首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents an efficient methodology for computing constant‐ductility inelastic response spectra. The computation of constant‐ductility spectra involves numerical root‐finding algorithms to find the strongest structure providing a desired ductility response. Smooth inelastic structural behavior is modeled using a first‐order nonlinear differential equation and the transient structural response is solved using an implicit algorithm requiring Newton iterations at each time step. For structural models with smooth hysteretic behavior (not piece‐wise linear), a simple root‐finding method involving a combination of hyperbolic fits, linear interpolation, and Newton's method converges upon the highest strength (conservative) solution with a small number of iterations. The effect of the hysteretic smoothness on the occurrence of multiple roots is examined for two near‐fault and two far‐fault earthquake records, and for two measures of ductility and for normalized hysteretic energy. The results indicate how the smoothness of the hysteretic behavior affects ductility demand and constant‐ductility response spectra. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
结构地震弹塑性反应谱——损伤谱   总被引:1,自引:0,他引:1  
首先,本文基于各国广泛使用的由Park和Ang提出的双参数损伤模型,研究基于损伤性能的弹塑性反应谱(损伤谱)的分析方法。其次,文中考虑结构极限状态设计,并通过自编DBDS程序,研究得到了损伤反应谱(简称“RD谱”),尺。谱综合考虑了结构最大弹塑性位移和结构累积滞回耗能的耦合影响,更加合理地反映结构在罕遇地震作用下的弹塑性行为。第三,通过大量时程分析和拟合得到回归公式及其相关系数,研究成果可供抗震性能评估使用。最后,由本文提倡的RD谱和已有研究的Rμ谱做了定性比较分析,说明了考虑地震动持时的必要性和重要性。  相似文献   

3.
This paper presents a procedure for computing inelastic design spectra in terms of yield displacement. The procedure results in substantial computational savings as compared to the current procedures for computing the inelastic spectra in terms of displacement ductility. The proposed method is used to obtain inelastic design spectra for alluvium and rock. The results for alluvium are compared to those from the Newmark and Hall,10 Riddell and Newmark12 and Lai and Biggs4 studies. The findings indicate that for given ductility and frequency one may de-amplify the elastic response or reduce the elastic forces more for a structure on rock than for a structure on alluvium. A technique is presented so that the inelastic design spectrum can be scaled to any desired yield displacement and acceleration. An example is presented to illustrate how the proposed inelastic spectra can be used to compute the required ductility for a given system.  相似文献   

4.
In this paper, a stochastic approach for obtaining damage-based inelastic seismic spectra is proposed. The Park and Ang damage model, which includes displacement ductility and hysteretic energy, is adopted to take into account the cumulative damage phenomenon in structural systems under strong ground motions. Differently from previous studies in this field, damage-based seismic spectra are obtained by means of peak theory of stochastic processes. The following stochastic inelastic seismic spectra are constructed and then analyzed: damage-based displacement and acceleration inelastic spectra, damage-based response modification factor spectra, damage-based yield strength demand spectra and damage-based inelastic displacement ratio spectra.  相似文献   

5.
A procedure for the determination of inelastic design spectra (for strength, displacement, hysteretic and input energy) for systems with a prescribed ductility factor has been developed. All the spectra are consistent (interrelated and based on the same assumptions). This is the first of two companion papers which deals with the ‘classical’ structural parameters: strength and displacement. The input data are the characteristics of the expected ground motion in terms of a smooth elastic pseudo-acceleration spectrum. Simple, approximate expressions for the strength reduction factor R are proposed. The value of R depends on the natural period of the system, the prescribed ductility factor, the hysteretic behaviour, damping and ground motion. Fairly accurate approximations to the inelastic spectra for strength and displacement can be derived from the elastic spectrum using the proposed values for R.  相似文献   

6.
Hysteretic energy spectrum and damage control   总被引:1,自引:0,他引:1  
The inelastic response of single‐degree‐of‐freedom (SDOF) systems subjected to earthquake motions is studied and a method to derive hysteretic energy dissipation spectra is proposed. The amount of energy dissipated through inelastic deformation combined with other response parameters allow the estimation of the required deformation capacity to avoid collapse for a given design earthquake. In the first part of the study, a detailed analysis of correlation between energy and ground motion intensity indices is carried out to identify the indices to be used as scaling parameters and base line of the energy dissipation spectrum. The response of elastoplastic, bilinear, and stiffness degrading systems with 5 per cent damping, subjected to a world‐wide ensemble of 52 earthquake records is considered. The statistical analysis of the response data provides the factors for constructing the energy dissipation spectrum as well as the Newmark–Hall inelastic spectra. The combination of these spectra allows the estimation of the ultimate deformation capacity required to survive the design earthquake, capacity that can also be presented in spectral form as an example shows. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
For the performance‐based seismic design of buildings, both the displacement coefficient method used by FEMA‐273 and the capacity spectrum method adopted by ATC‐40 are non‐linear static procedures. The pushover curves of structures need to be established during processing of these two methods. They are applied to evaluation and rehabilitation of existing structures. This paper is concerned with experimental studies on the accuracy of both methods. Through carrying out the pseudo‐dynamic tests, cyclic loading tests and pushover tests on three reinforced concrete (RC) columns, the maximum inelastic deformation demands (target displacements) determined by the coefficient method of FEMA‐273 and the capacity spectrum method of ATC‐40 are compared. In addition, a modified capacity spectrum method which is based on the use of inelastic design response spectra is also included in this study. It is shown from the test specimens that the coefficient method overestimates the peak test displacements with an average error of +28% while the capacity spectrum method underestimates them with an average error of ‐20%. If the Kowalsky hysteretic damping model is used in the capacity spectrum method instead of the original damping model, the average errors become ‐11% by ignoring the effect of stiffness degrading and ‐1.2% by slightly including the effect of stiffness degrading. Furthermore, if the Newmark–Hall inelastic design spectrum is implemented in the capacity spectrum method instead of the elastic design spectrum, the average error decreases to ‐6.6% which undervalues, but is close to, the experimental results. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
This is the second of two companion papers on inelastic design spectra (for strength, displacement, hysteretic and input energy) for systems with a prescribed ductility factor. All the spectra are consistent (interrelated and based on the same assumptions). This paper deals with two quantities related to cumulative damage: hysteretic and input energy. The input data for the procedure are the characteristics of the expected ground motion in terms of a smooth elastic pseudo-acceleration spectrum and the time integral of the square of the ground acceleration ∫a2 dt. Simple, approximate expressions for two dimensionless parameters (the parameter γ and the hysteretic to input energy ratio EHEI) have been proposed. The parameter 7, which controls the reduction of the deformation capacity of structures due to low-cycle fatigue, depends on the natural period of the system, the prescribed ductility factor, the hysteretic behaviour and the ground motion characteristics. The ratio EH/EI is influenced by damping, the ductility factor and the hysteretic behaviour. Very good approximations to the inelastic spectra for hysteretic and input energy can be derived from the elastic spectrum using the spectra for the reduction factor R, proposed in the companion paper, and the proposed values for γ and EH/EI  相似文献   

9.
This paper deals with floor acceleration spectra, which are used for the seismic design and assessment of acceleration‐sensitive equipment installed in buildings. In design codes and in practice, not enough attention has been paid to the seismic resistance of such equipment. An ‘accurate’ determination of floor spectra requires a complex and quite demanding dynamic response history analysis. The purpose of the study presented in this paper is the development of a direct method for the determination of floor acceleration spectra, which enables their generation directly from the design spectrum of the structure, by taking into account the structure's dynamic properties. The method is also applicable to inelastic structures, which can greatly improve the economic aspects of equipment design. A parametric study of floor acceleration spectra for elastic and inelastic single‐degree‐of‐freedom (SDOF) and multiple‐degree‐of‐freedom structures was conducted by using (non)linear response history analysis. The equipment was modelled as an elastic single‐degree‐of‐freedom system. The proposed method was validated by comparing the results obtained with the more accurate results obtained in a parametric study. Due to its simplicity, the method is an appropriate tool for practice. In the case of inelastic structural behaviour, the method should be used in combination with the N2 method, or another appropriate method for simplified nonlinear structural analysis. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
In two companion papers a simplified non‐linear analysis procedure for infilled reinforced concrete frames is introduced. In this paper a simple relation between strength reduction factor, ductility and period (R–µ–T relation) is presented. It is intended to be used for the determination of inelastic displacement ratios and of inelastic spectra in conjunction with idealized elastic spectra. The R–µ–T relation was developed from results of an extensive parametric study employing a SDOF mathematical model composed of structural elements representing the frame and infill. The structural parameters, used in the proposed R–µ–T relation, in addition to the parameters used in a usual (e.g. elasto‐plastic) system, are ductility at the beginning of strength degradation, and the reduction of strength after the failure of the infills. Formulae depend also on the corner periods of the elastic spectrum. The proposed equations were validated by comparing results in terms of the reduction factors, inelastic displacement ratios, and inelastic spectra in the acceleration–displacement format, with those obtained by non‐linear dynamic analyses for three sets of recorded and semi‐artificial ground motions. A new approach was used for generating semi‐artificial ground motions compatible with the target spectrum. This approach preserves the basic characteristics of individual ground motions, whereas the mean spectrum of the whole ground motion set fits the target spectrum excellently. In the parametric study, the R–µ–T relation was determined by assuming a constant reduction factor, while the corresponding ductility was calculated for different ground motions. The mean values proved to be noticeably different from the mean values determined based on a constant ductility approach, while the median values determined by the different procedures were between the two means. The approach employed in the study yields a R–µ–T relation which is conservative both for design and performance assessment (compared with a relation based on median values). Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
本文就非弹性地震反应谱的计算问题(运动方程的形式,谱参量的选取,方程解算中恢复力模型上拐折点的处理和时间积分方法),给出了几点理论考虑,介绍了一个改进的算法。这一算法具有精度好和效率高的优点,这对做好结构抗震设计和其它地震工程问题中需要处理大量强震动数据的分析研究工作是有利的。文中还就双线型恢复力模型具体计算了2个例子(一个为屈服强化情形,另一个为理想弹塑性情形)。最后联系计算工作和计算结果,对非弹性反应谱计算中的其它有关事项做了补充讨论和说明。  相似文献   

12.
An energy-based methodology for the assessment of seismic demand   总被引:4,自引:0,他引:4  
A methodology for the assessment of the seismic energy demands imposed on structures is proposed. The research was carried out through two consecutive phases. Inelastic design input energy spectra for systems with a prescribed displacement ductility ratio were first developed. The study of the inelastic behavior of energy factors and the evaluation of the response modification in comparison with the elastic case were performed by introducing two new parameters, namely: (1) the Response Modification Factor of the earthquake input energy (RE), representing the ratio of the elastic to inelastic input energy spectral values and (2) the ratio α of the area enclosed by the inelastic input energy spectrum in the range of periods between 0.05 and 4.0 s to the corresponding elastic value. The proposed design inelastic energy spectra, resulting from the study of a large set of strong motion records, were obtained as a function of ductility, soil type, source-to-site distance and magnitude.Subsequently, with reference to single degree of freedom systems, the spectra of the hysteretic to input energy ratio were evaluated, for different soil types and target ductility ratios. These spectra, defined to evaluate the hysteretic energy demand of structures, were described by a piecewise linear idealization that allows to distinguish three distinct regions as a function of the vibration period. In this manner, once the inelastic design input energy spectra were determined, the definition of the energy dissipated by means of inelastic deformations followed directly from the knowledge of hysteretic to input energy ratio.The design spectra of both input energy and hysteretic to input energy ratio were defined considering an elasto-plastic behavior. Nevertheless, other constitutive models were taken into account for comparison purposes.  相似文献   

13.
The paper investigates the degree of accuracy achievable when some non‐linear static procedures based on a pushover analysis are used to evaluate the seismic performance. In order to assess the significance of different sources of errors, three types of structural systems are analysed: (i) single‐degree‐of‐freedom (SDOF) systems with different hysteretic behaviour; (ii) shear‐type multi‐degree‐of‐freedom (MDOF) systems with elastic–perfect plastic (EPP) shear force–interstorey drift relationships; (iii) a steel moment‐resisting frame with rigid joints and EPP moment–curvature relationship. In SDOF systems, the source of approximation comes only from the calibration of the demand spectrum, while in MDOF systems some further errors are introduced by the schematization with an equivalent SDOF system. The non‐linear static procedures are compared with rigorous time‐history analyses carried out by considering ten generated earthquake ground motions compatible with the Eurocode 8 elastic spectra. It was found that SDOF systems with longer periods satisfy the equal displacement approximation regardless of the hysteretic model, while hysteresis loops with smaller energy dissipated indicate lower response for shorter periods. This is the opposite of what predicted by the ATC‐40 capacity spectrum method, which underestimates and overestimates, respectively, the actual response of low‐ and high‐ductility systems. Conversely, the inelastic spectrum method proposed by Vidic, Fajfar and Fischinger leads to the most accurate results for all types of structural systems. The analyses carried out on EPP shear‐type frames point out a large concentration of the ductility demand on some storeys. However, such a concentration markedly reduces when some hardening is accounted for. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
This paper investigates the response of nonstructural components in the presence of nonlinear behavior of the primary structure using floor response spectra method (FRS). The effect of several parameters such as initial natural frequency of the primary structure, natural frequency of the nonstructural components (subsystem), strength reduction factor and hysteretic model have been studied. A database of 164 registered ground acceleration time histories from the European Strong-Motion Database is used. Results are presented in terms of amplification factor and resonance factor. Amplification factor quantifies the effect of inelastic deformations of the primary structure on subsystem response. Resonance factor quantifies the variation of the subsystem response considering the primary structure acceleration. Obtained results differed from precedent studies, particularly for higher primary structure periods. Values of amplification factor are improved. Obtained results of resonance factor highlight an underestimation of peak values according to current design codes such as Eurocode 8. Therefore a new formulation is proposed.  相似文献   

15.
工程结构等延性地震抗力谱研究   总被引:28,自引:7,他引:21  
研究结构的非弹性反应谱对改进现有的结构抗震设计、发展基于性态的抗震设计以及了解复杂地面运动特性与结构动力特性之间的关系具有重要的意义。利用大量的单自由度在强震记录作用下的弹塑性动力时程分析,对等延性地震抗力谱这一重要的非弹性反应谱进行了较为详尽的研究,给出了四类场地条件(基岩、硬土、一般土和软土)下的平均等延性地震抗力谱,总结了对工程结构的抗震设计和研究具有实际意义的规律和特征,并分析了场地条件、结构的延性系数以及周期等对等延性地震抗力谱的影响,提出了新的拟合公式,其成果可供抗震研究和设计直接应用。  相似文献   

16.
The general features of elastic-plastic response spectra for several accelerograms that are widely used for the design buildings in Japan were studied in terms of the effects of the different hysteretic models used in the analyses. Lare fluctuations existed in the spectra for both input ground motion and the different models. The models were classified according to their strain energy-absorbing capacities in three groups, within each of which the relevant nature of elastic-plastic responses of the structures were similar. Finally, empirical formulae with which to estimate two measures structural damage, the ductility factors and cumulative plastic displacement normalized by the yielding displacement, wer developed for each group of hysteretic models.  相似文献   

17.
A modified force analogy method (MFAM) is developed to simulate the nonlinear inelastic response of reinforced concrete (RC) structures. Beam–column elements with three different plastic mechanisms are utilized to simulate inelastic response caused by moment and shear force. A multi‐linear hysteretic model is implemented to simulate the nonlinear inelastic response of RC member. The P‐Δ effect of the structure is also addressed in MFAM. Static and dynamic inelastic response of structure, damage condition and failure type for structural element, structural limit state and collapse time can also be simulated using MFAM. Compared with the general algorithm, the MFAM provides less computational time especially in the case of large structural system. It is also easier to be written as computer program. Three test data groups, which include cyclic loading test data of a non‐ductile RC bridge column, a two‐storey RC frame, and dynamic collapse test data of a non‐ductile RC portal frame, are selected to confirm the effectiveness of applying MFAM to simulate the inelastic behaviour of structures. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
To alleviate some of the shortcomings associated with the statistically based inelastic spectral shapes, a rigorous method for the construction of inelastic design spectra is proposed. The method is based on several bounds which are derived from the differential equation of motion for a single degree of freedom system. Comparisons of the proposed spectral bounds with the actual elastoplastic response spectra and with the 84 per cent Newmark elastoplastic design spectra reveal that the proposed method yields a more economical, reliable and simple design aid. To demonstrate the quality of the proposed bounds, comparisons of the bounding spectra with their corresponding constant ductility elastoplastic response spectra for a number of records have been presented.  相似文献   

19.
Supplemental viscous damping devices are generally envisioned to be connected in parallel to the inelastic parent structure or hysteretic damping devices. This gives rise to higher base shear, and often greater ductility demand of the hysteretic system. The series connection of the viscous and hysteretic system (the inelastic structure or a damper) is an alternative approach. In this paper, comparisons between the series and parallel connections of the hysteretic system and viscous dampers are done through response spectra analyses of single degree of freedom structures. Ductility demand of the hysteretic system and the total base shear are chosen as the response quantities. For the series model, a semi‐implicit solution scheme for classical Maxwell model is modified to include the inelasticity of the time‐independent hysteretic spring. It is observed that the series connection of the 2 dampers gives lower base shear than does the parallel connection. For long‐period and low‐damping structures, the ductility demand of the hysteretic system in series connection is higher than that in parallel connection. Increasing the viscous damping in series connection reduces the ductility demand substantially, lower than that obtained in parallel connection. Practical methods for implementing the series and parallel connections, in line with roof isolation, are also suggested.  相似文献   

20.
基于分解方法的脉冲型地震动非弹性反应谱分析   总被引:1,自引:1,他引:0       下载免费PDF全文
本文旨在分析脉冲型地震动中不同频率的地震动分量对于原始地震动幅值及其非弹性反应谱的影响.首先以近期12次大地震的53条典型脉冲型地震动为数据基础,基于多尺度分解方法获取脉冲型地震动中的高频分量和低频分量.为与传统方法对比,本文获取了能够表征地震动脉冲特性的卓越分量及滤除卓越分量的剩余分量.然后对比分析原始地震动和4种地震动分量的幅值特征和非弹性反应谱的特性,以讨论地震动分量对原始地震动幅值参数及其非弹性反应谱的影响.最后结合简谐地震动模型和地震动分量的性质,讨论脉冲型地震动非弹性反应谱诸多特征的产生原因.分析发现,低频分量不仅是控制脉冲型地震动速度和位移幅值的主要因素,其对原始地震动的加速度幅值也具有不可忽略的影响.低频分量也是导致脉冲型地震动非弹性位移比谱偏大以及强度折减系数谱偏小的直接原因,从而造成结构在脉冲型地震动作用下需要具有更大的非弹性位移以及更高的强度需求.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号