首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Permit trading among polluting parties is now firmly established as a policy tool in a range of environmental policy areas. The Kyoto Protocol accepts the principle that sequestration of carbon in the terrestrial biosphere can be used to offset emissions of carbon from fossil fuel combustion and outlines mechanisms. Although the lack of guaranteed permanence of biological offsets is often viewed as a defect, this paper argues that the absence of guaranteed permanence need not be a fundamental problem. We view carbon emissions as a liability issue. One purpose of an emissions credit system is to provide the emitter with a means to satisfy the carbon liability associated with her firm's (or country's) release of carbon into the atmosphere. We have developed and here expand on a rental approach, in which sequestered carbon is explicitly treated as temporary: the emitter temporarily satisfies his liability by temporarily “parking” his liability, for a fee, in a terrestrial carbon reservoir, or “sink,” such as a forest or agricultural soil. Finally, the paper relates the value of permanent and temporary sequestration and argues that both instruments are tradable and have a high degree of substitutability that allows them to interact in markets.  相似文献   

2.
The objective of this paper is first to provide empirical evidence of what can be seen as a rather remarkable change in EU’s position on the use of greenhouse gas (GHG) emissions trading (ET) in climate policy, from the role of a sceptic in the run-up to Kyoto towards more of a frontrunner. The paper argues that there is a synergistic and multilevel mix of explanatory factors for this “U-turn”, including developments at the international, EU, Member State, sub-national, and even down to the personal level. Second, the paper explores and discusses the philosophy behind the Commission’s proposal for a directive on GHG ET. Third, the paper examines the prospects for ‘success’ of a scheme for EU-wide ET using a multifaceted set of metrics. In brief, we argue that output success—the chances for having a directive adopted—hinges on the resolution of two key issues. First, whether the preliminary phase is to be mandatory or voluntary, and second, incompatibilities with domestic ET schemes. Outcome success—steering and cost-effectiveness—will in turn depend on factors like the coverage of the scheme and inclusion of project-based credits, while more long-term political implications hinges on the successful adoption and operation of the scheme.
“The Proposal on emissions trading represents a major innovation for environmental policy in Europe. We are de facto creating a big new market, and we are determined to use market forces to achieve our climate objectives in the most cost-conscious way […]. The emissions trading system will be an important cornerstone in our strategy to reduce emissions in the most cost-effective way”.
Environment Commissioner Margot Wallström.  相似文献   

3.
Abstract

Temporary crediting of carbon storage is an instrument that allows entities with emissions reductions obligations to defer some obligations for a fixed period of time. This instrument provides a means of guaranteeing the environmental integrity of a carbon sequestration project. But because the user of the temporary credit takes on the liability of renewing it, or replacing it with a permanent credit, the temporary credit must sell at a discount compared to a permanent credit. We show that this discount depends on the expected change in price of a permanent credit. Temporary credits have value only if restrictions on carbon emissions are not expected to tighten substantially. The intuition is illustrated by assessing the value of a hypothetical temporary sulfur dioxide sequestration credit, using historical data on actual SO2 allowance prices.  相似文献   

4.
In this paper, we present a method to quantify the effectiveness of carbon mitigation options taking into account the `permanence' of the emissions reduction. While the issue of permanence is most commonly associated with a `leaky' carbon sequestration reservoir, we argue that this is an issue that applies to just about all carbon mitigation options. The appropriate formulation of this problem is to ask `what is the value of temporary storage?' Valuing temporary storage can be represented as a familiar economic problem, with explicitly stated assumptions about carbon prices and the discount rate. To illustrate the methodology, we calculate the sequestration effectiveness for injecting CO2 at various depths in the ocean. Analysis is performed for three limiting carbon price assumptions: constant carbon prices (assumes constant marginal damages), carbon prices rise at the discount rate (assumes efficient allocation of a cumulative emissions cap without a backstop technology), and carbon prices first rise at the discount rate but become constant after a given time (assumes introduction of a backstop technology). Our results show that the value of relatively deep ocean carbon sequestration can be nearly equivalent to permanent sequestration if marginal damages (i.e., carbon prices) remain constant or if there is a backstop technology that caps the abatement cost in the not too distant future. On the other hand, if climate damages are such as to require a fixed cumulative emissions limit and there is no backstop, then a storage option with even very slow leakage has limited value relative to a permanent storage option.  相似文献   

5.
Terrestrial carbon sinks and sources were introduced into climate change mitigation related policy relatively late in the design of the architecture of those policies. Much literature addresses how terrestrial sources and sinks differ from emissions from fossil fuel combustion and, hence, is a possible justification for differential treatment of them in policy design. Late introduction in climate policy discussions and perceived differences appear to have resulted in very different policy approaches for sinks versus fossil emission sources. The attempt to differentiate has generated complexity in policy design and likely inefficiency in the operation of these policies. We review these issues and find that the characteristics claimed to apply to sinks apply as well to fossil sources, and differences that do exist are often more a matter of degree than of kind. Because cap-and-trade has gained momentum as the instrument of choice to control fossil emissions, we use as a starting point, how such a cap-and-trade system could be altered to include terrestrial carbon sinks and sources.  相似文献   

6.
Carbon capture and storage (CCS) is increasingly depicted as an important element of the carbon dioxide mitigation portfolio. However, critics have warned that CCS might lead to “reinforced fossil fuel lock-in”, by perpetuating a fossil fuel based energy provision system. Due to large-scale investments in CCS infrastructure, the fossil fuel based ‘regime’ would be perpetuated to at least the end of this century.In this paper we investigate if and how CCS could help to avoid reinforcing fossil fuel lock-in. First we develop a set of criteria to estimate the degree of technological lock-in. We apply these criteria to assess the lock-in reinforcement effect of adding CCS to the fossil fuel socio-technical regime (FFR).In principle, carbon dioxide could be captured from any carbon dioxide point source. In the practice of present technological innovations, business strategies, and policy developments, CCS is most often coupled to coal power plants. However, there are many point sources of carbon dioxide that are not directly related to coal or even fossil fuels. For instance, many forms of bio-energy or biomass-based processes generate significant streams of carbon dioxide emissions. Capturing this carbon dioxide which was originally sequestered in biomass could lead to negative carbon dioxide emissions.We use the functional approach of technical innovations systems (TIS) to estimate in more detail the strengths of the “niches” CCS and Bio-Energy with CCS (BECCS). We also assess the orientation of the CCS niche towards the FFR and the risk of crowding out BECCS. Next we develop pathways for developing fossil energy carbon capture and storage, BECCS, and combinations of them, using transition pathways concepts. The outcome is that a large-scale BECCS development could be feasible under certain conditions, thus largely avoiding the risk of reinforced fossil fuel lock-in.  相似文献   

7.
《Climate Policy》2013,13(6):577-587
Growing international trade has been one of the most important drivers for China's recent economic growth. This growth has fed rapid increases in energy demand and carbon emissions since 2000. China is now the world's largest emitter of carbon dioxide. There is mounting pressure from some in the international community for China to take specific actions to mitigate its emissions as part of a post-2012 climate regime. However, emissions embodied in internationally traded goods have not been given enough attention in this debate. This article discusses the results of research to quantify the emissions stemming from goods that are exported from China to other countries. It finds that these emissions accounted for 23% of China's national total in 2004. The article sets out how this result has been obtained and compares it to the results of several other pieces of research to demonstrate the importance of this issue. Some pointers for international climate policy are then discussed, including the advantages and difficulties of moving to consumption-based emissions accounting, and implications for international trade rules.  相似文献   

8.
Integrated estimates of global terrestrial carbon sequestration   总被引:1,自引:0,他引:1  
Assessing the contribution of terrestrial carbon sequestration to climate change mitigation requires integration across scientific and disciplinary boundaries. A comprehensive analysis incorporating ecologic, geographic and economic data was used to develop terrestrial carbon sequestration estimates for agricultural soil carbon, reforestation and pasture management. These estimates were applied in the MiniCAM integrated assessment model to evaluate mitigation strategies within policy and technology scenarios aimed at achieving atmospheric greenhouse gas stabilization by 2100. Terrestrial sequestration reaches a peak rate of 0.5–0.7 GtC yr−1 in mid-century with contributions from agricultural soils (0.21 GtC yr−1), reforestation (0.31 GtC yr−1) and pasture (0.15 GtC yr−1). Sequestration rates vary over time and with different technology and policy scenarios. The combined contribution of terrestrial sequestration over the next century ranges from 23 to 41 GtC.  相似文献   

9.
Negative emissions are increasingly seen as a policy option to limit climate change. However, the most readily available technologies that could deliver negative emissions require, if deployed at scale, large amounts of land, with huge risks for livelihoods and the environment. This land is often assumed to be in the Global South. This article analyzes the nascent policy discourse on negative emissions by assessing 116 policy documents by 97 organizations with a focus on land-based technologies (afforestation and reforestation, bioenergy with carbon capture and storage, biochar, soil carbon sequestration). We conclude that this policy discourse is largely centered in the Global North (mostly in the United States, the United Kingdom, and Germany), with only five organizations directly linked to the Global South. 61% of the organizations in our sample, however, somehow refer to the Global South in their contributions, with nongovernmental organizations being most strongly focused on the role of the Global South and in particular the risks for vulnerable countries. While the earlier policy discourse on negative emissions was linked to a more general “geoengineering” discourse, this link has loosened in the last years. Overall, in the documents that we studied, negative emissions technologies seem to become more accepted, and parts of the discourse shift towards deployment. Bioenergy with carbon capture and storage seems more often associated with risks if compared to other land-based negative emissions technologies, especially with a view to the Global South.  相似文献   

10.
Exposure of plants to ozone inhibits photosynthesis and therefore reduces vegetation production and carbon sequestration. The reduced carbon storage would then require further reductions in fossil fuel emissions to meet a given CO2 concentration target, thereby increasing the cost of meeting the target. Simulations with the Terrestrial Ecosystem Model (TEM) for the historical period (1860–1995) show the largest damages occur in the Southeast and Midwestern regions of the United States, eastern Europe, and eastern China. The largest reductions in carbon storage for the period 1950–1995, 41%, occur in eastern Europe. Scenarios for the 21st century developed with the MIT Integrated Global Systems Model (IGSM) lead to even greater negative effects on carbon storage in the future. In some regions, current land carbon sinks become carbon sources, and this change leads to carbon sequestration decreases of up to 0.4 Pg C yr−1 due to damage in some regional ozone hot spots. With a climate policy, failing to consider the effects of ozone damage on carbon sequestration would raise the global costs over the next century of stabilizing atmospheric concentrations of CO2 equivalents at 550 ppm by 6 to 21%. Because stabilization at 550 ppm will reduce emission of other gases that cause ozone, these additional benefits are estimated to be between 5 and 25% of the cost of the climate policy. Tropospheric ozone effects on terrestrial ecosystems thus produce a surprisingly large feedback in estimating climate policy costs that, heretofore, has not been included in cost estimates.  相似文献   

11.
The emissions reduction pledges made by individual countries through the 2015 Paris Agreement represent the current global commitment to mitigate greenhouse gas emissions in the face of the enduring climate crisis. Natural lands carbon sequestration and storage are critical for successful pathways to global decarbonization (i.e., as a negative emissions technology). Coastal vegetated habitats maintain carbon sequestration rates exceeding forest sequestration rates on a per unit area basis by nearly two orders of magnitude. These blue carbon habitats and their associated carbon sequestration benefits are vulnerable to losses from land-use change and sea-level rise. Incorporation of blue carbon habitats in climate change policy is one strategy for both maintaining these habitats and conserving significant carbon sequestration capabilities. Previous policy assessments have found the potential for incorporation of coastal carbon sequestration in national-level policies, yet there has – to date – been little inclusion of blue carbon in the national-scale implementation of Paris commitments. Recently, sub-national jurisdictions have gained attention as models for pathways to decarbonization. However, few previous studies have examined sub-national level policy opportunities for operationalizing blue carbon into climate decision-making. California is uniquely poised to integrate benefits from blue carbon into its coastal planning and management and its suite of climate mitigation policies. Here, we evaluated legal authorities and policy contexts addressing sequestration specifically from blue carbon habitats. We synthesized the progressive action in California’s approaches to mitigate carbon emissions including statutory, regulatory, and non-regulatory opportunities to incorporate blue carbon ecosystem service information into state- and local-level management decisions. To illustrate how actionable blue carbon information can be produced for use in decision-making, we conducted a spatial analysis of blue carbon sequestration in several locations in California across multiple agencies and management contexts. We found that the average market values of carbon sequestration services in 2100 ranged from $7,730 to $44,000 per hectare and that the social cost of carbon sequestration value was 1.3 to 2.7 times the market value. We also demonstrated that restoration of small areas with high sequestration rates can be comparable to the sequestration of existing marshes. Our results illustrate how accessible information about carbon sequestration in coastal habitats can be directly incorporated into existing policy frameworks at the sub-national scale. The incorporation of blue carbon sequestration benefits into sub-national climate policies can serve as a model for the development of future policy approaches for negative emissions technologies, with consequences for the success of the Paris Agreement and science-based decarbonization by mid-century.  相似文献   

12.
Summary In this paper, we discuss past climatic trends over India, greenhouse gas emissions due to energy consumption, forest and land-use changes, climate change scenarios for the year 2050, potential consequences for agriculture and cyclone activity and the possibility that India might limit the increasing trend in its emissions.India's mean surface air temperature has increased significantly by about 0.4°C over the past ccntury. Neither monsoon nor annual rainfall shows any significant trend. On average, there has been a rise in sea levels around India over recent decades, though considerable uncertainties exist in the accuracy and interpretation of the available data.Carbon emissions from the energy sector amount to 71 MT a year, equivalent to all other sectors combined. From land-use data, a marginal net sequestration of 5.25 million tonnes of carbon occurred during 1986. Following the IPCC guidelines, methane emissions from rice and livestock are estimated at 17.4 and 12.8 Tg/year, respectively.According to recent climate model projections, India may experience a further rise in temperature of 1 °C by the year 2050, about four times the rate of warming experienced over the past 100 years. A modest increase in precipitation amounts might occur. Cereals production is estimated to decrease and the nutrition security of the population-rich but land-hungry region of India might be hampered. An increase in local tropical cyclone activity may occur over thc next century, posing added problems as large areas in the coastal regions have a dense population.About 70% of the electricity generation in India is from coal-based power stations. Altering this dependence significantly to reduce emissions would imply a substantial change in the present energy policy of India. There is great potential for improving energy efficiency and conservation. The adoption of cleaner coal-technologies should be considered, as must the development of renewable, non-conventional energy sources. In all cases, serious institulional barriers and resource limitations need to be addressed. The scope for carbon sequestration is limiled by land availabilily and other factors. It is argued that any response to global warming must be located firmly in the framework of sustainable development.With 5 Figures  相似文献   

13.
This paper examines the potential role of forest set-asides in global carbon sequestration policy. While set asides that protect forests from timber harvests and land-use conversion may alleviate concerns with permanence, and they may provide large ancillary environmental benefits, they may also lead to large leakage. This paper uses a global land use and forestry model to examine the efficiency of three crediting schemes for set-asides. The results show that if set-asides are integrated into a global forestry carbon sequestration program that includes a wide range of other management options, then 300 million hectares of land would be set-aside, and up to 128 Pg C could be sequestered in global forests by 2105. Under alternative policies that focus exclusively on set-asides, more forestland can be set-asides, up to 3.2 billion hectare, but these policies invite large leakage in the near-term, and in the long-run, they less net carbon is removed from the atmosphere. Specifically, leakage is estimated to be 47–52%, depending on the policy, and by the end of the century, up to 17% less carbon will be sequestered in all forests.  相似文献   

14.
Strategies to mitigate anthropogenic climate change recognize that carbon sequestration in the terrestrial biosphere can reduce the build-up of carbon dioxide in the Earth’s atmosphere. However, climate mitigation policies do not generally incorporate the effects of these changes in the land surface on the surface albedo, the fluxes of sensible and latent heat to the atmosphere, and the distribution of energy within the climate system. Changes in these components of the surface energy budget can affect the local, regional, and global climate. Given the goal of mitigating climate change, it is important to consider all of the effects of changes in terrestrial vegetation and to work toward a better understanding of the full climate system. Acknowledging the importance of land surface change as a component of climate change makes it more challenging to create a system of credits and debits wherein emission or sequestration of carbon in the biosphere is equated with emission of carbon from fossil fuels. Recognition of the complexity of human-caused changes in climate does not, however, weaken the importance of actions that would seek to minimize our disturbance of the Earth’s environmental system and that would reduce societal and ecological vulnerability to environmental change and variability.  相似文献   

15.
Activities to reduce net greenhouse gas emissions by biological soil or forest carbon sequestration predominantly utilize currently known, readily implementable technologies. Many other greenhouse gas emission reduction options require future technological development or must wait for turnover of capital stock. Carbon sequestration options in soils and forests, while ready to go now, generally have a finite life, allowing use until other strategies are developed. This paper reports on an investigation of the competitiveness of biological carbon sequestration from a dynamic and multiple strategy viewpoint. Key factors affecting the competitiveness of terrestrial mitigation options are land availability and cost effectiveness relative to other options including CO2 capture and storage, energy efficiency improvements, fuel switching, and non-CO2 greenhouse gas emission reductions. The analysis results show that, at lower CO2 prices and in the near term, soil carbon and other agricultural/forestry options can be important bridges to the future, initially providing a substantial portion of attainable reductions in net greenhouse gas emissions, but with a limited role in later years. At higher CO2 prices, afforestation and biofuels are more dominant among terrestrial options to offset greenhouse gas emissions. But in the longer run, allowing for capital stock turnover, options to reduce greenhouse gas emissions from the energy system and biofuels provide an increasing share of potential reductions in total US greenhouse gas emissions.  相似文献   

16.
Designing effective mitigation policies for greenhouse gas (GHG) emissions from agriculture requires understanding the mechanisms by which management practices affect emissions in different agroclimatic conditions. Agricultural GHG emissions and carbon sequestration potentials have been extensively studied in the Mediterranean biome, which is a biodiversity hot spot that is highly vulnerable to environmental changes. However, the absolute magnitude of GHG emissions and the extent to which research efforts match these emissions in each production system, are unknown. Here, we estimated GHG emissions and potential carbon sinks associated with crop and livestock production systems in the Mediterranean biome, covering 31 countries and assessing approximately 10,000 emission items. The results were then combined with a bibliometric assessment of 797 research publications to compare emissions estimates obtained with research efforts for each of the studied items. Although the magnitude of GHG emissions from crop production and the associated carbon sequestration potential (261 Tg CO2eq yr−1) were nearly half of those from livestock production (367 Tg CO2eq yr−1), mitigation research efforts were largely focused on the former. As a result, the relative research intensity, which relates the number of publications to the magnitude of emissions, is nearly one order of magnitude higher for crop production than for livestock production (2.6 and 0.4 papers Tg CO2eq−1, respectively). Moreover, this mismatch is even higher when crop and livestock types are studied separately, which indicates major research gaps associated with grassland and many strategic crop types, such as fruit tree orchards, fiber crops, roots and tubers. Most life cycle assessment studies do not consider carbon sequestration, although this single process has the highest magnitude in terms of annual CO2eq. In addition, these studies employ Tier 1 IPCC factors, which are not suited for use in Mediterranean environments. Our analytical results show that a strategic plan is required to extend on-site field GHG measurements to the Mediterranean biome. Such a plan needs to be cocreated among stakeholders and should be based on refocusing research efforts to GHG balance components that have been afforded less attention. In addition, the outcomes of Mediterranean field studies should be integrated into life cycle assessment-based carbon footprint analyses in order to avoid misleading conclusions.  相似文献   

17.
If carbon sequestration is to be a cost-effective substitute for reducing emissions then it must occur under a framework that ensures that the sequestration is additional to what would otherwise have occurred, the carbon is stored permanently, and any leakage is properly accounted for. We discuss significant challenges in meeting these requirements, including some not previously recognized. Although we focus on sequestration in soil, many of the issues covered are applicable to all types of sequestration. The common-practice method for determining additionality achieves its intention of reducing transaction costs in the short term but not in the medium to long term. Its design results in the least costly, additional abatement-measures being excluded from policy support and fails to address how, in the case of sequestration, revisions to the additionality of sequestering practices should apply not just to the future, but in theory, also retrospectively. Permanence is sometimes approximated as 100 years of sequestration. Re-release of sequestered carbon after this will not only reverse the sequestration, but may raise atmospheric carbon to higher levels than they would have been if the sequestration had never occurred. Leakage associated with sequestration practices can accumulate over time to exceed the total level of sequestration; nonetheless, adoption of such practices can be attractive to landholders, even when they are required to pay for this leakage at contemporary prices.

Policy relevance

Globally, much has been written and claimed about the ability to offset emissions with sequestration. The Australian Government plans to use sequestration to source much of the abatement required to reach its emissions targets. Designing effective policy for sequestration will be challenging politically, and will involve substantial transaction costs. Compromises in policy design intended to make sequestration attractive and reduce transaction costs can render it highly inefficient as a policy.  相似文献   


18.
全球CO2浓度增加造成的全球变暖已成为人类亟需解决的问题,陆地生态系统在过去几十年一直扮演着重要的碳汇角色,吸收了30%左右的人类活动排放CO2。本文调研分析了陆地生态系统固碳速率空间估算方法,包括样地调查、通量监测、模型模拟、遥感估算等,梳理了各种估算方法的研究现状与进展。样地调查、通量观测等方法可以提供点尺度的固碳速率直接测量信息,但存在观测样本有限、空间代表性不足等问题。模型模拟方法可以从机理的角度描述陆地碳、水、能量循环,模拟预测陆地生态系统固碳速率的状态和变化。然而,在模型建立过程中,抽象和简化会引入结构与假设的不确定性,以及模型驱动数据引入的不确定性等问题是碳循环模型模拟方法面临的重大挑战。卫星遥感具有全球覆盖、分辨率精细、时间序列观测等优点,结合机器学习方法,为地球大数据驱动的全球碳源汇估算提供了新的研究范式。但是,当前各种固碳速率的监测方法还没有满足高度时空异质性的陆地生态系统固碳量监测需求,未来需要整合地面观测、模型模拟和卫星遥感等多种技术手段,提供区域和全球尺度的陆地生态系统碳汇精确估算方法体系和科学数据产品。  相似文献   

19.
The present study estimates the net emission of carbon from the forest sector in India. For the reference year (1986), the gross emission from deforestation in that year, plus committed emissions from deforestation in the preceding years, is estimated to be 64 × 106 t of C. The carbon sequestration (or net woody biomass accumulation in trees for long-term storage) from the area brought under tree plantations and the existing forest area under forest succession is estimated to offset the gross carbon emission in India, leading to no net emissions of carbon from the forest sector. Medium-term projections for India (for the year 2011) show that under a business as usual scenario at current rates of afforestation, projected carbon emissions would continue to be balanced by sequestration.  相似文献   

20.
Terrestrial carbon pools in southeast and south-central United States   总被引:1,自引:0,他引:1  
Analyses of regional carbon sources and sinks are essential to assess the economical feasibility of various carbon sequestration technologies for mitigating atmospheric CO2 accumulation and for preventing global warming. Such an inventory is a prerequisite for regional trading of CO2 emissions. As a U.S. Department of Energy Southeast Regional Carbon Sequestration Partner, we have estimated the state-level terrestrial carbon pools in the southeast and south-central US. This region includes: Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, Texas, and Virginia. We have also projected the potential for terrestrial carbon sequestration in the region. Texas is the largest contributor (34%) to greenhouse gas emission in the region. The total terrestrial carbon storage (forest biomass and soils) in the southeast and south-central US is estimated to be 130 Tg C/year. An annual forest carbon sink (estimated as 76 Tg C/year) could compensate for 13% of the regional total annual greenhouse gas emission (505 Tg C, 1990 estimate). Through proper policies and the best land management practices, 54 Tg C/year could be sequestered in soils. Thus, terrestrial sinks can capture 23% of the regional total greenhouse emission and hence are one of the most cost-effective options for mitigating greenhouse emission in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号