首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
The purpose of this paper is to investigate the effects of liquefaction on modal parameters (frequency and damping) of pile‐supported structures. Four physical models, consisting of two single piles and two 2 × 2 pile groups, were tested in a shaking table where the soil surrounding the pile liquefied because of seismic shaking. The experimental results showed that the natural frequency of pile‐supported structures may decrease considerably owing to the loss of lateral support offered by the soil to the pile. On the other hand, the damping ratio of structure may increase to values in excess of 20%. These findings have important design consequences: (a) for low‐period structures, substantial reduction of spectral acceleration is expected; (b) during and after liquefaction, the response of the system may be dictated by the interactions of multiple loadings, that is, horizontal, axial and overturning moment, which were negligible prior to liquefaction; and (c) with the onset of liquefaction due to increased flexibility of pile‐supported structure, larger spectral displacement may be expected, which in turn may enhance P‐delta effects and consequently amplification of overturning moment. Practical implications for pile design are discussed. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
The influence of nonlinearity on the dynamic response of cast-in-situ reinforced concrete piles subjected to strong vertical excitation was studied. Forced vibration test of single piles (L/d=10, 15, 20) and 2×2 pile groups (s/d=2, 3, 4 for each L/d) were conducted in the field for two different embedded conditions of pile cap. From the measured nonlinear response curves, the effective pile–soil system mass, stiffness and damping were determined and the nonlinear response curves were back-calculated using the theory of nonlinear vibration. The test results were compared with the continuum approach of Novak with dynamic interaction factor approach using both linear and linear-equivalent numerical methods. Reasonable match between the measured and predicted response was found for linear-equivalent methods by introducing a weak boundary-zone around the pile to approximately account for the nonlinear behaviour of pile–soil system. The test data were used to establish the empirical relationship in order to estimate the extent of soil separation around the pile with soil under vertical vibration.  相似文献   

3.
4.
In this paper, a soil–pile–structure model is tested on a shaking table subject to both a sinusoidal wave and the acceleration time history of the scaled 1940 El Centro earthquake. A medium-size river sand is compacted into a 1.7-m-high laminar rectangular tank to form a loose fill with a relative density of 15%. A single-storey steel structure of 2.54 ton is placed on a concrete pile cap, which is connected to the four end-bearing piles. A very distinct pounding phenomenon between soil and pile is observed; and, the acceleration response of the pile cap can be three times larger than that of the structural response. The pounding is due to the development of a gap separation between soil and pile, and the extraordinary large inertia force suffered at the top of the pile also induces cracking in the pile. To explain this observed phenomenon, nonlinear finite element method (FEM) analyses with a nonlinear gap element have been carried out. The spikes in the acceleration response of the pile cap caused by pounding can be modeled adequately by the FEM analyses. The present results suggest that one of the probable causes of pile damages is due to seismic pounding between the laterally compressed soil and the pile near the pile cap level.  相似文献   

5.
The dynamic through–soil interaction between nearby pile supported structures in a viscoelastic half-space, under incident S and Rayleigh waves, is numerically studied. To this end, a three-dimensional viscoelastic BEM–FEM formulation for the dynamic analysis of piles and pile groups in the frequency domain is used, where soil is modelled by BEM and piles are simulated by one-dimensional finite elements as Bernoulli beams. This formulation has been enhanced to include the presence of linear superstructures founded on pile groups, so that structure–soil–structure interaction (SSSI) can be investigated making use of a direct methodology with an affordable number of degrees of freedom. The influence of SSSI on lateral spectral deformation, vertical and rotational response, and shear forces at pile heads, for several configurations of shear one-storey buildings, is addressed. Maximum response spectra are also presented. SSSI effects on groups of structures with similar dynamic characteristics have been found to be important. The system response can be either amplified or attenuated according to the distance between adjacent buildings, which has been related to dynamic properties of the overall system.  相似文献   

6.
Bridges are a part of vital infrastructure,which should operate even after a disaster to keep emergency services running.There have been numerous bridge failures during major past earthquakes due to liquefaction.Among other categories of failures,mid span collapse(without the failure of abutments)of pile supported bridges founded in liquefiable deposits are still observed even in most recent earthquakes.This mechanism of collapse is attributed to the effects related to the differential elongation of natural period of the individual piers during liquefaction.A shake table investigation has been carried out in this study to verify mechanisms behind midspan collapse of pile supported bridges in liquefiable deposits.In this investigation,a typical pile supported bridge is scaled down,and its foundations pass through the liquefiable loose sandy soil and rest in a dense gravel layer.White noise motions of increasing acceleration magnitude have been applied to initiate progressive liquefaction and to characterize the dynamic features of the bridge.It has been found that as the liquefaction of the soil sets in,the natural frequency of individual bridge support is reduced,with the highest reduction occurring near the central spans.As a result,there is differential lateral displacement and bending moment demand on the piles.It has also been observed that for the central pile,the maximum bending moment in the pile will occur at a higher elevation,as compared to that of the interface of soils of varied stiffness,unlike the abutment piles.The practical implications of this research are also highlighted.  相似文献   

7.
The objectives of this paper are to show practically: (1) the validation of a proposed three-dimensional effective stress analysis for the pile foundations, and (2) the effectiveness of remedial deposits on pile stresses under liquefaction by making comparisons between the results of centrifuge tests and those of the proposed analysis. Two foundation models supported by end-bending piles were studied with improved and unimproved deposits. There exists a good consistency between the numerical and experimental results for excess pore water-pressure ratios ranging from 0 to about 0·9. From the numerical results, the bending moment at the pile top with the improved deposit is about 50 per cent lower than that with the unimproved deposit. However, it was found that the smaller the bending moment develops in the pile with the improved deposit, the larger the compressive and/or tensional axial stresses in the pile. This is due to the predominant excitation of rocking vibration of the foundation. From the analytical and experimental results, it has been found that the remedial method can be a variable means to protect piles from soil liquefaction hazards. However, both axial stress and bending moment produced in piles should be considered in assessing the liquefied seismic capacity of group pile-foundation–structural systems with improved soil deposits. © 1998 John Wiley & Sons, Ltd.  相似文献   

8.
Shaking table tests were conducted by means of a large-scale laminar box with 4 m in length, 2 m in width and 2 m in height in order to investigate behavior of a soil-pile-superstructure system in liquefiable ground. A model two-storey structure, supported by a pile group, was set in a saturated sand deposit, and subjected to a sinusoidal base motion with increasing amplitude. Discussions are focused on the transient behavior until soil liquefaction occurs. Main interests are characteristics of springs used in a sway-rocking model and a multi-freedom lumped mass (MFLM) model that are frequently used in soil–pile interaction analysis. The spring constant in the sway-rocking model is represented by restoring force characteristics at the pile head, and that in the MFLM system is represented by an interaction spring connecting the pile to the free field. The transient state prior to soil liquefaction is shown to be important in the design of a pile because dynamic earth pressure shows peak response in this state. The reduction of the stiffness due to excess porewater generation and strain dependent nonlinear behavior is evaluated.  相似文献   

9.
Dynamic response of pile groups embedded in a poroelastic medium   总被引:3,自引:0,他引:3  
The dynamic response of pile groups embedded in a homogeneous poroelastic medium and subjected to vertical loading is considered. The piles are represented by compressible beam-column elements and the porous medium uses Biot's three-dimensional elastodynamic theory. The dynamic impedance of pile groups can be computed directly by using pile–soil–pile dynamic interaction factors. The axial forces and pore pressures along the length of pile groups are computed by superposition method, which greatly reduces the computational time for the direct analysis of pile groups. Parametric studies are conducted for various conditions of pile groups. The superposition method is proposed for the dynamic response analysis of pile groups that is computationally feasible for practical applications.  相似文献   

10.
Different levels of model sophistication have recently emerged to support seismic risk assessment of bridges, but mostly at the expense of neglecting the influence of vertical ground motions (VGMs). In this paper, the influence of VGMs on bridge seismic response is presented and the results are compared with the case of horizontal‐only excitations. An advanced finite element model that accounts for VGMs is first developed. Then, to investigate the effect of soil–structure interaction (SSI) including liquefaction potential, the same bridge with soil‐foundation and fixed boundary conditions is also analyzed. Results show that the inclusion of the VGMs has a significant influence on the seismic response, especially for the axial force in columns, normal force of bearings, and the vertical deck bending moments. However, VGMs do not have as much influence on the seismic demand of the pile cap displacements or pile maximum axial forces. Also, the significant fluctuation of the column axial force can reduce its shear and flexural capacity, and a heightened reversal of flexural effects may induce damage in the deck. In addition, relative to the fixed base case, SSI effects tend to reduce response quantities for certain ground motions while increasing demands for others. This phenomenon is explained as a function of the frequency content of the ground motions, the shift in natural vertical periods, and the VGM spectral accelerations at higher modes. Moreover, the mechanisms of liquefaction are isolated relative to SSI effects in nonliquefiable soils, revealing the influence of liquefaction on bridge response under VGMs. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
工程上广泛采用基于Winkler模型的层状地基反力系数法对桩土水平动力响应进行分析,该方法忽略了地基土剪切作用的影响,与工程实际有一定偏差。另外,对桩土的非线性相互作用和如扩底桩、楔形桩等变截面桩问题常用的传递矩阵法或中心差分法,计算过程较为繁琐。基于Pasternak地基模型和Adomian分解方法,提出一种考虑地基土剪切作用的桩土水平动力相互作用近似计算方法,该方法计算简便且结果精度较高,对变截面桩问题有很好的适用性;并基于该方法,对扩底桩水平动力响应问题和影响因素进行分析。结果指出,扩底半径和上部桩周土弹性模量对扩底桩水平动力响应影响较大,随着扩底半径的增加和桩周土弹性模量的增大,扩底桩水平振动位移幅值逐渐减小。另外,在较低频率的荷载激励下,应考虑土层对桩的剪切作用。  相似文献   

12.
Physical modeling tests were conducted on pile foundations to measure the seismic performance of a new ground improvement technology, called passive site stabilization, for use on sites susceptible to liquefaction and liquefaction-induced lateral spreading. The method involves the slow injection of a low-viscosity stabilizer in conjunction with the natural groundwater flow. The effectiveness of the treatment using dilute colloidal silica as the stabilizer was tested by two centrifuge models that simulated soil–pile interaction of a 2×2 end-bearing pile group embedded in a multilayer soil deposit of 10-m thickness. The models utilized a laminar box and involved gently inclined soil profiles with and without the applied soil improvement. Response of the pile groups and the lateral spreading behaviors of the treated and untreated soil under a simulated base shaking were investigated and compared. The results showed that treatment with dilute colloidal silica stabilizer minimized permanent lateral deformations and reduced the liquefaction potential of the soil. Significant reductions occurred in the measured pile bending moments and axial forces because the layer treated with dilute colloidal silica did not liquefy. Thus, the technique can be an alternative to traditional methods of ground improvement.  相似文献   

13.
Pile foundation as well as other underground structures could be seriously affected by soil liquefaction during strong earthquakes. Damages on pile foundation due to liquefaction can be reduced by implementation of some soil improvement method. Main objective of present study is developing of drain method that can improve the soil in order to mitigate the destructiveness of liquefaction on superstructure supported by pile foundation. Series of shaking table tests were conducted on 2×2 pile foundation and soil model was improved by drains. Configurations of drains around piles, intensity of shaking were one of the parameters that were changing during the tests in order to investigate the response of pile foundation in improved soil condition.Shaking table tests and performed On-site experiment showed the following effects of the new drain method. (1) When the intensity of earthquake motion is 200 gal or less, generation of excess pore water pressure is reduced and the pile bending moment is decreased, (2) when the intensity of earthquake motion is stronger (300 gal or more), drainage effect prevents disappearance of subgrade reaction, and (3) proposed new type of drain can control excess pore water pressure without clogging.  相似文献   

14.
The second-order effect of axial force on horizontal vibrating characteristics of a large-diameter pipe pile is theoretically investigated. Governing equations of the pile-soil system are established based on elastodynamics. Three-dimensional wave equations of soil are decoupled through differential transformation and variable separation. Consequently, expressions of soil displacements and horizontal resistances can be obtained. An analytical solution of the pile is derived based on continuity conditions between the pile and soil, subsequently from which expressions of the complex impedances are deduced. Analyses are carried out to examine the second-order effect of axial force on the horizontal vibrating behavior of the pipe pile. Some conclusions can be summarized as follows: stiffness and damping factors are decreased with the application of axial force on the pile head; distributions of the pile horizontal displacement and rotation angle are regenerated due to the second-order effect of the applied axial force; and redistributions of the bending moment and shearing force occur due to the second-order effect of the applied axial force.  相似文献   

15.
16.
1995年日本国兵库县南部地震桩基础典型破坏模式的分析   总被引:2,自引:0,他引:2  
郭璇  李亮 《世界地震工程》2004,20(3):100-108
对于发生在1995年1月17日日本国兵库县南部地震中,以神户市为中心的临海地域中大量由于液化土层的侧向流动引起护坝附近建筑物桩基础在地层中的典型破坏形式进行了破坏和应力分析。将震后破坏建筑物详细的地基调查报告以及用倾斜计及可视照相机等测量手段得到的桩基变形实测结果与解析结果进行了比较分析,对临海建筑物桩基础的破坏机制进行了研究,验证了应力解析的方法-荷载分布法的有效性和实用性。  相似文献   

17.
A general methodology is outlined for a complete seismic soil—pile-foundation—structure interaction analysis. A Beam-on-Dynamic-Winkler-Foundation (BDWF) simplified model and a Green's-function-based rigorous method are utilized in determining the dynamic response of single piles and pile groups. The simplified model is validated through comparisons with the rigorous method. A comprehensive parameter study is then performed on the effect of pile group configuration on the dynamic impedances of pile foundations. Insight is gained into the nature of dynamic pile—soil—pile interaction. The results presented herein may be used in practice as a guide in obtaining the dynamic stiffness and damping of foundations with a large number of piles.  相似文献   

18.
A method for detecting site liquefaction by seismic records   总被引:1,自引:0,他引:1  
A simple semi-theoretical method for straightforward identification of the liquefied site by using surface acceleration records is presented by taking the natural frequency decreasing ratio of the site (NFDRS) as a fundamental benchmark and taking the time–frequency decreasing ratio of the surface acceleration (TFDRSA) as a basic index. The TFDRSA of an accelerogram is calculated and the critical point of the TFDRSA is taken as a divisive point which distinguishes liquefied sites from non-liquefied sites. The critical point value of TFDRSA is assumed to be equal to the lower limit of NFDRS caused by liquefaction and the lower limit of NFDRS is attained approximately by a two-degree-of-freedom system which is employed to simulate site liquefaction. Based on the analysis for actual earthquake records, it is proved that the theoretical model and the basic assumption here are reasonable. The reliability of the method in the paper is verified by the actual earthquake records and the comparison results indicate that the method can detect the liquefied site and non-liquefied sites including the soft sites correctly.  相似文献   

19.
The dynamic response of piles to seismic loading is explored by means of an extensive parametric study based on a properly calibrated Beam-on-Dynamic-Winkler-Foundation (BDWF) model. The investigated problem consists of a single vertical cylindrical pile, modelled as an Euler–Bernoulli beam, embedded in a subsoil consisting of two homogeneous viscoelastic layers of sharply different stiffness resting on a rigid stratum. The system is subjected to vertically propagating seismic S waves, in the form of a transient motion imposed on rock outcrop. Several accelerograms recorded in Italy are employed as input motions in the numerical analyses. The paper highlights the severity of kinematic pile bending in the vicinity of the interface separating the two soil layers. In addition to factors already investigated such as layer stiffness contrast, relative soil–pile stiffness, interface depth and intensity of ground excitation, the paper focuses on additional important factors, notably soil material damping, stiffness of Winkler springs and frequency content of earthquake excitation. Existing predictive equations for assessing kinematic pile bending at soil layer interfaces are revisited and new regression analyses are performed. A synthesis of findings in terms of a set of simple equations is provided. The use of these equations is discussed through examples.  相似文献   

20.
To investigate the seismic response of a pile group during liquefaction, shaking table tests on a 1/25 scale model of a 2 × 2 pile group were conducted, which were pilot tests of a test project of a scale-model offshore wind turbine with jacket foundation. A large laminar shear box was utilized as the soil container to prepare a liquefiable sandy ground specimen. The pile group model comprising four slender aluminum piles with their pile heads connected by a rigid frame was designed with similitude considerations focusing on soil–pile interaction. The input motions were 2-Hz sinusoids with various acceleration amplitudes. The excess pore water pressure generation indicated that the upper half of the ground specimen reached initial liquefaction under the 50-gal-amplitude excitation, whereas in the 75-gal-amplitude test, almost entire ground was liquefied. Accelerations in soil, on the movable frames composing the laminar boundary of the shear box, and along the pile showed limited difference at the same elevation before liquefaction. After liquefaction, the soil and the movable-frame accelerations that represented the ground response considerably reduced, whereas both the movable frames and the piles exhibited high-frequency jitters other than 2-Hz sinusoid, and meantime, remarkable phase difference between the responses of the pile group and the ground was observed, all probably due to the substantial degradation of liquefied soil. Axial strains along the pile implied its double-curvature bending behavior, and the accordingly calculated moment declined significantly after liquefaction. These observations demonstrated the interaction between soil and piles during liquefaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号