首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The capacity spectrum method (CSM) has established itself as one of the most used Nonlinear Static Procedures for the seismic assessment of structures, since its introduction in 1975, when it was first presented by Freeman. More recently, this procedure was implemented in the ATC40 guidelines and lately improved in the FEMA‐440 report. The first step of work addressed by this paper relates to the comparison between the two features of the CSM. In the second part, an extension of the FEMA‐440CSM version is proposed for plan‐asymmetric real RC building structures. The case studies under analysis are the SPEAR building—an irregular 3D structure representing typical old three‐storey buildings in the Mediterranean region, from the early 1970s—and two real Turkish buildings with five and eight storeys. The CSM‐ATC40, the CSM‐FEMA440 and the proposed extended CSM‐FEMA440 method are applied and the results obtained duly compared with nonlinear dynamicit timehistory analyses. For the latter, semi‐artificial ground motions are used to define the seismic action. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
The capacity spectrum method is adopted by the ATC‐40 document for evaluating the inelastic deformation demands of reinforced concrete structures. Several studies have shown that the iterative procedure needed in the method may not give convergent outcomes in some cases. This paper focuses on the convergence of the capacity spectrum method in the constant velocity region of the response spectrum. The results obtained from the examples discussed in this study show that the convergent characteristics of this method depend on the elastic period, the hysteretic damping model, the yield displacement and the ductility ratio of the system analyzed. The capacity spectrum method can converge only for the case that the absolute value of the first derivative of the government equation derived from the demand and capacity diagrams of structures is smaller than 1.0. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
For the performance‐based seismic design of buildings, both the displacement coefficient method used by FEMA‐273 and the capacity spectrum method adopted by ATC‐40 are non‐linear static procedures. The pushover curves of structures need to be established during processing of these two methods. They are applied to evaluation and rehabilitation of existing structures. This paper is concerned with experimental studies on the accuracy of both methods. Through carrying out the pseudo‐dynamic tests, cyclic loading tests and pushover tests on three reinforced concrete (RC) columns, the maximum inelastic deformation demands (target displacements) determined by the coefficient method of FEMA‐273 and the capacity spectrum method of ATC‐40 are compared. In addition, a modified capacity spectrum method which is based on the use of inelastic design response spectra is also included in this study. It is shown from the test specimens that the coefficient method overestimates the peak test displacements with an average error of +28% while the capacity spectrum method underestimates them with an average error of ‐20%. If the Kowalsky hysteretic damping model is used in the capacity spectrum method instead of the original damping model, the average errors become ‐11% by ignoring the effect of stiffness degrading and ‐1.2% by slightly including the effect of stiffness degrading. Furthermore, if the Newmark–Hall inelastic design spectrum is implemented in the capacity spectrum method instead of the elastic design spectrum, the average error decreases to ‐6.6% which undervalues, but is close to, the experimental results. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
Several procedures for non-linear static and dynamic analysis of structures have been developed in recent years. This paper discusses those procedures that have been implemented into the latest European and US seismic provisions: non-linear dynamic time-history analysis; N2 non-linear static method (Eurocode 8); non-linear static procedure NSP (FEMA 356) and improved capacity spectrum method CSM (FEMA 440). The presented methods differ in respect to accuracy, simplicity, transparency and clarity of theoretical background. Non-linear static procedures were developed with the aim of overcoming the insufficiency and limitations of linear methods, whilst at the same time maintaining a relatively simple application. All procedures incorporate performance-based concepts paying more attention to damage control. Application of the presented procedures is illustrated by means of an example of an eight-storey reinforced concrete frame building. The results obtained by non-linear dynamic time-history analysis and non-linear static procedures are compared. It is concluded that these non-linear static procedures are sustainable for application. Additionally, this paper discusses a recommendation in the Eurocode 8/1 that the capacity curve should be determined by pushover analysis for values of the control displacement ranging between zero and 150% of the target displacement. Maximum top displacement of the analyzed structure obtained by using dynamic method with real time-history records corresponds to 145% of the target displacement obtained using the non-linear static N2 procedure.  相似文献   

5.
黄俊杰  罗奇峰 《地震研究》2005,28(4):383-387
给出了ATC-40迭代求解方法A收敛性的一个数学解释。分析了ATC-40迭代求解方法A和改进的能力谱方法在迭代上的差异,并从数学上证明了改进的能力谱方法有收敛的结果。  相似文献   

6.
The nonlinear behavior of reinforced concrete (RC) members represents a key issue in the seismic performance assessment of structures. Many structures constructed in the 1980s or earlier were designed based on force limits; thus they often exhibit brittle failure modes, strength and stiffness degradation, and severe pinching effects. Field surveys and experimental evidence have demonstrated that such inelastic responses affect the global behavior of RC structural systems. Efforts have been made to consider the degrading stiffness and strength in the simplified nonlinear static procedures commonly adopted by practitioners. This paper investigates the accuracy of such procedures for the seismic performance assessment of RC structural systems. Refined finite element models of a shear critical bridge bent and a flexure‐critical bridge pier are used as reference models. The numerical models are validated against experimental results and used to evaluate the inelastic dynamic response of the structures subjected to earthquake ground motions with increasing amplitude. The maximum response from the refined numerical models is compared against the results from the simplified static procedures, namely modified capacity spectrum method and coefficient method in FEMA‐440. The accuracy of the static procedures in estimating the displacement demand of a flexure‐critical system and shear‐critical system is discussed in detail. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
In order to account for the non‐linear behavior of structures via non‐linear static procedure, the capacity spectrum method has been adopted by ATC‐40 for evaluation and retrofit of reinforced concrete buildings. For elastic‐perfectly‐plastic SDOF systems, the accuracy of the capacity spectrum method depends only on the acceleration response spectrum chosen to form the demand spectrum and the adopted model for calculating the equivalent viscous damping ratios. According to this method, the pseudo‐acceleration response spectrum (PSa) is used to create the demand diagram. It is found that the ATC‐40 procedure, using its Type A hysteretic model, may be inaccurate especially for systems with damping ratios greater than 10% and periods longer than 0.15sec. In order to improve the accuracy of the capacity spectrum method, this study proposes to use the real absolute acceleration response spectrum (S0.a) instead of the PSa to establish the demand diagram. The step‐by‐step procedure of the improved method and examples are implemented in this paper to illustrate the calculations of earthquake‐induced deformations. In addition, three selected models of equivalent viscous damping are also compared in this paper to assess the accuracy of the model used in the ATC‐40 procedure. Results show that the WJE damping model may be used by the capacity spectrum method to reasonably predict the inelastic displacements when the ductility demand (μ) of the structures is less than 4, whereas the damping model proposed by Kowalsky can be implemented when μ>4.0. Alternatively, the damping model proposed by Kowalsky may be used to calculate the equivalent viscous damping for the entire range of ductility. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
本文利用MHD二维不可压模式,研究了地球磁层顶边界区剪切流引起的Kelvin-Helmholtz(K-H)不稳定性问题,得到了一个新的非线性微分方程组.理论和数值分析表明:该问题的非线性演化对初值非常敏感,而且在雷诺数和磁雷诺数给定的条件下,Alfven马赫数(MA)对K-H不稳定性的非线性演化起决定性作用.这组方程蕴含几个吸引子,如不动点,极限环和奇异吸引子等,这体现了磁层顶非线性系统的复杂性.文中还发现背景磁场在磁层顶K-H不稳定性的非线性演化过程中起很重要的作用.  相似文献   

9.
This research study is aimed at evaluating the accuracy of the displacement coefficient method (DCM) of FEMA 440 and associated nonlinear static procedure (NLSP) for actual buildings with soft story mechanism and various ductility capacities. The DCM and associated NLSP are evaluated using two existing seismically vulnerable buildings with soft story mechanism. The buildings are first retrofitted using a ductile steel‐brace‐link system to represent those with good ductility capacity and then retrofitted with RC squat infill shear panels (SISPs) to represent those with relatively poor ductility capacity. The evaluation of the DCM of FEMA 440 and associated NLSP is then performed by comparing the roof displacements (target displacements), maximum interstory drifts, and maximum plastic hinge rotations of the original and retrofitted buildings obtained from NLSP (at the target displacement level of DCM) with those obtained from nonlinear response history (NRH) analyses for three different seismic performance levels. It is observed that the DCM, and hence, the NLSP fail to accurately predict the NRH analyses results mainly due to uncertainties in the coefficient C1 of the DCM in the short period range, the inability of the DCM to capture the failure of structural members beyond a certain lateral displacement or plastic rotation limit and associated soft story mechanism. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
To overcome excessive computation errors and convergence failures encountered in an iterative calculation of the reliability index using the response surface method (RSM) for some nonlinear limit state functions, this study investigates an essential factor based on chaotic dynamics theory. The bifurcation diagrams of the reliability index are presented for some typical nonlinear limit state functions, and the computation results from the mapping functions due to the RSM iterations show the complicated dynamic phenomena such as the periodic oscillation, as well as bifurcation and chaos. From the numerical examples, it is concluded that the parameter of selection range fplays an important role in the convergence of the RSM iteration, and an improved RSM iterative algorithm is proposed with regard to the incorporation of the iterative sequential function of selection rangef The proposed method is shown to be efficient and to yield accurate results.  相似文献   

11.
Inelastic displacement response spectra are determined for a broad class of single-degree-of-freedom hysteretic structures. Based on these spectra, effective linear period and damping parameters are defined as a function of ductility. A simple empirical formula is derived which may be used to estimate the mid-period range inelastic response spectrum of a general hysteretic structure given the linear response spectrum of the excitation. The estimates obtained from this formula are compared with those obtained by the Newmark-Hall method, the substitute–structure method and the ATC–3 tentative procedure. It is found that the empirical formula not only gives good estimates of the average behaviour of the inelastic spectrum, but also reproduces some of the details of the spectrum.  相似文献   

12.
The convergence and stability of step-by-step integration schemes used in the inelastic dynamic analysis of structures and their corresponding criteria were studied for a restoring force model with negative-stiffness. Convergence conditions and stability conditions 1, 2 or 3 were established. The numerical stability of the integration under negative-stiffness belongs to the category of relative stability; consequently, the concepts and the conclusions concerning numerical stability in the case of positive-stiffness (which belongs to absolute stability) cannot be used. Research into several step-by-step integration methods usually employed in inelastic dynamic analysis has shown great differences in numerical stability for models with negative-stiffness as compared with positive-stiffness models. The central difference method is convergent and unconditionally stable in the case of negative-stiffness, though it is only conditionally stable in the case of positive-stiffness. The Houbolt method satisfies the requirement for convergence; its stability, however, depends not only on the integration step size Δt but also on the stiffness ratio β for the model with negative-stiffness, unlike the unconditional stability for the model with positive-stiffness. The Newmark constant acceleration method is convergent and unconditionally stable in the case of negative-stiffness just like it is in the case of positive-stiffness.  相似文献   

13.
Detection of waves converted from P to SV in the mantle   总被引:2,自引:0,他引:2  
A method is described for the detection of P to SV converted waves in the long-period P coda. The procedure involves axis rotation, transformation of records to a standard form and stacking of processed records from events of various epicentral distances. When applied to NORSAR records, the procedure detected converted phases corresponding to the boundaries in the 410–440- and 640–690-km depth ranges.  相似文献   

14.
One of the founders of structural control theory and its application in civil engineering,Professor Emeritus Tsu T.Soong,envisioned the development of the integral design of structures protected by active control devices.Most of his disciples and colleagues continuously attempted to develop procedures to achieve such integral control.In his recent papers published jointly with some of the authors of this paper,Professor Soong developed design procedures for the entire structure using a design-redesign proce...  相似文献   

15.
结构弹塑性反应可用等效线性化方法中的等效刚度和等效阻尼比进行计算。为研究钢筋混凝土剪力墙的等效刚度和等效阻尼比,通过分析剪力墙的力-位移简化四折线滞回模型,推导了其屈服点和峰值点的等效刚度、等效周期和等效阻尼比的计算公式。为验证其准确性和适用性,采用提出的峰值点等效刚度、等效阻尼比公式和FEMA 440建议的公式,分别计算了42片钢筋混凝土剪力墙试件的等效刚度和等效阻尼比,并进行了对比分析。结果表明:提出的计算公式和FEMA 440建议的公式所得到的等效周期和等效阻尼比值与试验值比较吻合,因此,所提出的计算剪力墙的等效周期和等效阻尼比的公式较为合理。  相似文献   

16.
Previous studies of the stable atmospheric boundary layer using techniques of nonlinear dynamical systems (MCNIDER et al., 1995) have shown that the equations support multiple solutions in certain parameter spaces. When geostrophic speed is used as a bifurcation parameter, two stable equilibria are found—a warm solution corresponding to the high-wind regime where the surface layer of the atmosphere stays coupled to the outer layer, and a cold solution corresponding to the low-wind, decoupled case. Between the stable equilibria is an unstable region where multiple solutions exist. The bifurcation diagram is a classic S shape with the foldback region showing the multiple solutions. These studies were carried out using a simple two-layer model of the atmosphere with a fairly complete surface energy budget. This allowed the dynamical analysis to be carried out on a coupled set of four ordinary differential equations. The present paper extends this work by examining additional bifurcation parameters and, more importantly, analyzing a set of partial differential equations with full vertical dependence. Simple mathematical representations of classical problems in dynamical analysis often exhibit interesting behavior, such as multiple solutions, that is not retained in the behavior of more complete representations. In the present case the S-shaped bifurcation diagram remains with only slight variations from the two-layer model. For the parameter space in the foldback region, the evolution of the boundary layer may be dramatically affected by the initial conditions at sunset. An eigenvalue analysis carried out to determine whether the system might support pure limit-cycle behavior showed that purely complex eigenvalues are not found. Thus, any cyclic behavior is likely to be transient.  相似文献   

17.
Abstract

An idealized nonlinear αω-dynamo is investigated. Emphasis is placed upon the different spatial symmetries, and the asymmetries that arise after secondary bifurcations. On varying the main control parameter D (the dynamo number), many transitions are found involving solutions without an equatorial symmetry, and solutions with quasiperiodic time dependence, but no chaos. Instead of a cascade to smaller spatial scales when D is highly supercritical it is found that additional asymmetries are introduced at tertiary bifurcations. Our complete bifurcation diagrams allow us to follow in detail how stability is passed from one solution to another as D varies. In these diagrams there are typically multiple stable solutions at any value of D, which suggests that similar stars can have different magnetic patterns.  相似文献   

18.
Sequences of magnetostatic equilibria can often be used to model the quasi-static pre-eruptive energy storage phase of eruptive phenomena in e.g. Earth's magnetosphere or the solar corona. During these phases the systems evolve only due to slow changes in their environment, being practically in equilibrium on large scales. The eruption onset would then be identified with a bifurcation or catastrophe point in the solution diagram. Different energy storage mechanisms can be studied by different parameterizations of e.g. the boundary conditions. Also from the more fundamental point-of-view of the theory of dynamical systems, studying the possible stationary states and the bifurcation properties of plasma systems should be the first step towards a more thorough understanding of their full dynamical behaviour. In any case one will have to solve highly non-linear partial differential equations with the possibility of the existence of multiple solutions (or of none at all) for a given set of boundary conditions. Such problems can, in general, only be solved numerically. The most appropriate class of numerical algorithms for this type of problem are continuation methods which can calculate complete solution branches and detect bifurcation points. In this work a numerical bifurcation code based on a continuation method is presented. In addition to solving the non-linear magnetohydrostatic equations, the code can check a sufficient linear stability criterion for each solution. Some preliminary results for simple magnetohydrostatic equilibria are presented and potential future applications are discussed.  相似文献   

19.
We present a systematic analysis of the dynamical behavior introduced by fault zone heterogeneities, using a simple mass-spring model with velocity-weakening friction. The model consists of two sliding blocks coupled to each other and to a constant velocity driver by clastic springs. The state of this system can be characterized by the positions of the two blocks relative to the driver. Symmetry stabilizes the system and generates only cyclic behavior. For an asymmetric system where the frictional forces for the two blocks are not equal, the solutions exhibit chaotic behavior. The transition from stable cyclic behavior to chaos is characterized by the period-doubling route to chaos. Lyapunov exponents are computed to quantify the deterministic chaos and to locate the onset of the chaotic evolution in parameter space. In many examples of deterministic chaos, chaotic behavior of a low-order system implies chaos in similar higher order systems. Thus, our results provide substantial evidence that crustal deformation is an example of deterministic chaos.  相似文献   

20.
The collapse capacity of earthquake‐excited inelastic nondeteriorating SDOF systems, which are vulnerable to the destabilizing effect of gravity loads (P‐delta effect), is evaluated. In this paper, the collapse capacity of the system subjected to a ground motion is defined as spectral acceleration at its initial structural period, at which the structure becomes unstable. Characteristic structural parameters, which affect the collapse capacity, are identified. Ground motion records of the ATC 63 far‐field set characterize severe earthquake excitation. In extensive incremental dynamic analyses studies, the impact of these parameters and of aleatory uncertainties on the collapse capacity is assessed and quantified. Median and percentile collapse capacities are plotted against the initial structural period leading to collapse capacity spectra. Nonlinear regression analyses are applied to derive analytical expressions of the design collapse capacity spectra and collapse fragility curves. The ultimate objective is to provide collapse capacity spectra for easy application and yet sufficient accurate assessment of the dynamic stability of flexible multistory buildings. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号