首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
海滩的演变特征是海岸地形动力学研究的一个重要内容。基于在海口湾假日海滩连续33d的地形剖面观测数据和台风前后表层沉积物粒度参数数据, 分析了海口湾中间岸段海滩剖面及沉积物变化特征。利用经验正交函数分析, 得出观测期间海口湾海滩有4个主要模态, 分别对应于涌浪对海滩的建设过程、当地风浪对海滩的侵蚀过程、台风对海滩的侵蚀过程和海滩特征地形的调整过程。研究结果表明: 涌浪和风浪对海滩剖面的作用受到了潮位调制的影响; 海口湾海滩显示出遮蔽型海滩变化特征; 沉积物粒度参数对海滩变化反应敏感, 可以提供丰富的海滩演变信息。  相似文献   

2.
海滩剖面时空变化过程分析   总被引:27,自引:4,他引:23  
陈子燊 《海洋通报》2000,19(2):42-48
利用粤西水东湾海滩重复测量的地形剖面,通过经验正交函数变换与小波变换,分析了剖面变化的主要空间过程及其时间振荡特笥。结果显示,海滩剖面主要由占数据总方差90%的3个空间过程构成:水下砂坝运移、滩肩进退和后滨侵蚀。三个主要空间过程在时频域具有多尺度的振荡周期性。其中,水下砂坝运动以准季节性变化为主,滩肩和后滨地形蚀积则显示出准2个月变化周期性。剖面变化主要过程与影响海区台风作用密切相关。  相似文献   

3.
在0307号台风“伊布都”(Imbudo)袭击华南沿海前后,对相距约300km的高栏岛飞沙湾(位于气旋前进方向右侧)和水东港下大海(位于气旋前进方向左侧)的固定海滩剖面地形及滩面沉积物进行了对比调查。调查结果表明,右侧海滩地形受台风暴浪冲击发生剧烈变化:后滨陆侧堆积,后滨向海侧及前滨滩面侵蚀(单宽侵蚀量达55m^3/m,平均海面(MSL)位置蚀退13m,岸线位置蚀退5m),以致剖面类型由滩肩式断面向沙坝式断面转变,表现出了海滩对台风做出快速响应;而左侧海滩剖面地形基本保持原状,虽也略呈侵蚀,但冲淤变化不大,表现为对台风做出迟缓响应。同时,从动力、滨海输沙、滩面沉积物变化和海岸地貌等方面对两侧海滩明显差异的风暴效应的机制进行了探讨。  相似文献   

4.
0709号台风影响下粤东后江湾海滩地形动力过程研究   总被引:2,自引:2,他引:0  
基于0709号台风"圣帕"影响下粤东后江湾的现场实测海滩前滨地形资料和水动力、风等资料,采用典型相关分析方法识别了台风影响下海滩前滨地形不同的变化过程,揭示了这些不同变化过程的主要控制因子,并尝试给出了物理解释。研究结果表明:(1)台风影响下海滩前滨地形的主要变化过程是水上滩肩被破坏—水下岸坡略有堆积—水下沙坝泥沙向海搬运,控制这一过程的主要动力因子是风速东向量、最大波高和碎波尺度参数;(2)海滩前滨地形的次要变化过程是海滩前滨泥沙向海搬运而形成水下沙坝,控制这一过程的主要动力因子是最大波周期和海滩地下水位;(3)海滩前滨地形也表现出前滨上部地带堆积、下部侵蚀的变化过程,控制这一过程的主要动力因子是沿岸流、海滩地下水位和最大波高。这些研究结果进一步揭示了台风影响下海滩前滨地形动力过程是由多个不同的地形-动力过程耦合作用而组成。  相似文献   

5.
海滩地形变化是复杂的地形动力过程作用的结果,包含着诸多的时间和空间尺度特征信息。本研究利用经验正交函数(Empirical Orthogonal Function, EOF),对2018年4月至2019年3月的琼州海峡南岸铺前湾、海口湾和澄迈湾海滩剖面数据进行了分析。结果表明:①前3个时空函数可以代表琼州海峡南岸海滩主要变化模态。其中第1模态都表现为淤积,铺前湾和海口湾海滩呈现夏秋淤 冬春冲的季节性特征,澄迈湾为夏秋冲 冬春淤的季节性特征。第2、3模态则可能是风暴作用、潮位影响下的沉积物在滩面上的迁移或波浪随潮位变化引起,与海湾区域地形、入射波向、泥沙来源、潮差、波高、风暴路径等有关。②铺前湾和海口湾海域建设的人工岛加剧了海湾的遮蔽程度,促进了海湾部分岸段海滩淤积,海滩还要一段时间才能达到新的平衡。③作为次控因素之一,观测期间台风对海滩的影响程度有限。同时,海滩对台风响应与台风强度、登陆距离、相对台风的方位以及当地地形遮蔽程度密切相关。  相似文献   

6.
海滩风暴响应的观测和研究有助于加深对海滩过程的认识。2017年10月16日台风“卡努”在广东徐闻县沿海登陆, 对雷州半岛南部海滩造成了显著影响。文章通过海滩剖面观测和沉积物采样, 探讨了该区域海滩对台风“卡努”的响应特征, 得出以下主要结论。1) 台风浪作用下, 海滩表层沉积物变粗, 分选性变差。海滩状态朝着更加消散的状态转化, 以缓冲和适应高强度波浪的能量。2) 受到岬角和湾口朝向、大小等因素影响, 各海滩及同一海滩的不同岸段剖面变化表现出差异性。台风作用后海滩可能形成水下沙坝, 或者在海滩上部形成滩肩等特征地形。因此, 研究海滩风暴响应时, 要注意到区域地质地貌的影响。3) 水下礁坪、巨型砂质岬角等因素影响了台风过程灯楼角海滩的变化。对这种海滩–珊瑚礁坪系统的风暴效应, 还需要进行进一步探讨和更详细的观测和研究。  相似文献   

7.
湄洲岛西南部海滩因1996年建造对台客运码头,引起了海滩剖面的变化,码头前沿淤积而报废。经过5年后,海滩剖面仍未能完全趋于平衡。为了了解码头建设对重塑后海滩的季节变化影响,在2001年3月、7月、10月和12月对码头所在海滩剖面地形进行季节重复测量,并对剖面变化进行比较分析。结果表明,重塑后海滩剖面的季节变化存在区段差异性,码头工程区海滩剖面仍表现为不断淤积,表明5年来工程建设造成海滩重塑后的变化过程还在继续;过渡区海滩剖面较工程区淤积程度减弱,部分剖面表现为侵蚀趋势,但总体逐渐向正常海滩剖面的季节变化方向发展;正常区海滩剖面的季节变化具有一定的规律性,表现为夏季上部侵蚀(后滨和高潮带)下部淤积(低潮带和浅水区),冬季上部淤积下部侵蚀,春、秋两季为中间过渡剖面形态。  相似文献   

8.
风暴是造成海滩剧烈变化的重要因子。由于观测环境的恶劣,目前极少有风暴过程中海滩响应的现场高频观测工作。本研究在2018年台风“贝碧嘉”期间对徐闻青安湾海滩开展了历时6天半的高频观测,获得了全时水动力要素和164组逐时海滩滩面高程变化数据。通过分析表明:(1)青安湾海域风暴增水及波浪受控于海南岛?雷州半岛特有的地形地貌和台风“贝碧嘉”的多变路径,增水稳定在0.38~0.5 m之间,而波高先由0.78 m衰减至0.43 m,再增加至0.56 m;(2)海滩剖面地形变化总体表现为滩肩侵蚀,形成水下沙坝,滩肩响应过程分为快速向下侵蚀、缓慢侵蚀至最大值、振荡回淤恢复3个阶段,台风期间滩肩振荡恢复幅度可达最大侵蚀深度的1/4;(3)海滩的风暴响应过程主要由4个模态耦合而成:第一模态体现大潮滩肩侵蚀生成水下沙坝过程;第二模态体现风暴滩肩侵蚀,补偿大潮滩肩侵蚀位置和进一步促进沙坝形成过程;第三模态揭示了波浪二次破碎位置的上冲流和离岸底流使泥沙发生双向输移过程;第四模态表明台风大浪使得碎波带内泥沙大量悬浮,在沿岸流和离岸流作用下部分悬沙进入深水区,可能造成海滩泥沙的永久亏损。  相似文献   

9.
根据2006年8月在粤东后汪湾海滩收集的滩坎、波浪及地下水位资料,分析了在波浪、潮汐、水下地形等多种影响因子作用下的滩坎地形动力过程.结果表明,显著波陡大则滩坎高度大,反之滩坎高度小;涨潮时滩坎向岸移动,落潮时向海移动;滩坎高度与显著波陡、潮位非线性关系为:Zs=0.5283S s^0.0467(gH)^0.0134;水下沙脊-细沟地形是滩坎演变重要影响因素;台风期间滩坎受侵蚀,台风后堆积;卷破波是滩坎形成的直接驱动力.  相似文献   

10.
厦门岛海滩剖面对9914号台风大浪波动力的快速响应   总被引:17,自引:1,他引:17  
根据 9914号台风发生前后对厦门岛滨岸海滩剖面地形的重复测量结果及有关台风要素和潮位的实测资料 ,探讨了台风袭击厦门岛期间海滩的变形特征和侵蚀状态。分析得出 ,海滩地形受台风暴浪冲击普遍发生急剧变化。横向冲淤变形以东岸海滩为最剧烈 :滩肩蚀退可达 2 5m ;滩面呈上冲下淤 ,上段和滩肩的单宽冲蚀量达 30m3 /m ;下段单宽淤积量达 17m3 /m ;剖面类型由滩肩式断面向沙坝式断面转变。这种变形特点是在台风大浪波动力和潮位暴涨的双重作用下造成的。台风期间 ,沿岸输沙能力以北岸最高 ,南岸次之 ,东岸较低 ;且自南岸到东岸 ,随着沿岸输沙量减少 ,横向变形相应有增大的趋势。这是9914号台风以偏东方向袭击厦门的结果。表明不同方向海岸岸滩地形对同一台风大浪波动力作用具有不同响应特征。  相似文献   

11.
On average, five to six storms occur in the Qiongzhou Strait every year, causing significant damage to coastal geomorphology and several property losses. Tropical Storm Bebinca is the most unusual and complex storm event that has occurred in this region over the last 10 years. To detect the high-frequency beachface responses to the storm, a pressure sensor was deployed in the surf zone to record the free sea surface height, and the heights of grid pile points on the beachface were measured manua...  相似文献   

12.
Storms are one of the most important controls on the cycle of erosion and accretion on beaches. Current meters placed in shoreface locations of Saco Bay and Wells Embayment, ME, recorded bottom currents during the winter months of 2000 and 2001, while teams of volunteers profiled the topography of nearby beaches. Coupling offshore meteorological and beach profile data made it possible to determine the response of nine beaches in southern Maine to various oceanographic and meteorological conditions. The beaches selected for profiling ranged from pristine to completely developed and permitted further examination of the role of seawalls on the response of beaches to storms.

Current meters documented three unique types of storms: frontal passages, southwest storms, and northeast storms. In general, the current meter results indicate that frontal passages and southwest storms were responsible for bringing sediment towards the shore, while northeast storms resulted in a net movement of sediment away from the beach. During the 1999–2000 winter, there were a greater percentage of frontal passages and southwest storms, while during the 2000–2001 winter, there were more northeast storms. The sediment that was transported landward during the 1999–2000 winter was reworked into the berm along moderately and highly developed beaches during the next summer.

A northeast storm on March 5–6, 2001, resulted in currents in excess of 1 m s−1 and wave heights that reached six meters. The storm persisted over 10 high tides and caused coastal flooding and property damage. Topographic profiles made before and after the storm demonstrate that developed beaches experienced a loss of sediment volume during the storm, while sediment was redistributed along the profile on moderately developed and undeveloped beaches. Two months after the storm, the profiles along the developed beaches had not reached their pre-storm elevation. In comparison, the moderately developed and undeveloped beaches reached and exceeded their pre-storm elevation and began to show berm buildup characteristic of the summer months.  相似文献   


13.
海滩风暴效应若干问题思考与我国研究前景   总被引:1,自引:0,他引:1  
热带风暴是一种频发的灾害性事件,其诱发的大浪及其伴生的风暴潮会在短时间内搬运大量沉积物,对海岸地貌、海底地形和海洋沉积的影响极为严重.总结了未来风暴变化趋势和风暴动力方面的研究进展,概述了近几十年来海滩风暴效应领域几个重要方向的进展,内容包括岸滩风暴灾害调查和研究、海滩风暴效应差异性研究、风暴作用下的泥沙运动和岸滩风暴响应沉积学特征等方面.从国内外的研究现状来看,我国在风暴作用下泥沙运动实测与定量分析、多因素耦合控制下海滩风暴效应差异和海滩风暴地貌过程等方面存在着明显的不足.作为我国海岸科学研究中必需又薄弱的环节,今后该领域的研究应该在强化野外现场实验和监测的基础上,深入探讨极端条件下的海滩过程,发展海滩风暴响应预测模型,并积极开展海滩风暴潮防护技术开发与应用.  相似文献   

14.
海滩对风暴的响应是一个复杂的过程,尤其在连续风暴发生时。本研究利用Argus视频监测系统拍摄的连续图像,从海滩地貌、剖面、海滩滨线、海滩宽度等方面,定量分析了舟山东沙海滩对连续风暴"马勒卡"和"暹芭"的响应特征,并初步探讨了影响海滩地形地貌变化对连续风暴响应的因素。结果表明:(1)风暴"马勒卡"发生后海滩单宽体积变化量平均值为?73.75m3/m,风暴"暹芭"发生后海滩单宽体积变化量的平均值为?54.56m3/m,风暴"马勒卡"使整个海滩滨线平均后退14.75m,风暴"暹芭"使得海滩滨线相对于两次风暴前后退10.91m;(2)在海滩自身因素、外部动力因素以及人类活动等共同作用下海滩对连续风暴产生了复杂的响应。  相似文献   

15.
16.
在波浪和水流的作用下,泥沙在不同时间尺度下的运动会引起沙滩的冲淤演变,对海岸资源有重要的影响。因此,了解沙滩季节性演变规律,并采取针对性的防护措施,是近岸沙滩亟须解决的问题。目前,现场观测是研究沙滩剖面冲淤演变的重要方法,通过沉积物组成、岸滩坡度及波浪动力的时空变化,了解沙滩剖面的变化特性,对于沙滩管理和海岸保护具有十分重要的意义。基于2017年9月—2019年11月在荣成楮岛南岸沙滩每个月采集一次的剖面数据,以及波浪动力数据,分别探究了沙滩在不同时间尺度下的变化特征,并对沙滩变化特征与波浪动力因素的相关性进行了探讨。研究发现:楮岛南岸沙滩形态变化具有较强的季节性特征,春季沙滩比较稳定;夏季沙滩受台风影响侵蚀严重,但在风暴过后的短时间内,沙滩泥沙恢复较快;冬季沙滩恢复速度逐渐减缓并趋于稳定。在夏季和冬季期间,波能流密度的向岸分量对楮岛南沙滩的演变产生重要作用,而且波能流密度向岸分量的均值(选取数据采集前15 d的波浪条件参与计算)与沙滩体积的相关性最好,并给出了两者的线性拟合公式。  相似文献   

17.
Large sections of the western Irish coast are characterised by a highly compartmentalised series of headland-embayment cells in which sand and gravel beaches are backed by large vegetated dune systems. Exposure to modally high-energy swell renders most of these beaches dissipative in character. A mesotidal range (c. 3.5–4.5 m) exists along much of the coast. Analysis of instrumental wind records from three locations permitted the identification of a variety of storm types and the construction of storm catalogues. Few individual storms were recorded at all three stations indicating a lack of regional consistency in storm record. Of the total storms recorded, only a small percentage are potentially damaging (onshore directed) and even fewer span a high tide and thus potentially induce a measurable morphological response at the coast.

Through a combination of historical records, meteorological records, field observations and wave modelling we attempt to assess the impact of storms. Quantifiable records of coastal morphology (maps, air photos and beach profiles) are few in number and do not generally record responses that may be definitely attributed to specific storms. Numerical wave simulations and observations at a variety of sites on the west Irish coast, however, provide insights into instantaneous and medium term (decadal) storm responses in such systems.

We argue that beaches and dunes that are attuned to modally high-energy regimes require extreme storms to cause significant morphological impact. The varying orientation of beaches, a spatially nonuniform storm catalogue and the need for a storm to occur at high water to produce measurable change, impart site-specific storm susceptibility to these embayments. Furthermore, we argue that long-period wave energy attenuation across dissipative shorefaces and beaches reduces coastal response to distant storms whereas short-period, locally generated wind waves are more likely to cause major dune and beach erosion as they arrive at the shoreline unrefracted.

This apparently variable response of beach and dune systems to storm forcing at a decadal scale over a coastline length of 200 km urges caution in generalising regarding regional-scale coastal responses to climatic change.  相似文献   


18.
The morphology, bedforms and hydrodynamics of Merlimont beach, in northern France, characterised by intertidal bars and a spring tidal range of 8.3 m, were surveyed over a 10-day experiment with variable wave conditions that included a 2-day storm with significant wave heights of up to 2.8 m. The beach exhibited two pronounced bar-trough systems located between the mean sea level and low neap tide level. Waves showed a cross-shore depth modulation, attaining maximum heights at high tide. The mean current was characterised dominantly by strong tide-induced longshore flows significantly reinforced by wind forcing during the storm, and by weaker, dominantly offshore, wave-induced flows. Vertical tidal water-level variations (tidal excursion rates) showed a bimodal distribution with a peak towards the mid-tide position and low rates near low and high water. The two bar-trough systems in the mid-tide zone remained stable in position during the experiment but showed significant local change. The absence of bar migration in spite of the relatively energetic context of this beach reflects high macro-scale bar morphological lag due to a combination of the large vertical tidal excursion rates in the mid-tide zone, the cross-shore wave structure, and the pronounced dual bar-trough system. The profile exhibited a highly variable pattern of local morphological change that showed poor correlation with wave energy levels and tidal excursion rates. Profile change reflected marked local morphodynamic feedback effects due mainly to breaks in slope associated with the bar-trough topography and with trough activity. Change was as important during low wave-energy conditions as during the storm. Strong flows in the entrenched troughs hindered cross-shore bar mobility while inducing longshore migration of medium-sized bedforms that contributed in generating short-term profile change. The large size and location of the two pronounced bars in the mid-tide zone of the beach are tentatively attributed respectively to the relatively high wave-energy levels affecting Merlimont beach, and to the cross-shore increase in wave height hinged on tidal modulation of water depths. These two large quasi-permanent bars probably originated as essentially breakpoint bars and are different from a small bar formed by swash and surf processes in the course of the experiment at the mean high water neap tide level, which is characterised by a certain degree of tidal stationarity and larger high-tide waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号