首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The four naturally-occurring radium isotopes (223Ra, 224Ra, 226Ra and 228Ra) were used to estimate the submarine groundwater discharge (SGD) in the Isola La Cura marsh area in the northern Venice Lagoon (Italy). By determining the radium contributors to the study area (river, coastal ocean and sediments) the radium excess in the lagoon water was quantified through a mass balance model. This radium excess is attributed to a submarine groundwater discharge source and represents the most important input of radium. Possible endmembers were considered from analysis of groundwater samples (subtidal and marsh piezometers, marsh wells and seepage meters) that were enriched in Ra by one to two orders of magnitude relative to surface waters. In particular, a permeable layer at 80 cm depth in the surrounding marsh is considered to be representative of the most likely SGD source, although similar radium activities were measured in other subtidal porewater samples collected in the Isola La Cura area. The estimated SGD flux to the study area ranged from 1 · 109 to 6 · 109 L·d− 1, the same order of magnitude as the overall riverine input to the lagoon (3 · 109 L·d− 1). A major fraction of this SGD flux is likely recirculated seawater, as evidenced by the endmember salinity. The water residence time of 2 days was estimated by both using the shortest-lived radium isotope and estimating the volume of water exchanged between the lagoon and the open sea during a tidal cycle (tidal prism approach). This SGD flux could be used to estimate the input of other chemical species (metals, nutrients, etc.) via SGD which might affect the Venice Lagoon ecosystem.  相似文献   

2.
Submarine groundwater discharge (SGD) is now recognized as an important pathway for water and chemical species fluxes to the coastal ocean. In order to determinate SGD to the Gulf of Lion (France), we measured the activities of 226Ra and 228Ra by thermal ionization mass spectrometry (TIMS) in coastal waters and in the deep aquifer waters of the Rhone deltaic plain after pre-concentration of radium by MnO2. Compared to conventional counting techniques, TIMS requires lower quantities of water for the analyses, and leads to higher analytical precision. Radium isotopes were thus measured on 0.25–2 L water samples containing as little as 20 fg of 226Ra and 0.2–0.4 fg of 228Ra with precision equal to 2%. We demonstrate that coastal surface waters samples are enriched in 226Ra and 228Ra compared to the samples further offshore. The high precision radium measurements display a small but significant 226Ra and 228Ra enrichment within a strip of circa 30 km from the coast. Radium activities decrease beyond this region, entrained in the northern current along the shelf break or controlled by eddy diffusion. The radium excess in the first 30 km cannot be accounted for by the river nor by the early diagenesis. The primary source of the radium enrichment must therefore be ascribed to the discharge of submarine groundwater. Using a mass-balance model, we estimated the advective fluxes of 226Ra and 228Ra through SGD to be 5.2 × 1010 and 21 × 1010 dpm/d respectively. The 226Ra activities measured in the groundwater from the Rhone deltaic plain aquifer are comparable to those from other coastal groundwater studies throughout the world. By contrast, 228Ra activities are higher by up to one order of magnitude. Taking those groundwater radium activities as typical of the submarine groundwater end-member, a minimum volume of 0.24–4.5 × 1010 l/d is required to support the excess radium isotopes on the inner shelf. This has to be compared with the average rivers water runoff of 15.4 × 1010 l/d during the study period (1.6 to 29% of the river flow).  相似文献   

3.
Ongoing climate change and anthropogenic activities are introducing stressors that affect the structure and function of coastal ecosystems. This paper focuses on the fluvial fluxes and estuarine transport of nutrients from a tropical river (Mahanadi River) in Northeastern India and compares select nutrient and water quality parameters between 1983 and 2008. This estuary acts as a perennial source of CO2 with a net annual flux to the atmosphere of about 135 tons. The non‐conservative fluxes showed a net annual removal of 650 and 140 tons of phosphorus and nitrogen from the water column, respectively. Negative biogeochemical feedbacks that decreased the availability of N and P in 2008 relative to 1983 levels indicate major changes in biogeochemical responses towards fluvial fluxes of nutrient.  相似文献   

4.
In situ benthic flux measurements, pore water nutrient profiles, water column nutrient distributions, sediment grain size distributions and side-scan sonar observations suggest that advective transport of pore waters may be a major input pathway of nutrients into the Satilla River Estuary (coastal Georgia, USA). In situ benthic chamber incubations demonstrate the occurrence of highly variable, but occasionally very large sea floor fluxes of silicate, phosphate, and ammonium. Locally occurring benthic microbial mineralization of organic matter, as estimated by S35-sulphate reduction rate measurements, is insufficient to support these large fluxes. We hypothesize that the observed interlayering of permeable, sandy sediments with fine-grained, organic-rich sediments in the estuary provides conduits for advective transport of pore water constituents out of the sediments. Because permeable layers may extend significant distances beneath the salt marsh, the large fluxes observed may be supported by remineralization occurring over large areas adjacent to the estuary. Advective transport may be induced by pressure gradients generated by a variety of processes, including landward recharge by meteoric or rain waters if sand layers extend far enough into the maritime coastal lands. Alternatively, tidal variations across the salt marsh sediment surface may hydraulically pump water through the sediment system. Because these fluxes appear to be concentrated into small layers, this source may be a significant input of nutrients to the estuary even if permeable, sandy layers comprise a very small proportion of the seabed.  相似文献   

5.
We present barium data for sediment traps deployed in a northeast Atlantic margin environment (Bay of Biscay). Fluxes of excess barium were measured with the objective of calculating carbon export production rates from the surface mixed layer and thus contribute to the understanding of organic carbon transport in a margin environment. Therefore, it was necessary to properly understand the different processes that affected the barium fluxes in this margin environment. Seasonal variability of POC/Ba flux ratios and decrease of barium solubilisation in the trap cups with increasing depth in the water column probably indicate that the efficiency of barite formation in the organic micro-environment varies with season and that the process is relatively slow and not yet completed in the upper 600 m of water column. Thus barite presence in biogenic aggregates will significantly depend on water column transit time of these aggregates. Furthermore, it was observed that significant lateral input of excess-Ba can occur, probably associated with residual currents leaving the margin. This advected excess-Ba affected especially the recorded fluxes in the deeper traps (>1000 m) of the outer slope region. We have attempted to correct for this advected excess-Ba component, using Th (reported by others for the same samples) as an indicator of enhanced lateral flux and assigning a characteristic Ba/Th ratio to advected material. Using transfer functions relating excess-Ba flux with export production characteristic of margin areas, observed Ba fluxes indicate an export production between 7 and 18 g C m−2 yr−1. Such values are 3–7 times lower than estimates based on N-nutrient uptake and nutrient mass balances, but larger and more realistic than is obtained when a transfer function characteristic of open ocean systems is applied. The discrepancy between export production estimates based on excess-Ba fluxes and nutrient uptake could be resolved if part of the carbon is exported as dissolved organic matter. Results suggest that margin systems function differently from open ocean systems, and therefore Ba-proxy rationales developed for open ocean sites might not be applicable in margin areas.  相似文献   

6.
The North Inlet marsh-estuarine system encompasses the spectrum of interaction between the ocean and the uplands typical of the southeastern United States. The system is an ebb-dominated, bar-built estuary with good flow connection to the sea and some freshwater input.The North Inlet basin has evolved from a forested, relic, beach-ridge terrain under a regime of slowly rising sea level (2 mm year−1). This mode of development is supported by historic tide gage data. 210Pb dating of sediment cores, the presence of spodic soil horizons and tree roots at shallow depths beneath the marsh surface, and the presence of relic ‘cat eye’ ponds at the edge of the salt marsh. As sea level rises, the boundary between forest and salt marsh recedes upslope and forest spodosols are gradually transformed into marsh soils by salinization, the deposition and mixing of marine mud into the upper horizons of the forest soil and the accumulation of reduced sulfur via sulfate reduction. As a forest watershed is transformed into a salt-marsh basin, the hydraulic geometry of the original, black-water (fresh) stream increases to accommodate the increasing volumes of tidal discharge. Forest sands move seaward while marine muds are transported into the basin.As water moves between the forest and the sea, it passes through creeks in different developmental stages. Large mature creeks interact with the ocean while young, ephemeral creeks drain the uplands and intertidal marsh zones. Intermediate stage creeks connect these two and are characterized by the presence of oyster reefs. Net nutrient fluxes appear to be different in each developmental stage.The ‘Bly Creek’ study of Dame and coworkers addressed the flux of materials between a creek at the intermediate stage of development and the adjacent mature system. Material fluxes from a freshwater stream draining into Bly Creek from the adjacent uplands were also observed. The role of the salt marsh and the oyster reefs in determining material fluxes was examined. The Bly Creek basin imports particulate nutrients and exports dissolved forms.The ‘Outwelling’ study of Dame and coworkers at North Inlet focused on the flux of materials between the mature creeks and the Atlantic Ocean. All constituents were exported seasonally and annually from the estuary, except total sediments (imported during fall and winter) and chlorophyll a (imported in the summer and fall). The export of carbon, nitrogen and phosphorus was high compared with other estuarine systems.On a unit area basis, primary productivity is higher and nutrient fluxes are lower in Bly Creek (intermediate stage of development) as compared with the mature North Inlet system. These observations support the general ecosystem development hypothesis that nutrient storage and retention are higher in younger systems than more mature systems where growth is lower and fewer nutrients are needed.  相似文献   

7.
Data for uranium concentrations in 29 rivers and eight estuaries are presented. The river data expands the existing database on riverine uranium transport to include more smaller watersheds which collectively account for a large portion of material transport from the continent to the oceans. Riverine concentrations for these smaller watershed range from less than 50 to 660 pM. The results for these systems, when combined with previously published data on mostly larger rivers, do not change significantly the calculated global riverine flux and thus earlier estimates by Palmer and Edmond [Palmer, M.R., Edmond, J.M., 1993. Uranium in river water. Geochim. Cosmochim. Acta, 57, pp. 4947–4955] are substantiated. Uranium transport through eight diverse estuaries was studied to assess the importance of estuarine removal in the global marine uranium budget. Results indicate that uranium is conservatively transported in most systems studied. Results reported here for the Savannah estuary, however, indicate significant uranium removal. Our results suggest that uranium is removed in salt marsh estuaries at a rate of ca. 70 μmol/m2. This compares to a rate of 15 μmol/m2 for Delaware salt marshes [Church, T.M., Sarin, M.M., Fleisher, M.Q., Ferchlman, T.G., 1996. Salt marshes: an important sink for dissolved uranium. Geochim. Cosmochim. Acta, 60, pp. 3879–3887]. We suggest that uranium removal to salt marsh sediments is due to anaerobic microbially mediated processes. We use these results to estimate the global significance of the salt marsh sink in the oceanic budget of uranium. We estimate that 2.7×107 mol of uranium are removed to salt marshes annually as compared to an annual global riverine input of 3–6×107 mol estimated by Palmer and Edmond [Palmer, M.R., Edmond, J.M., 1993. Uranium in river water. Geochim. Cosmochim. Acta, 57, pp. 4947–4955].  相似文献   

8.
Chromophoric dissolved organic matter (CDOM), as the light absorbing fraction of bulk dissolved organic matter (DOM), plays a number of important roles in the global and local biogeochemical cycling of dissolved organic carbon (DOC) and in controlling the optical properties of estuarine and coastal waters. Intertidal areas such as salt marshes can contribute significant amounts of the CDOM that is exported to the ocean, but the processes controlling this CDOM source are not well understood. In this study, we investigate the production of DOM and CDOM from the decomposition of two salt marsh cordgrasses, Spartina patens, a C4 grass, and Typha latifolia, a C3 grass, in well-controlled laboratory experiments. During the seven-week incubation period of the salt marsh grasses in oxic and anoxic seawater, changes in dissolved organic carbon (DOC) concentrations, dissolved nitrogen (DN) concentrations, stable carbon isotopic composition of DOC (DOC-δ13C), and CDOM fluorescence demonstrate a significant contribution of DOC and CDOM to estuarine waters from salt marsh plants, such as Spartina and Typha species. In the natural environment, however, the release processes of CDOM from different cordgrass species could be controlled largely by the in situ oxic and anoxic conditions present during degradation which affects both the production and decomposition of DOC and CDOM, as well as the optical properties of CDOM in estuarine and coastal waters.  相似文献   

9.
黄河三角洲潮上带和潮间带不同生境微塑料分布规律   总被引:1,自引:0,他引:1  
微塑料是近年来广受关注的持久性污染物之一,对海洋生态系统有着不可忽视的潜在危害。河口三角洲作为典型的滨海盐沼湿地,属生态敏感地带,是海洋和陆地两大生态系统的交错地带。选取黄河三角洲潮上带和潮间带盐沼裸斑、翅碱蓬、柽柳、芦苇和潮沟五种典型生境开展土壤微塑料进行采样调查并分析其分布规律。结果表明,黄河三角洲潮上带及潮间带土壤中塑料的整体丰度范围在7~147个/kg,相比世界范围内其他滨海地区属于中等水平,其中翅碱蓬区是微塑料平均丰度最高的区域。整体而言,在各材质中,聚乙烯材质微塑料的检出比例最大,达29.53%;而在各形状中,碎片状微塑料占比最大,达38.88%,其次是颗粒状微塑料,占比37.09%,二者比例接近,为研究区微塑料的主要形态。潮汐作用对微塑料的分布有重要影响,微塑料在距离海岸较近的样点丰度较低,而在高潮线附近明显聚集,同时在植被覆盖区微塑料丰度也明显升高。黄河三角洲国家级自然保护区内人类活动强度较低,但仍面临着来自原位风化降解、潮汐风力搬运等多种潜在来源的微塑料污染。综上,对河口湿地微塑料污染的治理与防护,对于维持区域生态系统稳定与健康具有重要意义。  相似文献   

10.
Salt marshes are widely studied due to the broad range of ecosystem services they provide including serving as crucial wildlife habitat and as hotspots for biogeochemical cycling. Nutrients such as nitrogen (N), phosphorus (P), and carbon (C) are well studied in these systems. However, salt marshes may also be important environments for the cycling of another key nutrient, silica (Si). Found at the land–sea interface, these systems are silica replete with large stocks in plant biomass, sediments, and porewater, and therefore, have the potential to play a substantial role in the transformation and export of silica to coastal waters. In an effort to better understand this role, we measured the fluxes of dissolved (DSi) and biogenic (BSi) silica into and out of two tidal creeks in a temperate, North American (Rowley, Massachusetts, USA) salt marsh. One of the creeks has been fertilized from May to September for six years allowing us to examine the impacts of nutrient addition on silica dynamics within the marsh. High-resolution sampling in July 2010 showed no significant differences in Si concentrations between the fertilized and reference creeks with dissolved silica ranging from 0.5 to 108 μM and biogenic from 2.0 to 56 μM. Net fluxes indicated that the marsh is a point source of dissolved silica to the estuary in the summer with a net flux of approximately 169 mol h−1, demonstrating that this system exports DSi on the same magnitude as some nearby, mid-sized rivers. If these findings hold true for all salt marshes, then these already valuable regions are contributing yet another ecosystem service that has been previously overlooked; by exporting DSi to coastal receiving waters, salt marshes are actively providing this important nutrient for coastal primary productivity.  相似文献   

11.
This paper reports the initial results of a study of groundwater and coastal waters of southern Brazil adjacent to a 240 km barrier spit separating the Patos Lagoon, the largest coastal lagoon in South America, from the South Atlantic Ocean. The objective of this research is to assess the chemical alteration of freshwater and freshwater–seawater mixtures advecting through coastal permeable sands, and the influence of the submarine discharge of these fluids (SGD) on the chemistry of coastal waters. Here we focus on dissolved iron in this system and use radium isotopic tracers to quantify SGD and cross-shelf fluxes. Iron concentrations in groundwaters vary between 0.6 and 180 μM. The influence of the submarine discharge of these fluids into the surf zone produces dissolved Fe concentrations as high as several micromolar in coastal surface waters. The offshore gradient of dissolved Fe, coupled with results for Ra isotopes, is used to quantify the SGD flux of dissolved Fe from this coastline. We estimate the SGD flux to be 2 × 106 mol day− 1 and the cross-shelf flux to be 3.2 × 105 mol day− 1. This latter flux is equal to about 10% of the soluble atmospheric Fe flux to the entire South Atlantic Ocean. We speculate on the importance of this previously unrecognized iron input to regional ocean production and on the potential significance of this source to understanding variations in glacial–interglacial ocean production.  相似文献   

12.
In a number of regions of the world, enhanced flows of nitrogen (N) and phosphorus (P) from land to sea are of major concern because of the observable deterioration in the quality of many nearshore marine waters. Estuaries receive N and P from river and other runoff, from waste discharges, from the atmosphere and ocean and from exchange with coastal groundwaters (which in all likelihood results in a net input to the estuary). For rivers that do not discharge directly onto the continental shelf, seaward fluxes of N and P will be modified by within-estuary transformations of reactive species, the burial of particulate N and P in sediments (sub/intertidal, saltmarsh, mangrove) and the loss of gaseous N and P species by bacterial reduction.Driven by a desire to understand the effects of changing N and P loads on water quality, and to gain insights into the true modification of their fluxes within estuaries, much effort has been expended on providing quantitative estimates of the sources and sinks of these constituents. Yet, accurate and precise estimates on a global scale remain elusive. Riverine inputs of total N and P are calculated to be 35–64 and 22 Mt a−1, respectively. These inputs are dominated by particulate species, and because of this, are likely to be imprecise as overall sediment fluxes are disproportionately influenced by infrequent, poorly sampled, high flow events. Direct aeolian inputs of N to estuaries (P inputs are minor), at a minimum of 1–4 Mt a−1, are small but significant, although again good estimates are hampered by the apparent importance of infrequent, and thus under-sampled, deposition events. Indirect atmospheric inputs via deposition onto and runoff from catchments may be highly significant, at least in environments bounding the North Atlantic Ocean. Groundwater inputs are generally unknown, but, for N, may be 5–10 Mt a−1 (no data on P). Information on the global inputs of N and P from waste discharges and mariculture do not appear to be available. Denitrification, estimated to beca . 33 Mt a−1, may account for 52–94% of the currently estimated total N inputs; in contrast, the loss of P via venting of gaseous phosphine is unknown. The burial of N and P in sediments is about 7% and 30% of their total inputs, respectively. Nevertheless, reliable information on the modifying role of estuarine sediments appears far from complete.Globally, the inputs of N and P to the marine environment from all sources are expected to increase over the next few decades. The resulting effects of these increases on the marine environment, including any influences due to estuarine processing, may be partly assessed through the use of dynamic transport and transformation estuarine models for N and P. A further important development in this respect will be the linking of complementary models (e.g. catchment/river/estuarine/coastal zone) and their coupling to strategic large scale observations.  相似文献   

13.
钦州湾河流沉积物中镭的解吸行为   总被引:1,自引:0,他引:1  
放射性镭同位素在海底地下水排放(SGD)等海洋物质变化过程的研究中具有优良的示踪作用,估算SGD通量时需要计算河流悬浮颗粒物的解吸通量。因此,对河流沉积物/悬浮颗粒物中镭同位素解吸行为的研究不可或缺,而目前对于粒度较小范围内镭同位素的解吸特征及其机理的研究依然不足。本文选用钦州湾河流沉积物,通过室内实验探究粒度和盐度对沉积物中镭同位素解吸行为的影响。结果表明,在沉积物平均粒径0.9~136.0 μm范围内,随着粒径增大,沉积物中镭同位素在海水(盐度为33.9)中解吸活度逐渐减小,且变化趋势也逐渐变缓,平均粒径大于43.7 μm后,解吸量几乎不变;在海水盐度4.9~33.9范围内,随着盐度增大,沉积物中镭同位素解吸活度逐渐增大,盐度大于24.9后,解吸量趋于不变。本文创新性地建立了沉积物表面分形结构的镭解吸理论模型,拟合得到钦州湾河流沉积物表面最大可交换态224Ra、226Ra和228Ra活度分别为1.13 dpm/g、0.17 dpm/g和0.85 dpm/g,以干重计;沉积物中224Ra、226Ra和228Ra最大解吸比分别为30%、7%和18%。钦州湾河流沉积物颗粒表面最大可交换态224Ra和226Ra活度分别处于全球中等水平和较低水平,而其最大解吸比分别处于全球较高水平和较低水平。本研究结果有助于更好地理解镭同位素的解吸行为,以帮助更准确地估算SGD通量。  相似文献   

14.
The Patos–Mirim Lagoon system along the southern coast of Brazil is linked to the coastal ocean by a narrow mouth and by groundwater transport through a Holocene barrier. Although other groundwater systems are apparently active in this region, the hydraulic head of the lagoon, the largest in South America, drives groundwater transport to the coast. Water levels in wells placed in the barrier respond to changing water level in the lagoon. The wells also provide a measure of the nutrient concentrations of groundwater flowing toward the ocean. Additionally, temporary well points were used to obtain nutrient samples in groundwater on the beach face of the barrier. These samples revealed a subterranean freshwater–seawater mixing zone over a ca. 240 km shoreline. Previously published results of radium isotopic analyses of groundwater and of surface water from cross-shelf transects were used to estimate a water flux of submarine groundwater discharge (SGD) to nearshore surface waters of 8.5 × 107 m3/day. Using this SGD and the nutrient concentrations in different compartments, nutrient fluxes between groundwater and surface water were estimated. Fluxes were computed using both average and median reservoir (i.e. groundwater and surface water) nutrient concentrations. The SGD total dissolved inorganic nitrogen, phosphate and silicate fluxes (2.42, 0.52, 5.92 × 106 mol day− 1, respectively) may represent as much as 55% (total N) to 10% (Si) of the nutrient fluxes to the adjacent shelf environment. Assuming nitrogen limitation, SGD may be capable of supporting a production rate of ca. 3000 g C m2 year− 1in the nearshore surf zone in this region.  相似文献   

15.
Water level time series records from the Neuse and Pamlico River Estuaries were statistically compared to local and distant wind field data, water level records within the Pamlico Sound and also coastal ocean sites to determine the relative contribution of each time series to water levels in the Neuse and Pamlico Estuaries. The objectives of this study were to examine these time series data using various statistical methods (i.e. autoregressive, empirical orthogonal function analysis (EOF), exploratory data analysis (EDA)) to determine short- and long-time-scale variability, and to develop predictive statistical models that can be used to estimate past water level fluctuations in both the Neuse Estuary (NE) and Pamlico Estuary (PE). Short- and long-time-scale similarities were observed in all time series of estuarine, Pamlico Sound and subtidal coastal ocean water level and wind component data, due to events (nor'easters, fronts and tropical systems) and seasonality. Empirical orthogonal function analyses revealed a strong coastal ocean and wind field contribution to water level in the NE and PE. Approximately 95% of the variation was captured in the first two EOF components for water level data from the NE, sound and coastal ocean, and 70% for the PE, sound and coastal ocean. Spectral density plots revealed strong diurnal signals in both wind and water level data, and a strong cross correlation and coherency between the NE water level and the North/South wind component. There was good agreement between data and predictions using autoregressive statistical models for the NE (R2 = 0.92) and PE (R2 = 0.76). These methods also revealed significant autoregressive lags for the NE (days 1 and 3) and for the PE (days 1, 2 and 3). Significant departures from predictions are attributed to local meteorological and hydrological events. The autoregressive techniques showed significant predictive improvement over ordinary least squares methods. The results are considered within the context of providing long time-scale hindcast data for the two estuaries, and the importance of these data for multidisciplinary researchers and managers.  相似文献   

16.
还原性硫气体和甲烷自然释放是全球碳、硫循环研究的重要内容,对全球估算的时空变异性和不确定性问题、环境地球化学循环的特殊性以及还原性硫气体和甲烷通量关系的不明确性等主要科学问题进行了述评.并提出了解决这些科学问题的必要途径.  相似文献   

17.
为研究多环芳烃从河口到近海的环境归趋行为与生态风险,考察了沉积物质量浓度、溶解性有机质、温度、盐度4种典型环境因子对菲在黄河口沉积物上吸附的影响,比较了黄河口与近海两种沉积物对菲的吸附性能。研究结果表明,沉积物质量浓度越低,单位质量颗粒物的菲吸附量越高;共存的溶解性有机质对菲的吸附具有增促作用,且腐殖酸比黄腐酸的作用更显著;温度的升高不利于菲的吸附,而盐度的增加有利于菲的吸附。菲在沉积物上的吸附是分配作用与表面吸附两种行为的耦合,其中黄河口沉积物以表面吸附为主,而近海沉积物以分配作用为主。近海沉积物菲吸附量显著高于黄河口沉积物菲吸附量。基于此,菲从河口到近海的迁移过程中,更易于在沉积物表面发生吸附沉降,从而可能降低水相中的生态危害,但对近海底栖生物具有潜在的健康生态风险。  相似文献   

18.
A 3D coupled biogeochemical–hydrodynamic model (MIRO-CO2&CO) is implemented in the English Channel (ECH) and the Southern Bight of the North Sea (SBNS) to estimate the present-day spatio-temporal distribution of air–sea CO2 fluxes, surface water partial pressure of CO2 (pCO2) and other components of the carbonate system (pH, saturation state of calcite (Ωca) and of aragonite (Ωar)), and the main drivers of their variability. Over the 1994–2004 period, air–sea CO2 fluxes show significant inter-annual variability, with oscillations between net annual CO2 sinks and sources. The inter-annual variability of air–sea CO2 fluxes simulated in the SBNS is controlled primarily by river loads and changes of biological activities (net autotrophy in spring and early summer, and net heterotrophy in winter and autumn), while in areas less influenced by river inputs such as the ECH, the inter-annual variations of air–sea CO2 fluxes are mainly due to changes in sea surface temperature and in near-surface wind strength and direction. In the ECH, the decrease of pH, of Ωca and of Ωar follows the one expected from the increase of atmospheric CO2 (ocean acidification), but the decrease of these quantities in the SBNS during the considered time period is faster than the one expected from ocean acidification alone. This seems to be related to a general pattern of decreasing nutrient river loads and net ecosystem production (NEP) in the SBNS. Annually, the combined effect of carbon and nutrient loads leads to an increase of the sink of CO2 in the ECH and the SBNS, but the impact of the river loads varies spatially and is stronger in river plumes and nearshore waters than in offshore waters. The impact of organic and inorganic carbon (C) inputs is mainly confined to the coast and generates a source of CO2 to the atmosphere and low pH, of Ωca and of Ωar values in estuarine plumes, while the impact of nutrient loads, highest than the effect of C inputs in coastal nearshore waters, also propagates offshore and, by stimulating primary production, drives a sink of atmospheric CO2 and higher values of pH, of Ωca and of Ωar.  相似文献   

19.
Nutrient concentrations and fluxes in the Changjiang Estuary during summer   总被引:5,自引:3,他引:2  
In June 2003 and 2006 concentrations of nutrient were determined in the Changjiang Estuary. The data indicated that phosphate and nitrate did not behave conservatively in the estuary, but silicate behaved conservatively. An important mobilization of phosphate and nitrate was observed from the river up to halfway in the estuary. Both input flux (from river to estuary) and output flux (from estuary to coastal zone) of phosphate, silicate and nitrate were calculated from statistical interpretations of the salinity profiles. There was a large discrepancy between input and output fluxes of phosphate and nitrate. The river fluxes of silicate, phosphate and nitrate (fr) are augmented 5.3%, 28.9% and 36.6% in June 2003 and 1.0%, 62.5%, 31.7% in June 2006 by internal inputs (fi). The phosphate and nitrate fluxes are enhanced through the estuarine process, while silicate flux is unaltered. The authors present some long-term data for nutrient concentrations and the ratios of silicon to nitrogen to phosphorus in the Changjiang Estuary. Silicate level falled in the last two decades, while concentration of nitrate increased. Phosphate concentration had no significant change.  相似文献   

20.
海岸线是海陆分界线,定义为多年平均大潮高潮位的痕迹线,兼具海洋与陆地的空间资源管理界限功能。海岸线具有重要的生态功能和资源价值,其功能和价值源于所依附的海岸带。随着海岸带地区的经济与社会快速发展,海岸带资源的保护与开发的矛盾日益凸显。在此背景下,中国构建了以自然岸线保有率为核心的海岸线管理办法。2018年实施的浙江省地方标准《海岸线调查统计技术规范(DB33/T2106—2018)》提出了海岸线的三级分类体系,包括自然岸线、人工岸线和河口岸线3个一级类。该《规范》综合反映了海岸线的科学定义和国家需求。首先,该《规范》给出海岸线定义是"平均大潮高潮时水陆分界的痕迹线",突出了"大潮高潮位"和"痕迹线"对海岸线界定工作的指示意义。其次,该《规范》将自然岸线定义为"由海陆相互作用形成的海岸线",由此推论,人工岸线的地貌动力学功能是隔断了原有的海陆相互作用。第三,该《规范》提出了"原生自然岸线"、"自然恢复的岸线"和"整治修复的岸线"等概念,将曾经受过人类活动影响但恢复了(或拥有了)某种自然海岸形态特征和生态功能的岸线纳入自然岸线的统计口径。由于河口岸线是没有"水陆分界痕迹"可循的特殊类型,现有的海岸线定义未能体现河口岸线的内涵,因此我们建议将海岸线的定义扩展为"平均大潮高潮位的海陆分界痕迹线,以及河流入海口附近按一定规则人为划分的海域与陆域水体的分界线"。从海岸带地貌动力学的角度来看,海岸线的类型和变化主要受地质基底、海平面位置、沉积物供应条件和海岸动力环境等因素影响。因此,海岸线的定义和分类应该综合考虑这四个因素,而人类活动主要从海岸动力作用环境和沉积物供应条件两方面影响海岸带系统状态。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号