首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Amplitude scaling is commonly used to select ground motions matching a target response spectrum. In this paper, the effect of scaling limits on ground motion selection, based on the conditional spectrum framework, is investigated. Target spectra are computed for four probabilistic seismic hazard cases in Western United States, and 16 ground motion suites are selected using different scaling limits (ie, 2, 5, 10, and 15). Comparison of spectral acceleration distributions of the selected ground motion suites demonstrates that the use of a scaling limit of 2 yields a relatively poor representation of the target spectra, because of the small limit leading to an insufficient number of available ground motions. It is also shown that increasing scaling limit results in selected ground motions with generally increased distributions of Arias intensity and significant duration Ds5-75, implying that scaling limit consideration can significantly influence the cumulative and duration characteristics of selected ground motions. The ground motion suites selected are then used as input for slope displacement and structural dynamic analyses. Comparative results demonstrate that the consideration of scaling limits in ground motion selection has a notable influence on the distribution of the engineering demand parameters calculated (ie, slope displacement and interstory drift ratio). Finally, based on extensive analyses, a scaling limit range of 3 to 5 is recommended for general use when selecting ground motion records from the NGA-West2 database.  相似文献   

2.
The accuracy of the three‐dimensional modal pushover analysis (MPA) procedure in estimating seismic demands for unsymmetric‐plan buildings due to two horizontal components of ground motion, simultaneously, is evaluated. Eight low‐and medium‐rise structures were considered. Four intended to represent older buildings were designed according to the 1985 Uniform Building Code, whereas four other designs intended to represent newer buildings were based on the 2006 International Building Code. The median seismic demands for these buildings to 39 two‐component ground motions, scaled to two intensity levels, were computed by MPA and nonlinear response history analysis (RHA), and then compared. Even for these ground motions that deform the buildings significantly into the inelastic range, MPA offers sufficient degree of accuracy. It is demonstrated that PMPA, a variant of the MPA procedure, for nonlinear systems is almost as accurate as the well‐known standard response spectrum analysis procedure is for linear systems. Thus, for practical applications, the PMPA procedure offers an attractive alternative to nonlinear RHA, whereby seismic demands can be estimated directly from the (elastic) design spectrum. In contrast, the nonlinear static procedure specified in the ASCE/SEI 41‐06 Standard is demonstrated to grossly underestimate seismic demands for some of the unsymmetric‐plan buildings considered. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Hysteretic energy dissipation in a structure during an earthquake is the key factor, besides maximum displacement, related to the amount of damage in it. This energy demand can be accurately computed only through a nonlinear time‐history analysis of the structure subjected to a specific earthquake ground acceleration. However, for multi‐story structures, which are usually modeled as multi‐degree of freedom (MDOF) systems, this analysis becomes computation intensive and time consuming and is not suitable for adopting in seismic design guidelines. An alternative method of estimating hysteretic energy demand on MDOF systems is presented here. The proposed method uses multiple ‘generalized’ or ‘equivalent’ single degree of freedom (ESDOF) systems to estimate hysteretic energy demand on an MDOF system within the context of a ‘modal pushover analysis’. This is a modified version of a previous procedure using a single ESDOF system. Efficiency of the proposed procedure is tested by comparing energy demands based on this method with results from nonlinear dynamic analyses of MDOF systems, as well as estimates based on the previous method, for several ground motion scenarios. Three steel moment frame structures, of 3‐, 9‐, and 20‐story configurations, are selected for this comparison. Bias statistics that show the effectiveness of the proposed method are presented. In addition to being less demanding on the computation time and complexity, the proposed method is also suitable for adopting in design guidelines, as it can use response spectra for hysteretic energy demand estimation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
地震动记录的合理选取对预测结构响应有着重要的作用。本文通过对风雨操场建筑混合结构的抗震性能分析,提出了一种对水平及竖向地震动频谱特性均进行控制的改进选波方法。为了评价不同选波方法的可靠性和有效性,根据初选条件选取55组三向地震动记录,并以55组地震动的统计反应谱作为目标反应谱,以55组记录计算的结构响应均值作为"预测值",通过与单周期点和双频段选波方法的计算结果对比,分析表明:改进选波方法计算的结构基底剪力、柱顶位移、支座位移和网架竖向位移的相对误差和变异系数均小于前两种选波方法,其计算结果更加可靠有效。  相似文献   

5.
The conditional spectrum (CS, with mean and variability) is a target response spectrum that links nonlinear dynamic analysis back to probabilistic seismic hazard analysis for ground motion selection. The CS is computed on the basis of a specified conditioning period, whereas structures under consideration may be sensitive to response spectral amplitudes at multiple periods of excitation. Questions remain regarding the appropriate choice of conditioning period when utilizing the CS as the target spectrum. This paper focuses on risk‐based assessments, which estimate the annual rate of exceeding a specified structural response amplitude. Seismic hazard analysis, ground motion selection, and nonlinear dynamic analysis are performed, using the conditional spectra with varying conditioning periods, to assess the performance of a 20‐story reinforced concrete frame structure. It is shown here that risk‐based assessments are relatively insensitive to the choice of conditioning period when the ground motions are carefully selected to ensure hazard consistency. This observed insensitivity to the conditioning period comes from the fact that, when CS‐based ground motion selection is used, the distributions of response spectra of the selected ground motions are consistent with the site ground motion hazard curves at all relevant periods; this consistency with the site hazard curves is independent of the conditioning period. The importance of an exact CS (which incorporates multiple causal earthquakes and ground motion prediction models) to achieve the appropriate spectral variability at periods away from the conditioning period is also highlighted. The findings of this paper are expected theoretically but have not been empirically demonstrated previously. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
A broader consensus on the number of ground motions to be used and the method of scaling to be adopted for nonlinear response history analysis (RHA) of structures is yet to be reached. Therefore, in this study, the effects of selection and scaling of ground motions on the response of seismically isolated structures, which are routinely designed using nonlinear RHA, are investigated. For this purpose, isolation systems with a range of properties subjected to bidirectional excitation are considered. Benchmark response of the isolation systems is established using large sets of unscaled ground motions systematically categorized into pulse-like, non-pulse-like, and mixed set of motions. Different subsets of seven to 14 ground motions are selected from these large sets using (a) random selection and (b) selection based on the best match of the shape of the response spectrum of ground motions to the target spectrum. Consequences of weighted scaling (also commonly referred to as amplitude scaling or linear scaling) as well as spectral matching are investigated. The ground motion selection and scaling procedures are evaluated from the viewpoint of their accuracy, efficiency, and consistency in predicting the benchmark response. It is confirmed that seven time histories are sufficient for a reliable prediction of isolation system displacement demands, for all ground motion subsets, selection and scaling procedures, and isolation systems considered. If ground motions are selected based on their best match to the shape of the target response spectrum (which should be preferred over randomly selected motions), weighted scaling should be used if pulse-like motions are considered, either of weighted scaling or spectral matching can be used if non-pulse-like motions are considered, and an average of responses from weighted-scaled and spectrum-matched ground motions should be used for a mixed set of motions. On the other hand, the importance of randomly selected motions in representing inherent variability of response is recognized and it is found that weighted scaling is more appropriate for such motions.  相似文献   

7.
高层建筑时程分析中地震动时程选择和修改方法研究   总被引:2,自引:1,他引:1  
合理的地震动时程选择与修改方法对于高层结构的抗震设计具有重要意义,有着广泛的工程应用.本文回顾了建筑抗震设计规范对于输入地震动时程的规定,通过对现有的地震动时程选择与修改方法进行分类和定性分析,挑选了两种与规范要求衔接较好的方法.结合具体算例对两种方法进行了定量分析,结果表明以安评设计谱作为选择指标,利用最小二乘法对选择的地震动时程进行修改,可以得到离散较小且符合规范要求的地震动时程,该成果能够在现行规范要求下为结构的抗震设计提供合理可靠的依据.同时,本文也对未来地震动时程选择与修改方法的研究和发展方向进行了展望,指出条件均值谱和非弹性反应谱将是该领域未来主要的研究方向.  相似文献   

8.
弹塑性地震反应谱的长周期特性研究   总被引:4,自引:1,他引:3  
在基于性能抗震设计中弹塑性反应谱在计算结构地震位移反应方面越来越受到重视。利用统计分析方法研究了等强度的延性需求谱和等延性的强度折减系数谱的长周期(至5 s)区段的特性,关注的重点是等位移准则和场地条件影响。给出了若干具有工程价值的结论:一是周期介于1.5Tg(地震动特征周期)和2.5 s之间的结构可近似认为等位移准则成立且与场地条件关系不大,这样确定的强度折减系数当位移延性系数小于等于4时结果将是偏于安全的;二是结构周期大于2.5 s后以硬土场地等延性强度折减系数谱或等强度延性需求谱代替软土场地谱求解系统强度需求或延性需求,将会得到偏于安全的结果。  相似文献   

9.
基于欧美规范确定了坐落在深厚覆盖层上KH抽水蓄能电站上、下库场地基本运行和最大设计地震动峰值加速度、反应谱和时程等动参数。首先依据场地区域地震烈度区划图、特征周期区划图和依据场地地质地震条件选取的5条种子实测地震动确定场地基岩输入加速度时程、峰值加速度和设计反应谱,进而基于各土层地质参数和一维弹性波传播模拟程序确定覆盖层表面的平均峰值加速度、平均反应谱和5条地震动时程,对所得到的平均反应谱和峰值加速度进行光滑处理后确定可用于各建筑物结构抗震设计的地震动参数,包括覆盖层表面水平向动力响应加速度时程、峰值加速度和设计反应谱。该方法可较好地保留输入地震动的真实动力特性,如持时、相位和频率等,为我国规范中建议的确定场地地震动参数的方法提供有益的补充。  相似文献   

10.
The modal pushover analysis (MPA) procedure, presently restricted to one horizontal component of ground motion, is extended to three‐dimensional analysis of buildings—symmetric or unsymmetric in plan—subjected to two horizontal components of ground motion, simultaneously. Also presented is a variant of this method, called the practical modal pushover analysis (PMPA) procedure, which estimates seismic demands directly from the earthquake response (or design) spectrum. Its accuracy in estimating seismic demands for very tall buildings is evaluated, demonstrating that for nonlinear systems this procedure is almost as accurate as the response spectrum analysis procedure is for linear systems. Thus, for practical applications, the PMPA procedure offers an attractive alternative whereby seismic demands can be estimated directly from the (elastic) design spectrum, thus avoiding the complications of selecting and scaling ground motions for nonlinear response history analysis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
张伟明  孙晓丹  李东航  王豪  万珂羽 《地震研究》2020,(1):144-154,I0004
在目前的多阻尼反应谱拟合的时程调整法中,由于各阻尼、各控制周期点之间的交叉影响,拟合误差容易出现"此消彼长"的现象,进而降低拟合精度和收敛速度。基于现有单阻尼反应谱拟合的时域调整方法,探讨了增量加速度时程引起的最大地震动反应的正负向及阻尼-周期调整顺序对拟合精度和收敛速度的影响,并提出了考虑增量加速度时程的最大反应贡献趋向和按误差排序的改进思路。将改进后的时域调整法应用于核电厂多阻尼目标反应谱拟合上,选取不同时-频特征的天然地震动时程作为"种子"进行拟合,探讨"种子"时程的选取对拟合结果的影响,并提出针对不同工程结构进行目标反应谱拟合时,应根据结构物的动力特性选取初始的"种子"时程。  相似文献   

12.
This paper presents a procedure to generate multidirectional conditional spectra (MDCS) that allow for the characterisation of seismic demands at different angles of incidence. Being conditional on a particular period and its direction of maximum response, it is considered to be a natural evolution of the conditional spectrum to account for the effects of directionality, that is, the variation of seismic demands as a function of the angle of incidence of ground motions, which can have a significant effect on the performance of different kinds of structures. The three main components needed for the generation of MDCS are explained in detail. Monte Carlo simulations are conducted using different sampling methods to assess the effects of incorporating the correlation between demands at different orientations for the same oscillator period, and a novel correlation model is proposed for this purpose. The statistical characteristics of MDCS, their relation with the conditional spectrum, the advantages of the MDCS over previous definitions of orientation‐specific spectra, and prospective future developments are discussed.  相似文献   

13.
Fukushima nuclear accident caused widespread concern of earthquake initiated severe accident. Under this background, China nuclear utilities carried out research and application of seismic margin assessment(SMA)approach to evaluate the seismic margin of the existing nuclear power plants(NPP)by different spectra shape of seismic margin earthquake(SME). By reviewing the method used to determine SME of operational NPP in central and eastern United States(CEUS), this paper analyzed the seismic hazard characteristic of China NPP sites, contrasted the design basis ground motion between NPP in CEUS and China, and suggested giving priority to evaluating the seismic margin of operational NPP that adopted the improved second generation technology for the urgency and importance of assessment on the actual seismic capacity of NPP. Comparing RG1.60 spectrum to normalized site-specific SL-2 level acceleration spectra, we found that some normalized spectra overtook the RG1.60's in high frequency range, so it is not always adequate to scale RG1.60 spectrum to evaluate the seismic margin for sites of the improved second generation NPP. We selected a sample site whose site-specific SL-2 level ground motion is close to the standard design of improved second generation NPP(0.2g scaled RG1.60 spectrum)to determine the seismic margin earthquake by probabilistic seismic hazard analysis method of the sample site. Compared to the given PGA(0.3g)scaled scenario earthquake ground motions and the uniform hazard response spectrum(UHRS), whose PGA is 0.3g to PGA(0.3g)scaled standard spectra(median NUREG/CR0098 spectrum and RG1.60 spectrum), the results demonstrated that uniform hazard response spectrum and scaled scenario earthquake ground motions are both significantly higher than the PGA scaled median NUREG/CR0098 spectrum, and all the three spectra are enveloped by PGA scaled RG1.60 spectrum. Then, this paper suggests adopting the uniform hazard response spectrum or scenario earthquake ground motions to evaluate the seismic margin of improved second generation NPP beyond site SL-2 ground motion; and to evaluate the seismic margin of improved second generation NPP beyond standard design, we recommend to use PGA scaled RG1.60 spectrum.  相似文献   

14.
Although for many years it was thought that amplitude scaling of acceleration time series to reach a target intensity did not introduce any bias in the results of nonlinear response history analyses, recent studies have showed that scaling can lead to an overestimation of deformation demands with increasing scale factors. Some studies have suggested that the bias can be explained by differences in spectral shape between the response spectra of unscaled and scaled records. On the basis of these studies, some record selection procedures assume that if records are selected using spectral-shape-matching procedures, amplitude scaling does not induce any bias on the structural response. This study evaluates if bias is introduced on lateral displacement demands and seismic collapse risk estimates even when spectral shape is carefully taken into consideration when selecting ground motions. Several single-degree-of-freedom and multiple-degree-of-freedom systems are analyzed when subjected to unscaled and scaled ground motions selected to approximately match the mean and the variance of the conditional spectrum at the target level of intensity. Results show that an explicit consideration of spectral shape is not enough to avoid a systematic overestimation of lateral displacement demands and collapse probabilities as the scale factor increases. Moreover, the bias is observed in practically all cases for systems with strength degradation and it increases with decreasing period and decreasing lateral strength relative to the strength required to remain elastic. Key reasons behind the bias are presented by evaluating input energy, causal parameters, and damaging pulse distributions in unscaled and scaled ground motion sets.  相似文献   

15.

The growing use of underground structures, specifically to facilitate urban transportation, highlights the need to scrutinize the effects of such spaces on the seismic ground response as well as the surrounding buildings. In this regard, the seismic ground amplification variations in the vicinity of single and twin box-shaped tunnels subjected to SV waves have been investigated by the finite difference method. To evaluate the effects, generalizable dimensionless diagrams based on the results of parametric numerical analysis considering factors such as variations in the tunnels’ depth, the distances between the tunnels, tunnel lining flexibility, and input wave frequency, have been presented. In addition, to assess the effects of underground box-shaped tunnels on the response spectrum of the ground surface, seven selected accelerograms have been matched based on a specific design spectrum for the stiff soil condition of Eurocode 8 (CEN, 2006). The results underline the significant amplification effect of the box-shaped tunnels on the ground motions, specifically in the case of horizontal twin tunnels, which should be given more attention in current seismic design practices for surface structures.

  相似文献   

16.
Strong aftershocks have the potential to increase the damage state of the structures due to the damage accumulation. This paper investigates the damage spectra for the mainshock–aftershock sequence-type ground motions with Park–Ang damage index. A method of simulating the mainshock–aftershock sequence-type ground motions is proposed based on the modified form of Bath's law and NGA ground motion prediction equation. The damage spectra are computed using the recorded and simulated sequence-type ground motions, and the effects of period of vibration, strength reduction factor, site condition, seismic sequence, damping ratio and post-yield stiffness on damage spectra are studied statistically. The results indicate that the effect of aftershock on structural damage is significant and recorded sequence-type ground motions may underestimate the damage of long-period structures due to the incompleteness of dataset. A simplified equation is proposed to facilitate the application of damage spectra in the seismic practice for mainshock–aftershock sequence-type ground motions.  相似文献   

17.
分析地震动的频谱周期参数和频率非平稳特征,是地震危险性分析和结构抗震设计的重要内容.本文对近断层地震动记录按照不同的运动特征分组,进行了Hilbert-Huang变换分析.结合相关的定义得到了表征地震动频谱特性的7个周期参数,包括:Fourier幅值谱平均周期Tm、Hilbert边际谱平均周期Tmh、特征周期Tc、卓越周期等,并计算了地震动的Hilbert谱瞬时频率时程变异系数.计算结果表明,从整体上把握地震动频谱特性的三个周期参数Tm 、Tmh 和Tc适合于表征近断层地震动的频谱成份.近断层地震动的频率非平稳特征显著,Hilbert谱瞬时频率变异系数良好地反映了地震动的频率非平稳性质和程度.而且,考察了近断层地震动运动特征对地震动频谱周期参数和频率非平稳性的影响.  相似文献   

18.
A generalized conditional intensity measure (GCIM) approach is proposed for use in the holistic selection of ground motions for any form of seismic response analysis. The essence of the method is the construction of the multivariate distribution of any set of ground‐motion intensity measures conditioned on the occurrence of a specific ground‐motion intensity measure (commonly obtained from probabilistic seismic hazard analysis). The approach therefore allows any number of ground‐motion intensity measures identified as important in a particular seismic response problem to be considered. A holistic method of ground‐motion selection is also proposed based on the statistical comparison, for each intensity measure, of the empirical distribution of the ground‐motion suite with the ‘target’ GCIM distribution. A simple procedure to estimate the magnitude of potential bias in the results of seismic response analyses when the ground‐motion suite does not conform to the GCIM distribution is also demonstrated. The combination of these three features of the approach make it entirely holistic in that: any level of complexity in ground‐motion selection for any seismic response analysis can be exercised; users explicitly understand the simplifications made in the selected suite of ground motions; and an approximate estimate of any bias associated with such simplifications is obtained. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
结构Pushover分析的侧向力分布及高阶振型影响   总被引:52,自引:8,他引:44  
Pushover分析方法是逐渐得到广泛应用的一种评估结构抗震性能的简化方法,已被引入我国新的建筑结构抗震设计规范。侧向力分布的选取是结构Pushover分析中的一个关键问题,尤其高阶振型影响显著时其选取直接影响Pushover分析的结果。本文通过拟合规范反应谱,挑选了适用Ⅱ类场地的4条地震动记录和4条人工波,对比了典型地震动下非线性时程分析和采用5种不同侧向力分布的Pushover分析的5层、10层和15层钢筋混凝土结构在不同地震动强度时的反应。通过结构振型参与系数量化了各个结构的高阶振型的影响。研究发现,随着结构层数的增加和地震动强度的增加高阶振型的影响变大,侧向力的选取变得十分重要。本文对在高阶振型影响下钢筋混凝土框架结构的Pushover分析中侧向力的选取提出了建议。  相似文献   

20.
The Vrancea subcrustal earthquakes of August 30,1986 and May 30,1990 are the two most recent seismic events that have occurred in Romania with moment magnitudes M W ≥ 6.9.The spectral analysis of the strong ground motions recorded in Bucharest reveals that despite small differences in magnitude between the 1986 and 1990 earthquakes,their frequency contents are very different,sometimes even opposing.The main focus of this study is to conduct a comparative analysis of the response spectra in terms of the bi-normalized response spectra(BNRS) proposed by Xu and Xie(2004 and 2007) for strong ground motions recorded in Bucharest during these two seismic events.The mean absolute acceleration and relative velocity response spectra for the two earthquakes are discussed and compared.Furthermore,the mean bi-normalized absolute acceleration and normalized relative velocity response spectra with respect to the control period T C are computed for the ground motions recorded in Bucharest in 1986 and 1990.The predominant period T P is also used in this study for the normalization of the spectral period axis.Subsequently,the methodology proposed by Martinez-Perreira and Bommer(1998) is applied in order to estimate the seismic intensity of the two events.The results are discussed and several conclusions regarding the possibility of using the bi-normalized response spectra(BNRS) are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号