of the oldest moraines are still uncertain. The goal of the study was to estimate ages of lichen colonization on the oldest moraines of the Ecology and White Eagle Glaciers on King George Island and on the Principal Cone of Penguin Island volcano. The first lichenometric studies on these islands from the late 1970s used rates that had about four to five times slower Rhizocarpon growth rates. We re‐examined the sites and measured 996 thalli diameters to establish the surface ages. To estimate the age we used (1) long‐term Rhizocarpon lichen group growth rates established by authors using data from a previous lichenometric study on King George Island, and (2) previous data of lichen growth rates from other sub‐Antarctic islands. Our results suggest growth rates between 0.5 and 0.8 mm yr–1. According to these rates the ages of the oldest moraine ridges are of the Little Ice Age and were colonized at the beginning of the twentieth century. The mid‐twentieth century age of lichen colonization on the historically active Penguin Island volcano might support the date of the last eruption reported by whalers in the end of the nineteenth and the beginning of the twentieth century.  相似文献   

6.
Abstract The age of recent deposits can be determined using an intrinsic characteristic of the lichen ‘population’ growing on their surface. This paper presents a calibrated dating curve based on the gradient of the size‐frequency distribution of yellow‐green Rhizocarpon lichens. The dating potential of this new curve is tested on surfaces of known age in southeast Iceland. This particular size—frequency technique is also compared with the more traditional largest‐lichen approach. The results are very encouraging and suggest that the gradient can be used as an age indicator, at least on deposits formed within the last c. 150 years – and probably within the last c. 400 years – in the maritime subpolar climate of southeast Iceland. Using both lichenometric techniques, revised dates for moraines on two glacier forelands are presented which shed new light on the exact timing of the Little Ice Age glacier maximum in Iceland.  相似文献   

7.
The endolithic lichen Lecidea auriculata is known to enhance rock surface weathering on the Little Ice Age moraines of the glacier Storbreen in Jotunheimen, central southern Norway. This study demonstrates the reduction in Schmidt hammer Rvalues that followed the rapid colonization by this lichen of pyroxene‐granulite boulders on terrain deglaciated over the last 88 years. In the absence of this lichen, the characteristic mean R‐value of boulder surfaces is 61.0 ± 0.3; where this lichen is present, R‐values are lower by at least 20 units on surfaces exposed for 30–40 years. A similar reduction in rock hardness on rock surfaces without a lichen cover requires about 10 ka. The rapid initial weakening of the rock surfaces is indicative of rates of biological weathering by endolithic lichens that may be two orders of magnitude (200–300 times) faster than rates of physico‐chemical weathering alone. If not avoided, the effects of this type of lichen are likely to negate the effectiveness of the Schmidt hammer and other methods for exposure‐age dating, including cosmogenic‐nuclide dating, in severe alpine and polar periglacial environments. The results also suggest a new method for dating rock surfaces exposed for <50 years.  相似文献   

8.
This paper presents new lichenometric population data from the Antarctic Peninsula (67°S), and describes a new approach to lichen growth-rate calibration in locations where dated surfaces are extremely rare. We use historical aerial photography and field surveys to identify sites of former perennial snowpatches where lichen populations now exist. As an independent check on lichen mortality by snowkill, and the timing of snow patch disappearance, we use a positive-degree day (PDD) approach based on monthly climate data from Rothera Research Station. We find that maximum growth rates for lichens <40 mm in diameter on Adelaide Island are around 0.8 mm/yr. Furthermore, we propose that our combined methodology may be more widely applicable to the Polar Regions where the construction of lichenometric dating (age-size) curves remains a problem.  相似文献   

9.
A New Lichenometric Dating Curve For Southeast Iceland.   总被引:2,自引:0,他引:2  
This paper presents a new lichenometric dating curve for southeast Iceland. The temporal framework for the curve is based on reliably dated surfaces covering the last 270 years, making it the best constrained study of this nature conducted in Iceland. The growth of lichen species within Rhizocarpon Section Rhizocarpon is non-linear over time, with larger (older) thalli apparently growing more slowly. The linear 'growth' curves derived previously by former authors working in Iceland represent only part of a curve which has an overall exponential form. Reasons for the non-linearity of the new dating curve are probably physiological, although climatic change over the last three centuries cannot be ruled out. Use of linear 'growth' curves in Iceland is problematic over time-spans of more than c . 80 years. Pre-20th century moraines dated using a constant, linear relationship between lichen size and age are probably older than previously believed. Those moraines lichenometrically 'dated' to the second half of the 19th century in Iceland may actually pre-date this time by several decades (30–100 years), thus throwing doubt on the exact timing of maximum glaciation during the 'Little Ice Age'.  相似文献   

10.
One of the major goals of geomorphology is to understand the rate of landscape evolution and the constraints that erosion sets on the longevity of land surfaces. The latter has also turned out to be vital in modern applications of cosmogenic exposure dating and interpretation of lichenometric data from unconsolidated landforms. Because the effects of landform degradation have not been well documented, disagreements exist among researchers regarding the importance of degradation processes in the dating techniques applied to exposures. Here, we show that all existing qualitative data and quantitative markers of landform degradation collectively suggest considerable lowering of the surface of unconsolidated landforms over the typical life span of Quaternary moraines or fault scarps. Degradation is ubiquitous and considerable even on short time scales of hundreds of years on steeply sloping landforms. These conservative analyses are based entirely on field observations of decreasing slope angles of landforms over the typical range of ages in western North America and widely accepted modeling of landscape degradation. We found that the maximum depth of erosion on fault scarps and moraines is on average 34% of the initial height of the scarp and 25% of the final height of the moraine. Although our observations are limited to fault scarps and moraines, the results apply to any sloping unconsolidated landform in the western North America. These results invalidate the prevailing assumption of no or little surface lowering on sloping unconsolidated landforms over the Quaternary Period and affirm that accurate interpretations of lichen ages and cosmogenically dated boulder ages require keen understanding of the ever-present erosion. In our view, the most important results are twofold: 1) to show with a large data set that degradation affects universally all sloping unconsolidated landforms, and 2) to unambiguously show that even conservative estimates of the total lowering of the surface operate at time and depth scales that significantly interfere with cosmogenic exposure and lichen dating.  相似文献   

11.
Glaciers in small mountain cirques on South Georgia respond rapidly and sensitively to changes in South Atlantic climate. The timing and rate of their deglaciation can be used to examine the impact that nineteenth- and twentieth-century climate change has had on the glacial dynamics and terrestrial ecosystems of South Georgia. As part of a reconnaissance study in Prince Olav Harbour (POH), South Georgia, we measured the size of lichens ( Rhizocarpon Ram. em Th. Fr. subgenus. Rhizocarpon group) on ice-free moraine ridges around two small mountain cirques. Our aims were twofold: first, to provide age estimates for lichen colonization, and hence, deglaciation of the moraine ridges, and second, to examine the potential of applying lichenometry more widely to provide deglacial age constraints on South Georgia. In the absence of lichen age-size (dating) curves for South Georgia, we use long-term Rhizocarpon lichen growth-rates from recent studies on sub-Antarctic Islands and the western Antarctic Peninsula to calculate likely age estimates. These data suggest ice retreat from the two outermost moraines occurred between the end of the 'Little Ice Age' (post c. 1870) and the early twentieth century on South Georgia. Lichen colonization of the innermost moraines is probably related to glacier retreat during the second half of the twentieth century, which has been linked to a well-defined warming trend since c. 1950. Patterns of possible nineteenth- and twentieth-century glacial retreat identified in POH need to be tested further by establishing species- and site-specific lichen age-size (dating) curves for South Georgia, and by applying lichenometry to other mountain cirques across South Georgia.  相似文献   

12.
A lichenometric investigation of the 14 major Neoglacial end moraine sequences formed by the Okstindan Glaciers revealed the presence of a similar ‘Little Ice Age’ sequence, while in four instances, older Neoglacial end moraines occurred outside the former sequence. Using lichenometric and historical data from Okstindan and other Scandinavian glacierized regions, the formation of the ‘Little Ice Age’ and moraines was assigned to the period between A.D. 1920 and an undefined part of the 18th century. The older end moraines could not be lichenometrically dated, though it was evident that they were considerably older than the others. Comparisons of lichenometric data collected using different sampling and lichen measuring methods showed that significantly different results were obtained.  相似文献   

13.
Botanists make yearly measurements of lichen sizes that describe highly variable radial expansion of young, and old, Rhizocarpon subgenus Rhizocarpon that is a function of thallus size and age. Such non‐uniform growth would negate use of lichens to date geomorphic events, such as landslides and moraines, of the past 1000 years. Fortunately, many crustose lichens tend toward circular shapes, which can be achieved only when overall uniform radial growth prevails. Largest lichen measurements on rockfall blocks that accumulate incrementally as hillslope talus in earthquake‐prone California plot as distinct peaks in frequency distributions. Rockfall surface‐exposure times are known to the day for historical earthquakes and to the year where mass movements damage trees. Lichenometry consistently dates regionally synchronous rockfall events with an accuracy and precision of ±5 years. Only historical records and tree‐ring dating of earthquakes are better. The four crustose lichens used here have constant long‐term growth rates, ranging from 9.5 to 23.1 mm per century. Growth rates do not vary with altitude or climate in a 900 km long mountainous study region in California, USA. Linear growth regressions, when projected to the present, constrain estimates of colonization time and possible styles of initial lichen growth.  相似文献   

14.
Relict marginal moraines are commonly used landforms in palaeoglaciological reconstructions. In the Swedish mountains, a large number of relict marginal moraines of variable morphology and origin occur. In this study, we have mapped 234 relict marginal moraines distributed all along the Swedish mountains and classified them into four morphological classes: cirque‐and‐valley moraines, valley‐side moraines, complex moraines and cross‐valley moraines. Of these, 46 moraines have been reclassified or are here mapped for the first time. A vast majority of the relict moraines are shown to have formed during deglaciation of an ice‐sheet, rather than by local mountain glaciers as suggested in earlier studies. The relict marginal moraines generally indicate that deglaciation throughout the mountains was characterised by a retreating ice‐sheet, successively damming glacial lakes, and downwasting around mountains. The general lack of moraines indicating valley and cirque glaciers during deglaciation suggests that climatic conditions were unfavourable for local glaciation during the last phase of the Weichselian. This interpretation contrasts with some earlier studies that have reconstructed the formation of local glaciers in the higher parts of the Swedish mountains during deglaciation.  相似文献   

15.
南极石生地衣主要生物风化作用研究进展与展望   总被引:1,自引:0,他引:1       下载免费PDF全文
陈杰  檀满枝 《极地研究》2003,14(1):65-72
地衣以物理、化学方式参与矿质基质的风化作用 ,诱导和加速岩石的风化过程。本文对南极地区表生和内生型地衣的生物风化作用进行了综合论述 ,详细阐述了不同地衣种类诱导和参与几种主要岩石类型 (砂岩类和火成岩类 )风化作用的模式、机制、过程以及产物。同时指出 ,地衣等其他生物因素间接参与的风化过程 ,地衣导致的岩石抗风化效应以及生物风化速率等方面的研究工作是目前南极生物风化作用研究方面的新领域。  相似文献   

16.
The reliability of lichenometric dating is dependent on a good understanding of lichen growth rates. The growth rate of lichens can be determined from direct measurement of growing lichens or indirect methods by measuring lichens growing on surfaces of known age, although there are limitations to both approaches. Radiocarbon (14C) analysis has previously been used in only a handful of studies to determine lichen growth rates of two species from a small area of North America. These studies have produced mixed results; a small amount of carbon turnover appears to occur in one of the species ( Caloplaca spp.) previously investigated introducing uncertainty in the growth rate, while much higher carbon cycling occurred in another ( Rhizocarpon geographicum ), making the 14C approach unsuitable for estimating growth rates in the species most commonly used in lichenometric dating. We investigated the use of bomb-14C analysis to determine the growth rate of a different crustose species ( Pertusaria pseudocorallina ) common to Northern Europe. 14C-based growth rates were considerably higher than growth rates of morphologically similar species based on direct measurement made at locations nearby and elsewhere in the UK. This observation strongly suggests that a degree of carbon turnover probably occurs in Pertusaria pseudocorallina , and that bomb-14C analysis alone cannot be used to determine lichen age or absolute growth rates in this lichen species.  相似文献   

17.
Variation in lichen growth rates poses a significant challenge for the application of direct lichenometry, i.e. the construction of lichen dating curves from direct measurement of growth rates. To examine the magnitude and possible causes of within‐site growth variation, radial growth rates (RaGRs) of thalli of the fast‐growing foliose lichen Melanelia fuliginosa ssp. fuliginosa (Fr. ex Duby) Essl. and the slow‐growing crustose lichen Rhizocarpon geographicum (L.) DC. were studied on two S‐facing slate rock surfaces in north Wales, UK using digital photography and an image analysis system (Image‐J). RaGRs of M. fuliginosa ssp. fuliginosa varied from 0.44 to 2.63 mm yr–1 and R. geographicum from 0.10 to 1.50 mm yr–1.5. Analysis of variance suggested no significant variation in RaGRs with vertical or horizontal location on the rock, thallus diameter, aspect, slope, light intensity, rock porosity, rock surface texture, distance to nearest lichen neighbour or distance to vegetation on the rock surface. The frequency distribution of RaGR did not deviate from a normal distribution. It was concluded that despite considerable growth rate variation in both species studied, growth curves could be constructed with sufficient precision to be useful for direct lichenometry.  相似文献   

18.
Trimmed lichen communities (lichen limits) are abrupt changes from a lichen community to a scoured bare rock surface and have been used to determine bankfull channel capacity on bedrock channels and their response to the combined disturbances of flow regulation and climate change. They can also be used to set flushing flows in bedrock channels. In sandstone gorges of the Nepean River, Australia, the crustose lichen, Lecidea terrena Nyl, was common at both gorge and cemetery (sandstone headstones) sites, enabling construction of growth curves for above and below dam areas. Growth curves were used to date lichen colonisation of sandstone surfaces in rivers. The oldest, highest lichen limit at all sites represented the pre‐flow regulation lichen community because its characteristics above and below Nepean Dam were similar and were trimmed to a level that produced consistent discharges across a range of catchment areas. They corresponded to return periods of less than 2 years on the annual maximum series and was developed during the flood‐dominated regime (FDR) of 1857–1900. Lichen limits form by the phycobiont dominating the mycobiont and hence degrading lichen thalli due to water inundation causing weak or dead thalli to be scrubbed from the rock surface. Trimming to the unregulated lichen limit represents a small flood of frequent occurrence appropriate for flushing bedrock channels. A lower lichen limit was only found below a diversion weir and was formed by frequent dam spills between 1950 and 1952 during an extraordinary wet period at the start of the FDR between 1949 and 1990. Lichens colonised exposed sandstone between the level of frequent flows from 1949 to 1952, and the high lichen limit. On the Avon River, an additional lower limit reflected a massive downward shift in flow duration following the start of interbasin diversions to Wollongong in 1962.  相似文献   

19.
《Geomorphology》1995,14(2):149-156
We have used cosmogenic 36Cl surface exposure dating to determine apparent construction ages of late Pleistocene moraines in the Sierra Nevada, the White Mountains, and the Wind River Range, all in the western United States. The inferred glacial chronologies from the various localities all exhibit certain characteristics: (1) Local records are fragmentary and deposits of some glacial advances are always missing; no location has deposits of all glaciations and no glacial advance is recorded at all locations. This is due either to unfavorable conditions for glacier development at some times or to obliteration of earlier deposits by later, more extensive glaciers. (2) Most moraines have young apparent exposure ages, with only a few older than the last glacial cycle. This may be due to young true ages of these deposits, erosion of moraine surfaces, or obliterative overlap and covering of older deposits by younger ones. (3) Many deposits that were previously correlated (e.g., based on their stratigraphic positions) are not correlative; they may represent different stades and, sometimes, even different glaciations. Similarly, some previously uncorrelated deposits have the same exposure ages and may be correlative. (4) Clusters of several distinct moraines of nearly the same age are present at most locations. These clusters suggest that alpine moraines are formed during short deposition episodes that last between several hundred and several thousand years.  相似文献   

20.
This article examines how snow plays a role in current erosive processes in a high mountain area (1800—2400 m a.s.l.) known as Peñalara, located in Spain's Central Range (40°50' N; 3°58' W). The hypothesis maintains that snow becomes an important erosive factor when it accumulates over sedimentary or weathered materials, therefore geomorphological heritage is a key factor in nival erosion. To test this hypothesis, the authors identified the landforms in the study area and determined their relative ages by weathering and lichenometry ( Rizocarpon geographicum ag. ), differentiating between preglacial, glacial (Recent Pleistocene) and postglacial (Holocene) forms. The information was used to plot a reticulate pattern of observation sites for the study area. Snow depth and the movement of selected blocks at each site were recorded from October 1991 to June 1995. The relationship between late-lying snowpatches, geomorphological heritage and current erosive processes was determined. Between 1800 and 2000 m a.s.l., there is an indirect relationship between snowpatches and predominant processes (stream incision and gelifluction) on terminal moraines. Between 2000 and 2200 m, direct action is present where there are late-laying snowpatches on lateral moraines and some glacial steps. Between 2200 and 2400 m, gelifraction and gravity processes are also in direct relation to snowpatches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号