首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The studied area is a shallow water area that belongs to the East China Sea continent shelf. The distribution of zooplankton biomass is higher inshore than offshore. The maximum abundance is in the inshore edge of the centre of upwelling, which is the superposed area of the salinity front and temperature front, due to the fact that the mixture of three different waters has brought about a concentration of nutrients. The herbivorous Euphausia, Copepoda and Tunicata are the major groups of the abundant area. Tunicata possess the possibility to compete against other kinds of herbivorous zooplankton. This means that there is negative correlation between the distribution of Tunicata and that of Copepoda and Euphausia. The positions of maximum areas of zooplankton biomass, phytoplankton individual and the concentration of phosphates and chlorophyll-a overlap one another. In the centre of upwelling, zooplankton can not adapt itself to the environment of lower temperature and less oxygen even with rich nutrient  相似文献   

2.
Mesozooplankton biomass, species composition, abundance, and vertical distribution were determined along a transect from the continental slope off the west coast of Canada to Ocean Station Papa (OSP) in the open-ocean waters of the NE subarctic Pacific as part of the Canadian Joint Global Ocean Flux Study of this area. All of these measurements had distinct seasonal patterns. At OSP biomass peaked in spring, coincident with the annual biomass maximum of large copepods of the genus Neocalanus. Early copepodites of these copepods were present in surface waters at all stations along the transect in winter, but N. plumchrus and N. flemingeri copepodites were only at the offshore stations in spring. This indicated that these large copepods had completed the growth phase of their life cycle slower in the open ocean than closer to shore where they had already descended to deep water by May or June. Summer biomass was low compared to the spring peak. The summer mesozooplankton abundance was similar to the springtime abundance, but the composition had changed from large-bodied copepods in the spring to small copepods and fewer non-copepod taxa in the summer, which accounts for the reduction in total biomass. Winter biomass was the lowest of the year. Winter species composition was similar to summer except for the appearance of juvenile stages of the genera Neocalanus and Calanus. Diel changes in biomass in the upper 150 m were found in summer but not in winter or spring. Vertical distributions of copepods were often distinct, with closely related species occupying different depth strata. Measurements of wet weight at OSP were higher than the long-term mean wet weight during winter and spring, and lower during summer.  相似文献   

3.
A continuous survey examined short-term variations in the zooplankton community and physical ocean environment from the northeastern Izu Islands to Boso Peninsula in Japan. High copepod abundance and small upwellings in the surface layer and salinity minimum layer in the subsurface were observed on the north side of coastal fronts in the westernmost transect, moving southward as the Kuroshio Current left the Boso Peninsula. Thus, the salinity minimum layer might be a key factor forming upwelling and the fronts, leading to large abundance of coastal copepods off the northeastern Izu Islands. A community structure analysis of calanoid copepods revealed an intermediate belt assemblage between coastal and offshore (Kuroshio) assemblages. Copepod abundance was remarkably low and Ctenocalanus vanus dominated (nearly 37%) in the intermediate belt zone, indicating that C. vanus has a relatively high tolerance to adverse environments for calanoid copepods. As the Kuroshio Current left the Boso Peninsula, the coastal assemblage expanded in the same direction, and the intermediate belt assemblage off the northeastern Izu Islands disappeared. The largest population of Calanus sinicus was found along the two western transects off the northeastern Izu Islands (>1000 m depth), which was assumed to be transported from Sagami Bay and advanced southwestward while growing from copepodite stages CIII to CV. Larvae of C. sinicus would be an important food for fish larvae in addition to Paracalanus parvus s.l., the numerically dominant species in the coastal assemblage, and C. vanus under the adverse conditions for coastal copepods.  相似文献   

4.
Transitions between the three typical paths of the Kuroshio south of Japan (the nearshore and offshore non-large-meander paths and the large-meander path) are described using sea level data at Miyake-jima and HachijÔ-jima in the Izu Islands and temperature data at a depth of 200 m observed from 1964 to 1975 and in 1980.In transitions between the nearshore and offshore non-large-meander paths the variation of the Kuroshio path occurs first in the region off Enshû-nada between the Kii Peninsula and the Izu Ridge and subsequently over the ridge. In the nearshore to offshore transition the offshore displacement of the path occurs first off Enshû-nada and then develops southeastwardly in the direction of HachijÔ-jima. In the reverse transition shoreward displacement occurs first off Enshû-nada and then throughout the region west and east of the Izu Ridge. The position of the Kuroshio south of Cape Shiono-misaki (the southernmost tip of the Kii Peninsula) is almost fixed near the coast throughout these transition periods, and significant variations of the Kuroshio path only occur east of the cape. The nearshore to offshore and offshore to nearshore transitions can be estimated to take about 25 and 35 days, respectively, during which the variation of the Kuroshio path over the Izu Ridge occurs for the last 11 and 25 days.The transitions between the non-large-meander and large-meander paths show that the large-meander path is mostly formed from the nearshore non-large-meander path and always changes to the offshore non-large-meander path.  相似文献   

5.
I have been concerned with oceanographic observations made since 1948 by the oceanographic group of the Japan Meteorological Agency. My primary interest has been to describe physical aspects of the Kuroshio current system and its adjacent regions. Much efforts have been devoted to observing current and water characteristics of the Kuroshio south of Japan and the Kuroshio extension east of Japan and to describing various kinds of fluctuations ranging from diurnal to seasonal or year-to-year variations. I have also attempted to study the equatorial current system particularly in the western Pacific and those characteristic water-types in the central region of the North Pacific.  相似文献   

6.
We collected mesozooplankton samples in the upper 100 m in spring or early summer each year between 1995 and 2000 along a section from Hamilton Bank (Labrador) to Cape Desolation (Greenland), and along additional sections in spring 1997 and early summer 1995. The North Atlantic waters of the central basin were characterised by the presence of the copepods Calanus finmarchicus, Euchaeta norvegica and Scolecithrocella minor and euphausiids. Calanus glacialis, Calanus hyperboreus and Pseudocalanus spp. were associated with the Arctic waters over the shelves. Amongst the other enumerated groups larvaceans were concentrated over the shelves and around the margins. Amphipods, pteropods and the copepods Oithona spp. and Oncaea spp. showed no definable relationships with water masses or bathymetry, while the diel migrant ostracods and chaetognaths were confined to deep water. Metrida longa, also a strong diel migrant, and Microcalanus spp., a mainly deep water species and possible diel migrant, were both sometimes quite abundant on the shelves as well as in the central basin, consistent with their likely Arctic origins.Analysis of community structure along the section across the Labrador Sea indicated that stations could be grouped into five different zones corresponding to: the Labrador Shelf; the Labrador Slope; the western and central Labrador Sea; the eastern Labrador Sea and Greenland Slope; and, the Greenland Shelf. The boundaries between zones varied spatially between years, but community composition was relatively consistent within a given zone and a given season (spring versus early summer). The relationship between community composition and water masses was not entirely straightforward. For example, Labrador Shelf water was generally confined to the shelf, but in spring 2000 when it also dominated the adjacent slope zone, the community in the Labrador Slope zone was similar to those found in other years. Conversely, in spring 1997, when Arctic organisms were unusually abundant in the Labrador Slope zone, there was no increased contribution of shelf water. In addition, North Atlantic organisms were often found on the shelves when no slope or central basin water was present.Although other organisms were sometimes very abundant, the mesozooplankton preserved dry weight biomass was dominated everywhere by the three species of Calanus, which together always accounted for ≥70%. One species, C. finmarchicus, comprised >60% of the total mesozooplankton biomass and >80% of the abundance of large copepods in spring and summer throughout the central Labrador Sea. In western and central regions of the central basin average C. finmarchicus biomass was ca 4 g dry weight m−2 and average abundance, ca 17?000 m−2 over both seasons. Highest levels (ca 7 g dry weight m−2, >100?000 m−2) occurred in the northern Labrador Sea in spring and in eastern and southwest regions in early summer. C. hyperboreus contributed ca 20% of the total mesozooplankton biomass in the central basin in spring and <5% in early summer, while C. glacialis accounted for <1%. Over the shelves, C. hyperboreus contributed a maximum of 54% and 3.6 g dry weight m−2, and C. glacialis, a maximum of 29% and 1 g dry weight m−2, to the total mesozooplankton biomass.  相似文献   

7.
We compared wintertime depth distributions of the mesozooplankton community and dominant copepods between the subtropical (S1) and subarctic (K2) Pacific Oceans to evaluate the relative importance of actively transported carbon by vertical migrants to sinking particulate organic carbon flux. Primary production was higher and the ratio of sinking particulate organic carbon flux to primary production was lower at S1 compared with those at K2. The mesozooplankton community was lower in abundance and biomass at S1 compared to K2. Copepods were the dominant group among both mesozooplankton abundance and biomass throughout the water column down to 1000 m at both sites. The depth distribution showed that diel vertical migration was obvious for the mesozooplankton abundance and biomass at S1 but was not apparent for the abundance at K2, because the dominant component was diurnally migrating species at S1 and overwintering species residing at mesopelagic depths at K2. The major components of diel migrants were copepods and euphausiids at S1 and only euphausiids at K2. Respiratory flux by the diurnally migrating mesozooplankton was estimated to be 2 mgC m−2 day−1 at S1 and 7 mgC m−2 day−1 at K2. The respiratory flux was equivalent to 131% of sedimentary fecal pellet flux at S1 and 136% of that at K2. Because pathways of downward carbon flux are facilitated by the mesozooplankton community, the actively transported carbon (respiration of dissolved inorganic carbon, excretion of dissolved organic carbon and egestion of fecal pellets at depth) might be larger during winter than the flux of sinking fecal pellets.  相似文献   

8.
The planktonic food web structure in the subarctic coastal water off Usujiri south-western Hokkaido, Japan was investigated from June 1997 to June 1999, based on seasonal biomass data of pico- (<2 µm), nano- (2–10 µm), micro- (10–200 µm) and mesoplankton (>200 µm), and path analysis using the structural equation model (SEM). In spring, microphytoplankton predominated due to diatom bloom, while pico- and nanophytoplankton predominated in the other seasons, except November and December 1997. The seasonal change in size distribution of heterotrophic plankton was almost similar to that of phytoplankton, and mesozooplankton biomass was high in spring. The path analyses suggest that the main channel in the microbial food web could vary according to phytoplankton size composition, indicating not only the classical food chain (microphytoplankton - copepods) but also the indirect route (microphytoplankton - naked dinoflagellates - copepods).  相似文献   

9.
The samples of Tunicata were collected from 41 stations in Kuroshio region. southeast of Japan(28°24′--36°30′N,129°--145°E), with a macroplankton net (15 meshes per cm, with a length of270 cm and an opening diameter of 80 cm) towed vertically from a depth of 200 m to the surface dur-ing the second cruise of China--Japan Joint Research of Kuroshio in October and November, 1986.Altogether 36 species were distinguished and counted. They are:  相似文献   

10.
To determine recent interannual variations in the planktonic ecosystem of the slope water south of Japan, an area between 1000 m isobath on the continental slope and assumable Kuroshio front, in reference to preceding reports on the Kuroshio, we examined interannual variations of physical factors, sea surface chlorophyll concentration (SSChl), size-fractioned copepod biomass and the abundance of Calanus sinicus, one of the dominant copepods in the region, in February from 1990 to 2002. In the slope water, SSChl concentration had generally shown a higher value than in the Kuroshio and increase of the SSChl in both areas started in February but lasted longer in the slope water. The regional distribution of copepod biomass and C. sinicus abundance was similar to that of phytoplankton in that they were distributed more densely in the slope water than in the Kuroshio, reflecting assumed higher nutrient supply. The interannual variation in sea surface temperature in the slope water was explained by the rise of air temperature in 1998, a strong El Niño year, and subsequent change in the Kuroshio path (1999–2001). The interannual variation of the planktonic community, i.e. sea surface chlorophyll concentration and copepod biomass, was attributed to the effects of those physical events through the direct effect of local temperature and/or variation in surface irradiance, except for a prominent increase of copepods in the slope water in 2000. The effect of interannual change in the vertical mixing, suggested in previous studies, was not apparent in February, when the primary production is not limited by nutrient concentration which would be more important in regulating biological production in later months.  相似文献   

11.
In the present study we examine factors that affect the downward flux of biogenic carbon in the NE subarctic Pacific, one of the important high-nutrient-low-chlorophyll (HNLC) regions in the open ocean. We focus on the role of mesozooplankton, since their seasonal peaks in biomass and growth are in phase with the seasonal variations in the downward POC fluxes, whereas phytoplankton biomass is more-or-less uniform year-round. The relative importance of mesozooplankton and algal sinking was examined using the pigment composition of material accumulated in short-term free-drifting sediment traps positioned just below the upper stratified surface layer (ca. 100–200 m). This was compared with the phytoplankton composition in the surface waters, and with the grazing activity (gut pigments and fecal pellet production rates) of the most abundant large copepods. We also examined whether the relationships between the downward flux of carbon and pelagic processes were similar in the coastal, continental margin and offshore HNLC regions of the NE subarctic Pacific, the latter represented by Ocean Station Papa (OSP).Our results show that grazing had a variable impact on the downward flux of biogenic carbon. Carbon-transformed pheopigments (particularly pyropheophorbide a, frequently associated with copepod grazing) represented up to 13% of the total downward POC flux inshore (in May 1996) and 8–9% at OSP in May and February 1996, respectively. This flux of pheopigments was accompanied by a large potential input of fecal pellets from large copepods (as estimated from defecation rates of freshly collected animals) only in May 1996 at OSP, suggesting that pheopigments came from other sources (other herbivores, senescing algae) in February. The larger flux of pheopigments in May was probably related to the abundance of mesozooplankton at that time of the year. During summer (August 1996), both the flux of pheopigments and the potential input of fecal pellets from large copepods were negligible at OSP, consistent with more intense pelagic recycling reported in other studies. Inshore, the flux of carbon-transformed pheopigments was slightly higher than at OSP, and its contribution to the downward POC flux in May 1996 was twice that in August 1996. In contrast, the potential input of feces carbon was higher in August than in May 1996, again suggesting other sources for pheopigments found in the traps. The contribution of sinking phytoplankton to the downward biogenic flux was negligible in summer, when prymnesiophytes (indicated by the presence of 19′-hexanoyloxyfucoxanthin) and pelagophytes (19′-butanoyloxyfucoxanthin-containing) dominated in surface offshore waters. The contribution of sinking algae was maximal (9%) in winter (February 1996) at OSP, when fucoxanthin (mainly a diatom marker) dominated the carotenoid composition in the traps and when the abundance of diatoms in surface waters showed its seasonal maximum for this station. Inshore, the low contribution of diatoms (fucoxanthin) to the sinking fluxes may have resulted from inadequate sampling (i.e. the spring bloom may have been missed).Overall, we conclude that: (a) large copepods significantly influenced the downward POC flux only during spring at OSP; (b) unidentified herbivores (e.g. salps, pteropods) producing pigmented, fast-sinking fecal material likely had an important impact during winter; (c) algal sinking made a small contribution to the downward POC flux (maximum in winter); and (d) neither algal sinking nor mesozooplankton grazing had a significant influence on the downward flux of biogenic material in summer at OSP.  相似文献   

12.
Zooplankton biomass and distribution in the KwaZulu-Natal Bight were investigated in relation to environmental parameters during summer (January–February 2010) and winter (July–August 2010). Mean zooplankton biomass was significantly higher in winter (17.1 mg dry weight [DW] m–3) than in summer (9.5 mg DW m?3). In summer, total biomass was evenly distributed within the central bight, low off the Thukela River mouth and peaked near Durban. In winter, highest biomass was found offshore between Richards Bay and Cape St Lucia. Zooplankton biomass in each size class was significantly, negatively related to sea surface temperature and integrated nitrate, but positively related to surface chlorophyll a and dissolved oxygen. Zooplankton biomass was significantly related to bottom depth, with greatest total biomass located inshore (<50 m). Distribution across the shelf varied with zooplankton size. Seasonal differences in copepod size composition suggest that a smaller, younger community occupied the cool, chlorophyll-rich waters offshore from the St Lucia upwelling cell in winter, and a larger, older community occurred within the relatively warm and chlorophyll-poor central bight in summer. Nutrient enrichment from quasi-permanent upwelling off Durban and Richards Bay appears to have a greater influence on zooplankton biomass and distribution in the bight than the strongly seasonal nutrient input from the Thukela River.  相似文献   

13.
Hydrographic structure and transport of intermediate water were observed in the Kuroshio region south of Japan, focusing on the 26.6–27.5σθ density in six cruises from May 1998 through September 2001. In the section off the Boso Peninsula where the Kuroshio exfoliates eastward, the intermediate water was clearly clustered into three groups meridionally composed of the coastal water, the Kuroshio water and the offshore water. Compared with the Kuroshio water characterized by warm, salty water transported by the Kuroshio, the coastal and offshore waters significantly degenerated due to mixing with cold, fresh waters originated from the subarctic region: the former was affected by alongshore spread of the coastal Oyashio and the latter by direct intrusion of the new North Pacific Intermediate Water (NPIW) into the southern side of the Kuroshio current axis. Particularly the offshore water showed higher apparent oxygen utilization (AOU) in layers deeper than 26.9σθ while it showed lower AOU in layers shallower than 26.9σθ, which indicated that colder, fresher and higher AOU water was distributed on the southeastern side of the Kuroshio in deeper layers. In May 1998, the Oyashio-Kuroshio mixing ratio was estimated to be typically 2:8 for the offshore water on the assumption of isopycnal mixing. Moreover, northeastward volume transport of the Kuroshio water was obtained from geostrophic velocity fields adjusted to lowered acoustic Doppler current profiler (LADCP) data to yield 6.1 Sv at 26.6–26.9σθ and 11.8 Sv at 26.9–27.5 σθ. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
本文收集、整理和分析台湾岛东、西两岸的海流资料,获得以下主要结果;(1)台湾东岸的黑潮路径,无论是表层或深层,都是冬季偏酉(距台湾东岸较近),夏季偏东,春、秋两季的介于冬、夏季的路径之间。(2)台湾东岸黑潮的流速,具有夏、春强而冬弱的特点。(3)台湾西岸近海的海流,除表层受风的影响较大外,10m层开始,尤其是近底层,冬、夏两季皆以北向或东北向流为主,呈现出一派北向流的路径。这与传统观念不同。  相似文献   

15.
I summarize the variations of the path of the Kuroshio and of the Tsushima Current mainly based on the results of my studies. The Tsushima Current forms three branches just after it enters the Japan Sea through the Tsushima Strait. The first and third branch currents flow along the Japanese and Korean coasts, respectively, and the second branch current flows from the western channel of the Tsushima Strait to the west of the Oki Islands only in summer from June to August. Properties of the topographic waves which are thought to work on the formation of the second branch are described mainly in terms of the dispersion relations. The Kuroshio has three typical paths,i.e., the nearshore and offshore non-large-meander paths and the typical large-meander path. The Kuroshio alternately takes the nearshore and offshore paths in the non-large-meander period, occasionally changes from the nearshore nonlarge-meander path to the large-meander path and, after having taken the large-meander path for several years, changes to the offshore non-large-meander path. Sea levels south of Japan are clearly different between the non-large-meander and large-meander periods, while they are not different between the periods of the nearshore and offshore non-large-meander paths. But, sea level and water properties in the coastal region show remarkable features during short periods of transitions between the typical non-large-meander paths. Future problems and subjects of studies on these currents are indicated. Especially, importance of velocity monitoring of the Kuroshio is emphasized, and a design of the observation across the Tokara Strait is proposed.  相似文献   

16.
On the basis of the data of zooplankton biomass and three major taxa—— Copepoda, Chaetognatha andSiphonophora of May-June 1986, July-August and December 1987, the distributional patterns and the indicator species of zooplankton in the Kuroshio and adjacent waters of the East China Sea are preliminarily studied. The results are as follows:The horizontal distribution of zooplankton biomass and the abundance of copepods, chaetognaths and siphonophores arecurred in the continent area northwest of Taiwan and the south-centre section of the East China Sea continent, which are the mix front of different waters. Zooplankton in the water area inside of Ryukyu Islands presented low abundance and high diversity. There are clear seasonal variations in zooplankton biomass and abundance in the study area. The strength or weakness of different water masses and fronts is the basic reason for the variations of zooplankton biomass and abundance.The species composition of zooplankton in the study area is complex and var  相似文献   

17.
广东省南澳海域是粤东重要的海产养殖基地, 分析该海域浮游动物群落结构特征对评估其生态环境质量具有重要意义。文章根据2014年9月(秋季)、12月(冬季)、2015年4月(春季)和2016年7月(夏季)在南澳岛东部海域的浮游动物调查, 分析该海域浮游动物的群落结构特征, 探讨环境因素对其时空分布的影响。共鉴定浮游动物206种(包括浮游幼虫), 桡足类种数最多, 达94种; 远岸海域浮游动物的种数高于近岸海域。浮游动物丰度和生物量的季节变化明显, 夏、秋季高于冬、春季; 浮游动物丰度和生物量的分布趋势较一致, 夏季高值区主要出现在近岸, 秋季由近岸向远岸海域递增。浮游动物不同类群和优势种的丰度也存在季节变化, 桡足类是调查期间丰度较高的类群, 秋季水母类和海樽类丰度明显增加; 优势种后圆真浮萤(Euconchoecia maimai)和针刺真浮萤(Euconchoecia aculeata)在夏季丰度高, 小齿海樽(Doliolum denticulatum)在秋季占绝对优势。温度、盐度和浮游植物生物量是影响南澳岛东部海域浮游动物时空变化的主要环境因子, 说明该海域浮游动物群落特征受海流、水团和养殖活动的综合影响。  相似文献   

18.
The materials were obtained from the survey conducted in the Kuroshio area of the East China Sea to the Southwest of Kyushu in Japan (29°30'-32°00', 128°00'-130°'00'E) on board the R. V. Yoko Maru of Seikai Regional Fisheries Lab, Fisheries Agency, Japan in June 15~28, 1988 during China-Japan Joint Research on the Kuroshio. Zoo-plankton was collected by means of the North Pacific Net with model TSK flowmeter through vertical haul from 50 -Om. Temperature and salinity were measured with CTD. 134 species (including 4 spp. ) of planktonic copepods were preliminarily identified in the survey area. Most of them belonged to the tropical and subtropical species and a few of them were the warm-temperate species and eurytopic species. The main dominant species vteieOncaea venusta, Oithona plumifera, Clausocalanus furcatus, C. Arcuicornis, Paracaianus dculeatus, Oithona similis, Temara turbinata, Oncaea media, Undinula danvinii, Acartia negligent, Corycaeus speciosus, Scolecithrix danae, etc. The total number  相似文献   

19.
邹广安 《海洋科学》2016,40(2):151-158
日本南部黑潮路径变异对北太平洋地区的气候和环境具有显著的影响,对黑潮路径变异的研究具有重要的意义。本文利用POM(Princeton Ocean Model)数值模式模拟了日本南部黑潮的路径变异情况,分析了黑潮大弯曲路径形成的可能机制。研究结果表明,当黑潮处于非大弯曲路径时,相对位势涡度的平均值呈现递减趋势,说明日本南部低位势涡度水在不断积累,这样会使得四国再循环流的强度增强,迫使黑潮保持平直路径,同时,近岸黑潮垂直流速剪切增大,斜压不稳定性的作用也逐渐增大;当黑潮从非大弯曲路径向大弯曲路径过渡时,再循环流强度的减弱会导致黑潮的流速剪切减小。根据海表高度异常场以及海洋上层流场信息发现,近岸黑潮附近的气旋涡会随着再循环流区域反气旋涡的东侧向南运动,最终导致黑潮大弯曲的发生。分析涡流的能量,结果显示,黑潮大弯曲路径的形成与斜压不稳定性密切相关。  相似文献   

20.
The volume transport of the Kuroshio, the western boundary current of the North Pacific subtropical gyre, varies vigorously due to merging of disturbances propagating from the entire North Pacific. Taking into account the recirculation in the Shikoku Basin by the zonal observation line at 30°N to the west of the Izu–Ogasawara Ridge, we estimated the volume transport in the top 1,000 m layer toward the Kuroshio Extension region. The volume transport of the local recirculation gyre in the Shikoku Basin increases associated with the westward extension of the gyre, particularly in the period of the large meandering path of the Kuroshio south of Japan. Meanwhile, most of the transport variations toward the Kuroshio Extension region correspond to those of the Kuroshio transport on the continental slope south of Japan, which vary independently of those of the recirculation gyre.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号