首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
A simplified analytical model including the coupled effects of the wheel–rail–soil system and geometric irregularities of the track is proposed for evaluation of the moving train load. The wheel–rail–soil system is simulated as a series of moving point loads on an Euler–Bernoulli beam resting on a visco-elastic half-space, and the wave-number transform is adopted to derive the 2.5D finite element formulation. The numerical model is validated by published data in the literature. Numerical predictions of ground vibrations by using the proposed method are conducted at a site on the Qin-Shen Line in China.  相似文献   

2.
In this paper a numerical approach is proposed for the construction of fragility curves for shallow metro tunnels in alluvial deposits, when subjected to transversal seismic loading. The response of the tunnel is calculated under quasi static conditions applying the induced seismic ground deformations which are calculated through 1D equivalent linear analysis for an increasing level of seismic intensity. The results of the present numerical analyses are compared with selected closed form solutions, highlighting the limitations of the latter, while indicative full dynamic analysis are performed in order to validate the results of the quasi-static method. The proposed approach allows the evaluation of new fragility curves considering the distinctive features of the tunnel geometries and strength characteristics, the input motion and the soil properties as well as the associated uncertainties. The comparison between the new fragility curves and the existing empirical ones highlights the important role of the local soil conditions, which is not adequately taken into account in the empirical curves.  相似文献   

3.
In this paper the seismic response of simple slope geometries under vertically propagating in-plane shear waves (SV waves) is assessed through two-dimensional finite element analyses to investigate the amplification of the ground motion induced by soil topography. Topographic horizontal and vertical amplification factors were evaluated through different sets of analyses focused on slopes in homogeneous half space and on slopes overlying either a rigid or a compliant bedrock. Soil was assumed to behave as a linear visco-elastic or as an equivalent-linear visco-elastic material. In the analyses the effects of slope inclination and of the characteristics of the input motion were also investigated.In order to calibrate the numerical model, the results obtained in linear visco-elastic analyses were compared with the results of parametric numerical analyses available in the literature, showing a good agreement. The results confirmed that a complex interaction exists between stratigraphic and topographic effects on the amplification of the ground motion and that the two effects cannot be evaluated independently and easily uncoupled. In the case of compliant bedrock the effect of the impedance ratio was also investigated.The results of the equivalent-linear analyses pointed out the remarkable dependence on soil non-linear behavior and, when compared to the results of linear visco-elastic analyses, showed that without accounting for soil non-linear behavior, topographic amplification factors may result underestimated.  相似文献   

4.
Two modelling approaches for the analyses of half-space and train-track embankment on half-space subjected to dynamic loads are presented and compared. A three-dimensional (3D) modelling approach is performed by a coupled Boundary Element–Boundary Element method (BE–BE) and a two-dimensional (2D) one by a coupled Boundary Element–Finite Element method (BE–FE). Both approaches employ time domain algorithms. The comparison between the results of the presented approaches points out whether a problem can be treated as a 2D or as a 3D case. As an application, a parametric study of the wave propagation problem in a train-track embankment with an underlying half-space is presented.  相似文献   

5.
In the last 30 years,the scientific community has developed and proposed different models and numerical approaches for the study of vibrations induced by railway traffic.Most of them are formulated in the frequency/wave number domain and with a 2.5D approach.Three-dimensional numerical models formulated in the time/space domain are less frequently used,mainly due to their high computational cost.Notwithstanding,these models present very attractive characteristics,such as the possibility of considering nonlinear behaviors or the modelling of excess pore pressure and non-homogeneous and non-periodic geometries in the longitudinal direction of the track.In this study,two 3D numerical approaches formulated in the time/space domain are compared and experimentally validated.The first one consists of a finite element approach and the second one of a finite difference approach.The experimental validation in an actual case situated in Carregado(Portugal)shows an acceptable fitting between the numerical results and the actual measurements for both models.However,there are some differences among them.This study therefore includes some recommendations for their use in practical soil dynamics and geotechnical engineering.  相似文献   

6.
The paper discusses the seismic response of circular tunnels in dry sand and investigates the efficiency of current seismic analysis methods at extreme lining flexibilities. Initially, a dynamic centrifuge test on a flexible circular model tunnel, embedded in dry sand, is analyzed by means of rigorous full dynamic analysis of the coupled soil–tunnel system, applying various non-linear soil and soil–tunnel interface models. The numerical results are compared to the experimental ones, aiming to better understand the recorded response and calibrate the numerical models. Then a series of numerical analyses are conducted using the validated numerical model, in order to investigate the effect of the tunnel lining rigidity on the dynamic response of the soil–tunnel system. In parallel, the accuracy of currently used simplified analysis methods is evaluated, by comparing their predictions with the results of the a priori more accurate and well validated numerical models. The comparative analyses allow us to highlight and discuss several crucial aspects of the soil-tunnel system seismic response, including (1) the post-earthquake residual values of the lining forces, which are amplified with the increase of the flexibility of the tunnel and (2) the importance of the soil-tunnel interface conditions. It is finally concluded that simplified analysis methods may provide a reasonable framework for the analysis at a preliminary stage, under certain conditions.  相似文献   

7.
以弹性基岩上覆层状场地中刚性衬砌隧道为模型,采用间接边界元方法求解衬砌隧道所受的沿轴向地震动土作用,通过参数分析揭示轴向动土作用的幅值大小、空间分布等基本规律。研究表明,土-隧道动力相互作用对地震动土作用的空间分布形式影响较小,但对地下隧道所受地震动土作用峰值大小具有显著影响,隧道主要位置点的地震动土作用峰值与隧道相应位置处自由场土层应力相比放大1.7~2.4倍。论文最后提出一个轴向地震动土作用的简化计算方法。  相似文献   

8.
This paper uses numerical and analytical methods to examine the static and seismic response of tunnels with intact and degraded segmental concrete tunnel liners. Concrete degradation is simulated using a non-linear finite element (FE) model that accounts for soil-structure interaction and the non-linear stress–strain response of the soil and concrete. The non-linear FE model is used to calculate radial stresses in tunnel linings with local concrete delaminations and that are subject to both static and seismic loads. Then, the FE results are compared with an analytical solution for jointed tunnel linings in order to assess the accuracy of the solution for predicting stresses in degraded liners. The analyses and results presented in this paper illustrate a simple method for estimating and evaluating the effect of concrete degradation on the distribution of thrust and moment in segmental tunnel linings subject to either static or seismic loads.  相似文献   

9.
For a class of civil engineering structures, that can be accurately represented by ‘coupled shear walls’ (CSWs), a discrete model for the analysis of the dynamic interaction with the underlying soil is proposed. The CSWs, with one or more rows of openings, rest on a rigid foundation embedded in the elastic or viscoelastic half-space. A hierarchical finite element model based on an equivalent continuum approach is adopted for the structure. A frequency-domain boundary element method is used to represent the half-space. Finally, the set of equations governing the response of the coupled soil-structure system to harmonic lateral loads acting on the structure is also given. The frequency deviation effect with respect to the fixed-base structure and the effects of radiation and material damping in the soil are presented for different characteristics of the structure and different soil properties.  相似文献   

10.
A procedure for the seismic analysis of underground tunnels using recorded free-field earthquakes based on the 2.5D finite/infinite element approach is presented. The near and far fields of the half space are modeled by finite and infinite elements, respectively. Using the 1D wave theory, the nodal force and displacement on the near-field boundary are computed for each spectral frequency of the earthquake. Then, equivalent seismic forces are computed for the near-field boundary for the earthquake spectrum. By assuming the soil-tunnel system to be uniform along the tunnel axis, the 2.5D approach can account for the wave transmission along the tunnel axis, which reduces to the 2D case for infinite transmission velocity. The horizontal and vertical components of the 1999 Chi-Chi Earthquake (TCU068) are adopted as the free-field motions in the numerical analysis. The maximal stresses and distribution patterns of the tunnel section under the P- and SV-waves are thoroughly studied by the 2.5D and 2D approaches, which should prove useful to the design of underground tunnels.  相似文献   

11.
In this paper, a numerical approach for the prediction of vibrations induced in buildings due to railway traffic in tunnel is proposed. The numerical method is based on a sub-structuring approach, where the train is simulated by a multi-body model; the track–tunnel–ground system is modeled by a 2.5D FEM–PML approach; and the building by resource to a 3D FEM method. The coupling of the building to the ground is established taking into account the soil–structure-interaction (SSI). The methodology proposed allows dealing with the three-dimensional characteristics of the problem with a reasonable computational effort. Using the proposed model, a numerical study is developed in order to better discern the impact of the use of floating slabs systems for the isolation of vibrations in the tunnel on the dynamic response of a building located in the surrounding of the tunnel. The comparison between isolated and non-isolated scenarios allowed concluding that the mats stiffness is a key parameter on the efficiency of floating slab systems. Furthermore, it was found that the selection of the stiffness of the mats should be performed carefully in order to avoid amplification of vertical vibrations of the slabs of the building.  相似文献   

12.
Two prediction models for calculating vibration from underground railways are developed: the pipe-in-pipe model and the coupled periodic finite element–boundary element (FE–BE) model.The pipe-in-pipe model is a semi-analytical three-dimensional model that accounts for the dynamic interaction between the track, the tunnel and the soil. The continuum theory of elasticity in cylindrical coordinates is used to model two concentric pipes: an inner pipe to represent the tunnel wall and an outer pipe to represent the surrounding soil. The tunnel and soil are coupled accounting for equilibrium of stresses and compatibility of displacements at the tunnel–soil interface. This method assumes that the tunnel is invariant in the longitudinal direction and the problem is formulated in the frequency–wavenumber domain using a Fourier transformation. A track, formulated as an Euler–Bernoulli beam, is then coupled to this model. Results are transformed to the space domain using the inverse Fourier transform.The coupled periodic FE–BE model is based on a subdomain formulation, where a boundary element method is used for the soil and a finite element method for the tunnel. The Craig–Bampton substructuring technique is used to efficiently incorporate the track in the tunnel. The periodicity of the tunnel is exploited using the Floquet transformation to formulate the track–tunnel–soil interaction problem in the frequency–wavenumber domain and to compute the wave field radiated into the soil.An invariant concrete tunnel, embedded in a homogeneous full space is analyzed using both approaches. The pipe-in-pipe model offers an exact solution to this problem, which is used to validate the coupled periodic FE–BE model. The free field response due to a harmonic load in the tunnel is predicted and results obtained with both models are compared. The advantages and limitations of both models are highlighted. The coupled periodic FE–BE model has a greater potential as it can account for the complex periodic geometry of the tunnel and the layering in a soil medium. The effect of coupling a floating slab to the tunnel–soil system is also studied with both models by calculating the insertion gain.  相似文献   

13.
The effects on the hoop force and bending moment developed in the lining of a circular tunnel of the contact properties of the soil-lining interface are investigated numerically for both cases of S- and P-seismic wave propagation. Development of a robust model for the dynamic simulation of this problem includes: (i) the implementation of a hysteretic model of the non-linear soil response under cyclic loads in the finite element code ABAQUS; and (ii) validation of the analyses results against centrifuge tests from the literature and closed-from elasticity solutions. Accordingly, a parametric study is conducted to quantify the effect of adopting different values of the friction coefficient of the tunnel liner interface, while assuming that the relaxation load is transferred only to the temporary support shell of the tunnel; a hypothesis applicable mainly to tunnels constructed with the NATM method where an unreinforced concrete final lining is usually installed. Practical findings of this study suggest that the full-slip assumption should be used in conjunction with closed-form expressions for preliminary estimates of the tunnel response. On the contrary, for tunnels where the lining is designed to bear the soil loads, numerical tools should be used for the rational assessment of their seismic response. In the latter case, more experimental studies are needed to evaluate the friction properties at the interface, since common expressions correlating the friction coefficient with the friction angle of the surrounding soil do not appear compatible with the centrifuge test results examined herein.  相似文献   

14.
针对黄土地区山岭隧道面临的强震灾害现实特点,以强震作用下洞口周边土体与隧道结构的地震动放大效应为主要研究目标,通过建立三维数值模型,重点研究不同坡度、坡高与入洞高程模型的坡面高程方向、水平方向以及衬砌结构的加速度与位移响应规律,提出坡面加固区范围和隧道抗震设防长度建议值。研究结果表明:仰坡高度、坡角及进洞高程的变化,均会对隧道洞口段地震响应规律和破坏模式产生重要影响,缓坡易发生坡底处的剪切破坏,而陡坡易发生坡顶的拉裂破坏;随着边坡高度的增大,边坡的滑动破坏范围逐渐增大;隧道的存在对坡面地震动高程放大效应有明显"抑制"作用,在洞口水平向存在动力响应放大区,范围为2.1~2.8倍洞径;通过分析隧道衬砌沿进深方向的动力响应规律,建议黄土隧道洞口段抗震设防长度最小值为3倍洞径。  相似文献   

15.
The paper presents a numerical model for the dynamic analysis of pile groups with inclined piles in horizontally layered soil deposits. Piles are modelled with Euler–Bernoulli beams, while the soil is supposed to be constituted by independent infinite viscoelastic horizontal layers. The pile–soil–pile interaction as well as the hysteretic and geometric damping is taken into account by means of two‐dimensional elastodynamic Green's functions. Piles cap is considered by introducing a rigid constraint; the condensation of the problem permits a consistent derivation of both the dynamic impedance matrix of the soil–foundation system and the foundation input motion. These quantities are those used to perform inertial soil–structure interaction analyses in the framework of the substructure approach. Furthermore, the model allows evaluating the kinematic stress resultants in piles resulting from waves propagating in the soil deposit, taking into account the pile–soil–pile interactions. The model validation is carried out by performing accuracy analyses and comparing results in terms of dynamic impedance functions, kinematic response parameters and pile stress resultants, with those furnished by 3D refined finite element models. To this purpose, classical elastodynamic solutions are adopted to define the soil–pile interaction problem. The model results in low computational demands without significant loss of precision, compared with more rigorous approaches or refined finite element models. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
移动荷载下高速铁路轨道-路基的动位移分析   总被引:1,自引:0,他引:1       下载免费PDF全文
薛富春 《地震工程学报》2019,41(5):1105-1113
建立精细化的足尺轨道-路基-地基耦合系统非线性数值分析模型,考虑岩土材料的非线性应力-应变关系、路基填筑完成后的静应力状态对其后动力计算的影响、底座板底面与路基基床表层表面之间的动力相互作用,模拟轨道与路基系统的建造过程和与8辆编组动车组轮对相对应的荷载以350 km/h的速度的移动过程。结果显示,以实体单元模拟钢轨能获得更符合事实的钢轨空间振动响应,比采用梁单元更具优势;路基各层底面的动位移具有随时间和空间变化的特征;沿路基断面横向,不同时刻的竖向动位移在轨道板宽度范围内的最大波动值约0.04 mm,可认为均匀分布;沿深度方向,竖向动位移在不同时刻的分布相似,按照指数函数衰减,最大值约为0.8 mm,小于我国高速铁路3.5 mm的控制标准;沿线路纵向,竖向动位移峰值出现的位置与该时刻移动荷载所处的空间位置对应,在同一深度条件下,不同时刻的竖向动位移分布形态相似;基床底层底面以上,同一转向架上前后轮对对应的荷载引起的竖向动位移具有可观的叠加效应。  相似文献   

17.
For the longitudinal seismic response analysis of a tunnel structure under asynchronous earthquake excitations, a longitudinal integral response deformation method classified as a practical approach is proposed in this paper. The determinations of the structural critical moments when maximal deformations and internal forces in the longitudinal direction occur are deduced as well. When applying the proposed method, the static analysis of the free-field computation model subjected to the least favorable free-field deformation at the tunnel buried depth is performed first to calculate the equivalent input seismic loads. Then, the equivalent input seismic loads are imposed on the integral tunnel-foundation computation model to conduct the static calculation. Afterwards, the critical longitudinal seismic responses of the tunnel are obtained. The applicability of the new method is verified by comparing the seismic responses of a shield tunnel structure in Beijing, determined by the proposed procedure and by a dynamic time-history analysis under a series of obliquely incident out-ofplane and in-plane waves. The results show that the proposed method has a clear concept with high accuracy and simple progress. Meanwhile, this method provides a feasible way to determine the critical moments of the longitudinal seismic responses of a tunnel structure. Therefore, the proposed method can be effectively applied to analyze the seismic response of a long-line underground structure subjected to non-uniform excitations.  相似文献   

18.
基于ABAQUS软件平台,应用自行开发的流固耦合动力模型孔压单元模拟场地土体,并通过黏弹性人工边界方法实现地震动的输入,对饱和土体场地中的双孔隧道结构在地震荷载作用下的动力反应进行研究。计算结果表明:在地震反应结束时刻,场地土体位移幅值在两隧道之间以及两隧道的附近区域较大,而远离隧道的区域则较小;场地底部区域土体的孔压幅值较大,而场地顶部区域土体则较小;隧道左右两侧拱腰部位的衬砌的应力较大,而拱顶部位则较小。计算结果同时表明了流固耦合动力模型孔压单元在饱和土体-隧道体系地震反应研究中的适用性。  相似文献   

19.
二维场地地震反应有限元分析的问题探讨   总被引:2,自引:2,他引:0  
本文通过数值计算,在线弹性范围内初步分析了土层地震反应随不同侧向人工边界、有限土域取值范围、土介质的阻尼系数的变化情况;采用滞后阻尼假定,探讨了在土层时域分析中如何由滞后阻尼系数形成阻尼矩阵,给出了一个阻尼系数转换频率取值的经验公式。在此研究基础上编制了二维有限元SR2D计算程序。  相似文献   

20.
Seismic analysis of soil–well–pier system was carried out using three different approaches to evaluate their comparative performance and associated complexities. These approaches were (a) two-dimensional nonlinear (2D-NL), (b) two-dimensional equivalent-linear (2D-EqL), and (c) one-dimensional spring–dashpot (1D). Soil was modeled as 2D plane-strain elements in the 2D-NL and 2D-EqL approaches, and as springs and dashpots in the 1D approach. Nonlinear behavior of soil was captured rigorously in the 2D-NL approach and approximately in the remaining two approaches. Results of the two approximate analyses (i.e., 2D-EqL and 1D) were compared with those of the 2D-NL analysis with the objective to assess suitability of approximate analysis for practical purposes. In the 1D approach, several combinations of Novak's and Veletsos' springs were used to come up with a simplified 1D model using three types of spring–dashpots. The proposed model estimates the displacement and force resultants relatively better than the other 1D models available in literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号