首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have performed six experiments in which we equilibrated monosulfide solid solution (mss) with sulfide melt in evacuated silica capsules containing solid buffers to fix oxygen and sulfur fugacity, at temperatures of 950°C, 1000°C and 1050°C at bulk concentrations of ∼50 ppm for each of the PGE and Au, 5% Ni, and 7% Cu. Concentrations of O, S, Fe, Ni and Cu were determined by electron microprobe, whereas precious metal concentrations were determined by laser-ablation inductively-coupled mass spectrometry. Partition coefficients of all elements studied show minimal dependences on oxygen fugacity from the IW to the QFM buffers when sulfur fugacity is fixed at the Pt-PtS buffer. Cu, Pt, Pd and Au are strongly incompatible and Ru remains moderately to strongly compatible under all conditions studied. At all oxygen fugacities, at the Pt-PtS sulfur buffer, Ir and Rh remain highly compatible in mss. In the single run at both low oxygen and low sulfur fugacity Ir and Rh were found to be strongly incompatible in mss. At QFM and Pt-PtS the partition coefficient for Ni shows weak temperature dependence, ranging from 0.66 at 1050°C to 0.94 at 950°C. At lower oxygen and sulfur fugacity Ni showed much more incompatible behavior. Comparison with the compositions of sulfide ores from the Lindsley deposit of Sudbury suggests that the sulfide magma evolved under conditions close to the QFM and Pt-PtS buffers. The compatible behavior observed for Ni, Ir and Rh at Lindsley and most other magmatic sulfide deposits hosted by mafic rocks requires equilibration of mss and sulfide liquid at moderately high sulfur fugacity and low temperatures near to the solidus of the sulfide magma. We argue that this constraint requires that the sulfide magma must have evolved by equilibrium crystallization, rather than fractional segregation of mss as is commonly supposed.  相似文献   

2.
Summary This study reports the first documented occurrence of platinum group-minerals (PGM) in the vicinity of the Voisey’s Bay magmatic sulfide ore deposit. The PGM are present in a sulfide poor, hornblende gabbro dyke in the Southeast Extension Zone of the massive sulfide Ovoid deposit. The dyke has somewhat elevated concentrations of platinum-group elements (PGE) and gold (up to 1.95 g/t Pt, 1.41 g/t Pd, and 6.59 g/t Au), as well as Cu, Pb, Ag, Sn, Te, Bi and Sb. The PGM formed by magmatic processes and were little disturbed by subsequent infiltration of an externally-supplied hydrothermal fluid. To date, no similar PGM occurrences have been discovered in the Ovoid deposit itself. Whole rock REE patterns indicate that the dyke is geochemically related to the main conduit troctolites, which carry the bulk of the massive sulfide mineralization at Voisey’s Bay. The PGE mineralization is Pt- and Pd-rich, where the Pt and Pd occur predominantly as discrete PGM with minor Pd in solid solution in galena (average=1.8 ppm) and pentlandite (average=2 ppm). The discrete PGM are predominantly hosted by disseminated base-metal sulfides (bornite, chalcopyrite, and galena) (56 vol%) and are associated with other precious metal minerals (13 vol%) with only ∼3 vol% of the PGM hosted by silicate minerals. In whole rock samples, the PPGE (Pt, Pd, and Rh) correlate with abundances of chalcopyrite, bornite, galena, and other precious metal minerals (PMM), whereas the IPGE (Ir, Ru, and Rh) correlate with pyrrhotite and pentlandite. There are no correlations of the PGE with chlorine. Lead isotope compositions of galena associated with the PGE mineralization in the Southeast Extension Zone are broadly similar to those for galena in the Ovoid. The lead isotope compositions are much different from those in the Voisey’s Bay Syenite, which is a potential external hydrothermal fluid source. The observed Cu-rich, Pb-rich sulfide compositions and associated Pt-Pd-Au-Ag-Sn-Te-Bi-Sb assemblage in the dyke can be produced magmatically as late ISS differentiates (e.g., Prichard et al., 2004). Melting temperatures of the PGM are also consistent with a magmatic origin. Following crystallization of PGM from magmatic sulfide, an external REE-enriched hydrothermal fluid was introduced to the system, producing secondary amphibole and locally remobilizing the Pb and Sn from the sulfides hosting the PGM. Author’s address: M. A. E. Huminicki, Department of Earth Sciences, Memorial University of Newfoundland, St. John’s, NL, Canada A1B 3X5  相似文献   

3.
This paper describes unusual graphite–sulfide deposits in ultramafic rocks from the Serranía de Ronda (Spain) and Beni Bousera (Morocco). These deposits occur as veins, stockworks and irregular masses, ranging in size from some centimeters to a few meters in thickness. The primary mineral assemblage mainly consists of Fe–Ni–Cu sulfides (pyrrhotite, pentlandite, chalcopyrite and cubanite), graphite and chromite. Weathering occurs in some sulfide-poor deposits that consist of graphite (up to 90%), chromite and goethite. Texturally, graphite may occur as flakes or clusters of flakes and as rounded, nodule-like aggregates. Graphite is highly crystalline and shows light carbon isotopic signatures (δ13C≈− 15‰ to − 21‰). Occasionally, some nodule-like graphite aggregates display large isotopic zoning with heavier cubic forms (probably graphite pseudomorphs after diamond with δ13C up to − 3.3‰) coated by progressively lighter flakes outwards (δ13C up to − 15.2‰).Asthenospheric-derived melts originated the partial melting (and melt–rock reactions) of peridotites and pyroxenites generating residual melts from which the graphite–sulfide deposits were formed. These residual melts concentrated volatile components (mainly CO2 and H2O), as well as S, As, and chalcophile elements. Carbon was incorporated into the melts from the melt–rock reactions of graphite-bearing (formerly diamonds) garnet pyroxenites with infiltrated asthenospheric melts. Graphite-rich garnet pyroxenites formed through the UHP transformation of subducted kerogen-rich crustal material into the mantle. Thus, graphite in most of the studied occurrences has light (biogenic) carbon signatures. Locally, reaction of the light carbon in the melts with relicts of 13C-enriched graphitized diamonds (probably generated from hydrothermal calcite veins in the subducting oceanic crust) reacted with the partial melts to form isotopically zoned nodule-like graphite aggregates.  相似文献   

4.
At Rodalquilar gold mineralization is found in Late Tertiary volcanic rocks of the Sierra del Cabo de Gata and is related to a caldera collapse. Radial and concentric faults were preferred sites for gold deposition. Hydrothermal activity produced a specific alteration zoning around gold-bearing vein structures, grading from an innermost advanced argillic via an argillic into a more regionally developed propylitic zone. Advanced argillic alteration with silica, pyrophyllite, alunite, and kaolinite extends down to several hundred m indicating a hypogene origin. High-grade gold mineralization in vein structures is confined to the near-surface part of the advanced argillic alteration. Fine-grained gold is associated with hematite, jarosite, limonite, or silica. At a depth of about 120 m, the oxidic ore assemblage grades into sulfide mineralization with pyrite and minor chalcopyrite, covellite, bornite, enargite, and tennantite. Two types of fluids from different sources were involved in the hydrothermal system. Overpressured and hypersaline fluids of presumably magmatic origin initiated the hydrothermal system. Subsequent hydrothermal processes were characterized by the influx of low-salinity solutions of probable marine origin and by interactions between both fluids. Deep-reaching, advanced argillic alteration formed from high-salinity fluids with 20–30 equiv. wt% NaCl at about 225°C. Near-surface gold precipitation and silification are related to fluids with temperatures of about 175°C and 3–4 equiv. wt% NaCl. Gold was transported as Au(HS) 2 , and precipitation resulted from boiling with a concomitant decrease in temperature, pressure, and pH and an increase in fO2. All features of the Rodalquilar gold deposit reveal a close relationship to acid-sulfate-type epithermal gold mineralization.  相似文献   

5.
Chalcopyrite and bornite are the main Au-bearing minerals at Cu porphyry deposits, volcanogenic massive sulfide (VMS) deposits, Cu-Ni deposits of the mafic magmatic complexes, and ores of submarine sulfide edifices. Bornite and intermediate solid solutions with wide compositional variations (bnss and iss – high-temperature chalcopyrite, correspondingly), which can scavenge economic concentrations of Au, appear in the Cu-Fe-S system at ore-forming conditions. However, the state of Au in bnss and iss is yet unknown. To solve this conundrum, we synthesized samples with net chemical composition of bnss and iss, studied them by in situ X–ray absorption spectroscopy (XAS), and used the experimental data to explain the Au distribution among natural ore-forming minerals. The sulfide samples were obtained at 495–700 °C in Au-saturated system by means of salt flux method. The bnss contained ~1.2–1.6 log units more Au than iss: up to 18 wt.% Au in bnss vs 0.4 wt.% Au in iss at 700 °C. An increase of temperature resulted in the sharp increase of Au concentration in both phases, ~1 log unit per 100 °C at f(S2) close to S(l) saturation. Analysis of Au L3-edge spectra recorded at 25–675 °C revealed that at 25 °C Au exists mainly in the metallic state. At t > 500 °C the spectral features of Au° disappear, and “chemically bound” Au predominates. The Au form of occurrence in the iss field is interpreted as Au-bearing clusters with a stromeyerite-like (CuAgS) structure. Digenite Cu2–xS and bnss contain Au in a mixture of stromeyerite-like and petrovskaite-like (Au0.8Ag1.2S) clusters. The chemical composition of both forms is close to CuAuS, where the nearest Au neighbors are two S atoms at RAu-S = 2.34–2.36 Å. Results of the present study allow to determine the state of Au and its concentration in the main Cu-bearing minerals of sulfide ores as a function of the T-f(S2)-compositional parameters. Due to the sharp increase of the CuAuS clusters stability with increasing temperature, in high-temperature ores formed at t > 350 °C Au enriches Cu-bearing minerals in comparison with Cu-free or Cu-deficient ones. As a result, in these ores native gold, being a product of decomposition of the Au-bearing clusters, is associated with Cu-rich minerals – chalcopyrite, bornite, digenite, chalcocite.  相似文献   

6.
Platinum-Group Minerals from the Durance River Alluvium,France   总被引:2,自引:2,他引:0  
Summary Platinum-group minerals were discovered, during gold recovery, in the Durance river alluvium, near Peyrolles (Bouches-du-Rhône). The PGM grains (average size 130 microns) are strongly flattened (average thickness 64 microns). The PGM concentrate consists primarily of (Pt, Fe) alloys (92%), (Os, Ir, Ru) alloys (3.5%), and native gold and (Au, Cu, Ag) alloys (4.5%). The following minerals were observed: isoferroplatinum, ferroan platinum, native osmium, native iridium, iridosmine, rutheniridosmine, osmiridium, ruthenian osmium, osmian ruthenium, cuprorhodsite, guanglinite, shandite, tetrauricupride, native gold, bornite, heazlewoodite, (Pt, Pd)2Cu3, Pt(Cu, Au), (Ni, Pt)Sn, (Cu, Fe)1–x (Pd, Rh, Pt)2+xS2, (Pt, Pd)4–xCu2As1–x. Isoferroplatinum contains numerous inclusions of alloys, sulphides, arsenides, Pd-tellurides, and partly devitrified silicate glass droplets. Most of the non-silicate inclusions also exhibit a drop-like shape indicating their original entrapment in a liquid state.Cuprorhodsite crystals (up to 20 microns) are associated with bornite included in Pt3Fe. Rarely, Pd- and Cu-sulphides, and Pd-tellurides appear in this association. Complex droplet-like arsenide inclusions in isoferroplatinum are composed of Pt bearing guanglinite and (Pt,Pd)4+xCu2As1–x. Native iridium shows exsolutions of Ir-bearing isoferroplatinum and (Pt,Pd)2Cu3. In places, concentrations of Sn (up to 3 wt.%) were observed in (Au, Cu) alloys. Shandite and (Ni, Pt)Sn inclusions occur in (Au, Cu, Ag) alloys. Silicate-glass inclusions are TiO2-poor and occasionally K-rich (plotting in the shoshonitic field). Taking into account mineralogical and chemical pecularities of the PGM association occurring in the studied concentrate, it seems highly probable that its primary source should be an Alaskan-type intrusion.
Platingruppen Minerale aus dem Alluvium der Durance, Frankreich
Zusammenfassung Minerale der Platingruppe wurden im Zuge von Goldgewinnung im Alluvium der Durance in der Nähe von Peyrolles (Bouches-du-Rhône) entdeckt. Die PGM Körner (durchschnittliche Korngröße 130m) sind flach gepreßt (durchschnittliche Dicke 64m). Die PGM Konzentrate bestehen vorwiegend aus (Pt, Fe) Legierungen (92%); (Os, Ir, Ru) Legierungen (3,5%), sowie gediegen Gold und (Au, Cu, Ag) Legierungen (4,5%). Folgende Minerale wurden beobachtet:Isoferro-Platin, Fe-Platin, gediegen Osmium, gediegen Iridium, Iridosmium, Rutheniridosmium, Osmiridium, Ru-Osmium, Os-Ruthenium, Cuprorhodsit, Guanglinit, Shandit, Tetrauricuprit, gediegen Gold, Bornit, HeazIewoodit, (Pt, Pd)2 Cu3, Pt(Cu, Au), (Ni, Pt)Sn, (Cu, Fe), (Pd, Rh, Pt)2+xS2, (Pt, Pd)4+xCu2As1–x.Isoferro-Platin enthält zahlreiche Einschlüsse von Legierungen, Sulfiden, Arseniden, Pd-Telluriden und teilweise devitrifzierte Silikatglaströpfchen. Die meisten nichtsili katischen Einschlüsse sind ebenfalls tröpfchenförmig. Dies weist darauf hin, daß sie in flüssigem Zustand eingeschlossen wurden.Cuprorhodsitkristalle (bis zu 20m) sind gemeinsam mit Bornit in Pt3 Fe einge schlossen. Selten sind Pd- und Cu-Sulfide, sowie Pd-Telluride mit diesen vergesellschaftet. Bei den komplexen tröpfehenförmigen Arsenideinschlüssen im Isoferro-Platin handelt es sich um Pt-führenden Guanglinit und (Pt, Pd)4+xCu2 As1–x. Gediegen Iridium zeigt Entmischung von Ir-führendem Isoferro-Platin und (Pt, Pd)2Cu3. Stellenweise wurden Konzentrationen von Sn (bis zu 3%) in den (Au, Cu) Legierungen beobachtet. Shandit und (Ni, Pt) Sn Einschlüsse kommen in (Au, Cu, Ag) Legierungen vor. Silikatische Glaseinschlüsse sind TiO2-arm und manchmal K-reich (im Shoshonitfeld liegend).Auf Grund der mineralogischen und chemischen Eigenheiten der untersuchten PGM Konzentrate ist eine Intrusion des Alaska-Typs als primäre Quelle sehr wahrscheinlich.


With 4 Figures and 2 Plates  相似文献   

7.
The quasiequilibrium directed crystallization technique was used for experimental simulation of zoning characteristic of Cu-rich pyrrhotite-chalcopyrite and pyrrhotite-cubanite-mooihoekite-haycockite ores at the Oktyabr??sky deposit. Directed crystallization of samples I (Fe 32.55, Cu 10.70, Ni 5.40, S. 51.00, Pt = Pd = Rh = Ir= Au = Ag = 0.05 at %) and II (Fe 33.74, Cu 15.94, Ni 1.48, S. 48.75, Pt = Pd = 0.05 at %) was performed. These samples approximate average composition of the ore. Monosulfide (mms) and intermediate (iss) solid solutions progressively crystallized from the melt. The curves of ore element distribution in samples have been drawn. The partition coefficients (k) of ore elements between solid solutions and sulfide melt have been determined depending on melt composition. The paths of melt, mss, and iss compositions are supplemented by tie lines connecting compositions of equilibrium liquid and solid phases. The phase composition of samples after cooling was studied using an optical microscope, XRD, and microprobe. The zoning of sample I is described by the following sequence of phases: monoclinic pyrrhotite ?? hexagonal pyrrhotite + tetragonal chalcopyrite ?? tetragonal and cubic chalcopyrite + pentlandite + bornite. Crystallized sample II consists of four zones: (1) hexagonal pyrrhotite and isocubanite; (2) hexagonal pyrrhotite, cubanite, and pentlandite; (3) low-S pc-phase close to haycockite and pentlandite; and (4) mooihoekite, pentlandite, and bornite mixtures. This sequence corresponds to the secondary zoning, which reflects both the primary fractionation of components and the solid-phase reactions during cooling of the crystallized sample. The Rh, Ru, and Ir partition coefficients between mss and melt have been measured, and speciation of PGM in samples has been identified. The results obtained are compared with typical natural Cu-rich sulfide ore of the Oktyabr??sky deposit.  相似文献   

8.
The chalcogenes (S, Se, Te), semimetals (As, Sb) and the metal Bi are important ligands for noble metals and form a wide range of compositionally diverse minerals with the platinum-group elements (PGE). With the exception of S, few experimental data exist to quantify the behavior of these elements in magmatic sulfide systems. Here we report experimental partition coefficients for Se, Te, As, Sb, and Bi between monosulfide solid solution (mss) and sulfide melt, determined at 950 °C at a range of sulfur fugacities (fS2) bracketed by the Fe-FeS (metal-troilite) and the Fe1−×S-Sx (mss-sulfur) equilibria. Selenium is shown to partition in mss-saturated sulfide melt as an anion replacing S2−. Arsenic changes its oxidation state with fS2 from predominantly anionic speciation at low fS2, to cationic speciation at high fS2. The elements Sb, Te, and Bi are so highly incompatible with mss that they can only be present in sulfide melt as cations and/or as neutral metallic species. The partition coefficients derived fall with increasing atomic radius of the element. They also reflect the positions of the respective elements in the Periodic Table: within a group (e.g., As, Sb, Bi) the partition coefficients fall with increasing atomic radius, and within a period the elements of the 15th group are more incompatible with mss than the neighboring elements of the 16th group.  相似文献   

9.
Electron probe micro-analysis(EPMA) and scanning electron microscopy(SEM) equipped with energy dispersive spectrometry(EDS) have been used to investigate the principal ore minerals and coexisting metallic mineral inclusions in polished thin sections from the Tiegelongnan deposit, which consists of a high-sulfidation epithermal system(HSES) and a porphyry system(PS). Molybdenite,chalcopyrite, bornite, tennantite, enargite, digenite, anilite, covellite, and tetrahedrite have been identified by EPMA. Intergrowth, cross-cutting and replacement relationships between the metallic minerals suggest that molybdenite formed first(stage 1),followed by chalcopyrite ± bornite ± hematite(stage 2),then bornite ± Cu-sulfides ± Cu-Fe-sulfoarsenides(stage 3),and lastly Cu-Fe-sulfoarsenides ±Cu-sulfides(stage 4). Pyrite is developed throughout all the stages. Droplet-like inclusions of Au-Te minerals commonly occur in tennantite but not in the other major sulfides(molybdenite, chalcopyrite and bornite),implying that tennantite is the most important Au telluride carrier. The pervasive binary equilibrium phases of calaverite and altaite constrain f_(Te2) in the range from ~-6.5 to ~-8 and f_(S2)-11.The intergrowth of bornite and chalcopyrite and the conversion from bornite to digenite suggest fluctuated and relatively low precipitation temperature conditions in the HSES relative to the PS.Contrastingly, the dominance of chalcopyrite in the PS, with minor bornite, suggests relatively high temperature conditions. These new results are important for further understanding the mineral formation processes superimposed by HSES and PS systems.  相似文献   

10.
Concentrations of Ag, Au, Cd, Co, Re, Zn and Platinum-group elements (PGE) have been determined in sulfide minerals from zoned sulfide droplets of the Noril’sk 1 Medvezky Creek Mine. The aims of the study were; to establish whether these elements are located in the major sulfide minerals (pentlandite, pyrrhotite, chalcopyrite and cubanite), to establish whether the elements show a preference for a particular sulfide mineral and to investigate the model, which suggests that the zonation in the droplets is caused by the crystal fractionation of monosulfide solid solution (mss). Nickel, Cu, Ag, Re, Os, Ir, Ru, Rh and Pd, were found to be largely located in the major sulfide minerals. In contrast, less than 25% of the Au, Cd, Pt and Zn in the rock was found to be present in these sulfides. Osmium, Ir, Ru, Rh and Re were found to be concentrated in pyrrhotite and pentlandite. Palladium and Co was found to be concentrated in pentlandite. Silver, Cd and Zn concentrations are highest in chalcopyrite and cubanite. Gold and platinum showed no preference for any of the major sulfide minerals. The enrichment of Os, Ir, Ru, Rh and Re in pyrrhotite and pentlandite (exsolution products of mss) and the low levels of these elements in the cubanite and chalcopyrite (exsolution products of intermediate solid solution, iss) support the mss crystal fractionation model, because Os, Ir, Ru, Rh and Re are compatible with mss. The enrichment of Ag, Cd and Zn in chalcopyrite and cubanite also supports the mss fractionation model these minerals are derived from the fractionated liquid and these elements are incompatible with mss and thus should be enriched in the fractionated liquid. Gold and Pt do not partition into either iss or mss and become sufficiently enriched in the final fractionated liquid to crystallize among the iss and mss grains as tellurides, bismithides and alloys. During pentlandite exsolution Pd appears to have diffused from the Cu-rich portion of the droplet into pentlandite.  相似文献   

11.
Partitioning of platinum-group elements (PGE) between sulfide liquid and monosulfide solid solution (mss) has been investigated by crystallizingmss from Fe–Ni–Cu sulfide liquid at 1,000–1,040° C, using bulk compositions and PGE contents typical of magmatic sulfides associated with mafic and ultramafic systems. Products were analyzedin situ for PGE and Au using SIMS. Sulfide liquid compositions were more Ni- and Cu-rich than coexistingmss. Liquid/mss partition coefficients are: Os-0.23±0.04, Ir-0.28±0.11, Ru-0.24±0.05, Rh-0.33±0.06, Pt-4.8±0.7, Pd-4.8±1.9, Au-11.4. Partitioning of PGE is independent of PGE concentration and Ni content in the composition range investigated. Additionally, Henry's law appears to be obeyed up to minor-element contents in the sulfide liquid andmss. Osmium, Ir, Ru, and Rh are compatible elements in the anhydrous Fe–Ni–Cu–S system, whereas Pt, Pd and Au are incompatible elements. These affinities correspond to the partitions of PGE between massive and Cu-rich magmatic sulfides. However, the detailed precious-metal compositions of the Cu-rich sulfides of mafic rock systems, disseminated ores of komatiites and Cu-rich assemblage of droplet ore from the Noril'sk-Talnakh deposits are not consistent with those expected for pristine fractionated sulfide liquids.  相似文献   

12.
The Huangshannan magmatic Ni-Cu sulfide deposit is one of a group of Permian magmatic Ni-Cu deposits located in the southern Central Asian Orogenic belt in the Eastern Tianshan, northwest China. It is characterized by elevated Ni tenor (concentrations in recalculated 100% sulfide) in sulfide within ultramafic rocks (9–19 wt%), with values much higher than other deposits in the region. Sulfides of the Huangshannan deposit are composed of pentlandite, chalcopyrite, and pyrrhotite and the host rock is relatively fresh, indicating that the high-Ni tenor is a primary magmatic feature rather than formed by alteration processes. It is shown that sulfides with high-Ni tenor can be generated by sulfide-olivine equilibrium at an oxygen fugacity of QFM +0.5, for magmas containing 450 ppm Ni and 20% olivine. Ores with >10 wt% sulfur have relatively low PGE and Ni tenors compared to other ores, R factor (mass ratio of silicate to sulfide liquid) modeling of Ni indicates that they formed at moderate R values (150–600). Based on this constraint on R values, ores with <10 wt% sulfides in the Huangshannan deposit can be segregated from a similar parental magma with 0.05 ppb Os, 0.023 ppb Ir, and 0.5 ppb Pd at R values between 600 and 3000. This, coupled with the supra-cotectic proportions of sulfide liquid to cumulus silicates in the Huangshannan ores imply mechanical transport and deposition of sulfide liquid in a magma pathway or conduit, in which sulfides must have interacted with large volumes of silicate magma. Platinum and Pd depletion relative to other platinum group elements (PGEs) are observed in fresh and sulfide-rich samples (S > 4.5 wt%). As sulfide-rich samples are also depleted in Cu, and as interstitial sulfides in those samples are physically interconnected at a scale of several cms, the low Pt and Pd anomalies are attributed to solid Pt and Pd phases crystallization and retention with the monosulfide solid solution (MSS) and Cu-rich sulfide liquid percolation during MSS fractionation. This finding indicates that Pt anomalies in sulfide-rich rocks from magmatic Ni-Cu deposits in the Eastern Tianshan are the result of sulfide fractionation rather than a hydrothermal effect. 187Os/188Os(278Ma) values of the lherzolite samples vary from 0.27 to 0.37 and γOs(278Ma) values vary from 110 to 189, indicating significant magma interaction with crustal sulfides, rich in radiogenic Os. Well constrained γOs values and δ34S values (−0.4 to 0.8‰) indicate that crustal contamination occurred at depth before the arrival of the magma in the Huangshannan chamber. Regionally, deposits with high-Ni tenor have not been reported other than the Huangshannan deposit; however, many intrusions with high-Ni contents in olivine are present in NW China, such as the Erhongwa, Poyi and Poshi intrusions. Those intrusions are capable of forming high-Ni tenor sulfides due to olivine-sulfide-silicate equilibrium and relative high-Ni content in parent magma, making them attractive exploration targets.  相似文献   

13.
Typical magmatic sulfides are dominated by pyrrhotite and pentlandite with minor chalcopyrite, and the bulk atomic Cu/Fe ratio of these sulfides is typically less than unity. However, there are rare magmatic sulfide occurrences that are dominated by Cu-rich sulfides (e.g., bornite, digenite, and chalcopyrite, sometimes coexisting with metallic Cu) with atomic Cu/Fe as high as 5. Typically, these types of sulfide assemblages occur in the upper parts of moderately to highly fractionated layered mafic–ultramafic intrusions, a well-known example being the Pd/Au reef in the Upper Middle Zone of the Skaergaard intrusion. Processes proposed to explain why these sulfides are so unusually rich in Cu include fractional crystallization of Fe/(Ni) monosulfide and infiltration of postmagmatic Cu-rich fluids. In this contribution, we explore and experimentally evaluate a third possibility: that Cu-rich magmatic sulfides may be the result of magmatic oxidation. FeS-dominated Ni/Cu-bearing sulfides were equilibrated at variable oxygen fugacities in both open and closed system. Our results show that the Cu/Fe ratio of the sulfide melt increases as a function of oxygen fugacity due to the preferential conversion of FeS into FeO and FeO1.5, and the resistance of Cu2S to being converted into an oxide component even at oxygen fugacities characteristic of the sulfide/sulfate transition (above FMQ?+?1). This phenomenon will lead to an increase in the metal/S ratio of a sulfide liquid and will also depress its liquidus temperature. As such, any modeling of the sulfide liquid line of descent in magmatic sulfide complexes needs to address this issue.  相似文献   

14.
The eutectic mineral assemblage calcite-dolomite-periclase-apatite-forsterite-magnesioferrite-pyrrhotite-alabandite in a carbonatite dike within the Oka complex, Quebec, buffers the fugacities (and partial pressures) of all gas species in C-O-H-S-F, assuming vapor saturation. At the inferred eutectic (640° C, 1 kbar), the most important gas species and their partial pressures (bars) were: H2O, 882; CO2, 110; H2, 4.6; H2S, 2.7; CO, 0.5; and CH4, 0.1. Oxygen fugacity was near the QFM buffer, logf(O2)=–18.6, and sulfur fugacity was near the QFM-pyrrhotite buffer, logf(S2)=–5.9. Fluorine fugacity was low, logf(F2)=–43.9, consistent with the absence of fluoride minerals other than apatite. Presence of a water-rich gas phase is consistent with experiments on synthetic carbonatite systems (e.g. Fanelli et al. 1981), although compositions of the gas phase in published experiments cannot be determined exactly.Contribution no. 390 from the Mineralogical Laboratory, The University of Michigan  相似文献   

15.
The Yueshan mineral belt is geotectonically located at the centre of the Changjiang deep fracture zone or depression of the lower Yangtze platform. Two main types of ore deposits occur in the Yueshan orefield: Cu–Au–(Fe) skarn deposits and Cu–Mo–Au–(Pb–Zn) hydrothermal vein-type deposits. Almost all deposits of economic interest are concentrated within and around the eastern and northern branches of the Yueshan dioritic intrusion. In the vicinity of the Zongpu and Wuhen intrusions, there are many Cu–Pb–Zn–Au–(S) vein-type and a few Cu–Fe–(Au) skarn-type occurrences.Fluid inclusion studies show that the ore-forming fluids are characterised by a Cl(S)–Na+–K+ chemical association. Hydrothermal activity associated with the above two deposit types was related to the Yueshan intrusion. The fluid salinity was high during the mineralisation processes and the fluid also underwent boiling and mixed with meteoric water. In comparison, the hydrothermal activity related to the Zongpu and Wuhen intrusions was characterised by low salinity fluids. Chlorine and sulphur species played an important role in the transport of ore-forming components.Hydrogen- and oxygen-isotope data also suggest that the ore-forming fluids in the Yueshan mineral belt consisted of magmatic water, mixed in various proportions with meteoric water. The enrichment of ore-forming components in the magmatic waters resulted from fluid–melt partitioning. The ore fluids of magmatic origin formed large Cu–Au deposits, whereas ore fluids of mixed magmatic-meteoric origin formed small- to medium-sized deposits.The sulphur isotopic composition of the skarn- and vein-type deposits varies from − 11.3‰ to + 19.2‰ and from + 4.2‰ to + 10.0‰, respectively. These variations do not appear to have been resulted from changes of physicochemical conditions, rather due to compositional variation of sulphur at the source(s) and by water–rock interaction. Complex water–rock interaction between the ore-bearing magmatic fluids and sedimentary wall rocks was responsible for sulphur mixing. Lead and silicon isotopic compositions of the two deposit types and host rocks provide similar indications for the sources and evolution of the ore-forming fluids.Hydrodynamic calculations show that magmatic ore-forming fluids were channelled upwards into faults, fractures and porous media with velocities of 1.4 m/s, 9.8 × 10− 1 to 9.8 × 10− 7 m/s and 3.6 × 10− 7 to 4.6 × 10− 7 m/s, respectively. A decrease of fluid migration velocity in porous media or tiny fractures in the contact zones between the intrusive rocks and the Triassic sedimentary rocks led to the deposition of the ore-forming components. The major species responsible for Cu transport are deduced to have been CuCl, CuCl2, CuCl32− and CuClOH, whereas Au was transported as Au2(HS)2S2−, Au(HS)2, AuHS and AuH3SiO4 complexes. Cooling and a decrease in chloride ion concentration caused by fluid boiling and mixing were the principal causes of Cu deposition. Gold deposition was related to decrease of pH, total sulphur concentration and fO2, which resulted from fluid boiling and mixing.Geological and geochemical characteristics of the two deposit types in the Yueshan mineral belt suggest that there is a close genetic relationship with the dioritic magmatism. Geochronological data show that the magmatic activity and the mineralisation took place between 130 and 136 Ma and represent a continuous process during the Yanshanian time. The cooling of the intrusions and the mineralisation event might have lasted about 6 Ma. The cooling rate of the magmatic intrusions was 80 to 120 °C my− 1, which permitted sufficient heat supply by magma to the ore-forming system.  相似文献   

16.
The concentrations of Ir, Ru, Pt and Pd have been determined in 29 Mid-Oceanic Ridge basaltic (MORB) glasses from the Pacific (N = 7), the Atlantic (N = 10) and the Indian (N = 11) oceanic ridges and the Red Sea (N = 1) spreading centers. The effect of sulfide segregation during magmatic differentiation has been discussed with sample suites deriving from parental melts produced by high (16%) and low (6%) degrees of partial melting, respectively. Both sample suites define positive and distinct covariation trends in platinum-group elements (PGE) vs. Ni binary plots. The high-degree melting suite displays, for a given Ni content, systematically higher PGE contents relative to the low-degree melting suite. The mass fraction of sulfide segregated during crystallization (Xsulf), the achievement of equilibrium between sulfide melt and silicate melts (Reff), and the respective proportions between fractional and batch crystallization processes (Sb) are key parameters for modeling the PGE partitioning behavior during S-saturated MORB differentiation. Regardless of the model chosen, similar sulfide melt/silicate melt partition coefficients for Ir, Ru, Pt and Pd are needed to model the sulfide segregation process, in agreement with experimental data. When corrected for the effect of magmatic differentiation, the PGE data display coherent variations with partial melting degrees. Iridium, Ru and Pt are found to be compatible in nonsulfide minerals whereas the Pd behaves as a purely chalcophile element. The calculated partition coefficients between mantle sulfides and silicate melts (assuming a PGE concentration in the oceanic mantle at ∼0.007 × CI-chondritic abundances) increase from Pd (∼103) to Ir (∼105). This contrasting behavior of PGE during S-saturated magmatic differentiation and mantle melting processes can be accounted for by assuming that Monosufide Solid Solution (Mss) controls the PGE budget in MORB melting residues whereas MORB differentiation processes involve Cu-Ni-rich sulfide melt segregation.  相似文献   

17.
鸡笼山矽卡岩型金铜矿床是长江中下游成矿带典型的矽卡岩矿床,矿体主要赋存于下三叠统大冶组碳酸盐岩与花岗闪长斑岩接触带内。根据野外观察和镜下鉴定,将成矿过程划分为进矽卡岩阶段、退化蚀变阶段、石英-硫化物阶段和碳酸盐阶段,其中石英-硫化物阶段为金和铜的主要成矿阶段。鸡笼山金铜矿床中不同类型矿石的矿相学观察和电子探针微区成分分析(EPMA)表明,金、银主要以自然金、银金矿、碲银矿、硫银铋矿等形式产出,主要载金矿物为黄铜矿和黄铁矿;同时发现鸡笼山金铜矿床中发育大量碲-铋矿物(如辉碲铋矿、针硫铋铅矿等)。成矿流体物理化学性质研究表明,鸡笼山金铜矿床中金银元素在高温热液中主要以氯络合物的形式运移,随着温度降低和流体进一步的演化,金银元素转变为以硫络合物、碲铋化物熔体等形式运移。在石英-硫化物阶段,由于硫化作用与流体的沸腾作用,流体中硫逸度降低,碲逸度升高;当流体处于黄铁矿-磁黄铁矿氧逸度范围、酸碱性呈中性-弱碱性、碲逸度(logf_(Te2))为-10.7~-8.4、硫逸度(logf_(S_2))为-11.4~-10.6时,金、银、铜元素近于同时沉淀,碲、铋和砷元素对金和银元素运移和富集起到了重要作用,最终形成了鸡笼山矽卡岩型金铜矿床。  相似文献   

18.
Small bodies of pyrrhotite, chalcopyrite, minor pentlandite, and magnetite occur at the peripheries of podiform bodies of chromite in ultramafic ophiolitic rocks at Tsangli, Eretria, central Greece. Banding of magnetite and sulfide within the bodies is reminiscent of magmatic banding. A magmatic origin has been proposed for similar sulfide masses in the Troodos ophiolite (Panayiotou, 1980). The compositions of the host rocks, chromite, and of the sulfides have been investigated. On average, the sulfide mineralization, recalculated to metal content in 100% sulfide, contains 0.55% Ni, 5.15% Cu, 0.29% Co, 9 ppb Pd, 179 ppb Pt, 16 ppb Rh, 112 ppb Ru, 31 ppb Ir, 58 ppb Os, and 212 ppb Au. These metal contents, particularly the high Cu/(Cu+Ni) ratio of 0.78 and the Pt/(Pd+Pt) ratio of 0.95, are inconsistent with the sulfides having reached equilibrium with their Ni rich host rocks at magmatic temperatures and accordingly it is concluded that they are not of magmatic origin. The average 34S value of the sulfide bodies is +2 while that of a sample of pyrite from country-rock schist is –15.6. These values are inconclusive as to the origin of the sulfur. It is suggested that the sulfides have been precipitated by hydrothermal fluids, possibly those responsible for the serpentinization of the host rocks. The source of the metals may have been the host rocks themselves.  相似文献   

19.
Concentrations of platinum group elements (PGE), Ag, As, Au, Bi, Cd, Co, Mo, Pb, Re, Sb, Se, Sn, Te, and Zn, have been determined in base metal sulfide (BMS) minerals from the western branch (402 Trough orebodies) of the Creighton Ni–Cu–PGE sulfide deposit, Sudbury, Canada. The sulfide assemblage is dominated by pyrrhotite, with minor pentlandite, chalcopyrite, and pyrite, and they represent monosulfide solid solution (MSS) cumulates. The aim of this study was to establish the distribution of the PGE among the BMS and platinum group minerals (PGM) in order to understand better the petrogenesis of the deposit. Mass balance calculations show that the BMS host all of the Co and Se, a significant proportion (40–90%) of Os, Pd, Ru, Cd, Sn, and Zn, but very little (<35%) of the Ag, Au, Bi, Ir, Mo, Pb, Pt, Rh, Re, Sb, and Te. Osmium and Ru are concentrated in equal proportions in pyrrhotite, pentlandite, and pyrite. Cobalt and Pd (∼1 ppm) are concentrated in pentlandite. Silver, Cd, Sn, Zn, and in rare cases Au and Te, are concentrated in chalcopyrite. Selenium is present in equal proportions in all three BMS. Iridium, Rh, and Pt are present in euhedrally zoned PGE sulfarsenides, which comprise irarsite (IrAsS), hollingworthite (RhAsS), PGE-Ni-rich cobaltite (CoAsS), and subordinate sperrylite (PtAs2), all of which are hosted predominantly in pyrrhotite and pentlandite. Silver, Au, Bi, Mo, Pb, Re, Sb, and Te are found predominantly in discrete accessory minerals such as electrum (Au–Ag alloy), hessite (Ag2Te), michenerite (PdBiTe), and rhenium sulfides. The enrichment of Os, Ru, Ni, and Co in pyrrhotite, pentlandite, and pyrite and Ag, Au, Cd, Sn, Te, and Zn in chalcopyrite can be explained by fractional crystallization of MSS from a sulfide liquid followed by exsolution of the sulfides. The early crystallization of the PGE sulfarsenides from the sulfide melt depleted the MSS in Ir and Rh. The bulk of Pd in pentlandite cannot be explained by sulfide fractionation alone because Pd should have partitioned into the residual Cu-rich liquid and be in chalcopyrite or in PGM around chalcopyrite. The variation of Pd among different pentlandite textures provides evidence that Pd diffuses into pentlandite during its exsolution from MSS. The source of Pd was from the small quantity of Pd that partitioned originally into the MSS and a larger quantity of Pd in the nearby Cu-rich portion (intermediate solid solution and/or Pd-bearing PGM). The source of Pd became depleted during the diffusion process, thus later-forming pentlandite (rims of coarse-granular, veinlets, and exsolution flames) contains less Pd than early-forming pentlandite (cores of coarse-granular).  相似文献   

20.
To study the behavior of macrocomponents and admixtures during the fractional crystallization of sulfide melts and the influence of As on noble metals in this process, we performed a quasi-equilibrium directional crystallization of melt of composition (at.%): Fe—35.5, Ni—4.9, Cu—10.4, and S—48.3, with admixtures of Pt, Pd, Rh, Ru, Ir, Au, Ag, As, and Co (each 0.1 at.%), which imitates the average (by Cu contents) compositions of massive ores at the Noril'sk Cu-Ni deposits. The following sequence of phase formation from melt has been established: mss (zone I) / mss + iss (zone II) / iss (zone III) (mss is (FezNi1–z)S1+δ, iss is (FexCuyNi1–xy)zS1–z); it corresponds to the distribution of main elements along the sample (primary zoning). Distribution curves for macrocomponents in zones I and II of the sample were constructed, as well as the dependencies of their partition coefficients (k) between solid solutions and sulfide melt on the fraction of crystallized melt. The secondary (mineral) zoning resulted from subsolidus phase transformations has been revealed. Five subzones have been recognized: mss + cp (Ia) / mss + cp + pn (Ib) / mss + pc + pn (IIa) / mss + pc + pn + bn (IIb) / pc + bn + pn + unidentified microphases (III). Admixture species in the sample were studied: (1) admixtures dissolved in primary solid solutions and in main minerals resulted from solid-phase transformations and (2) admixtures forming their own mineral phases. The partition coefficients of Co, Rh, and Ru (mss/L), Ru, Ir, and Rh (mss/cp), and Co, Rh, and Pd (mss/pn) were determined. Minerals of noble metals have been recognized: Pt3Fe, PtFe, Au, (Ag,Pd), (Au,Pt), Ag, Ag3Cu, Au3(Cu,Ag,Pd,Pt), etc., and the regularities of their distribution in the sample have been established. It is shown that some noble-metal admixtures are prone to interact with As. Mineral arsenides and sulfoarsenides of noble metals produced during fractional crystallization have been recognized: PtAs2, Pd3As, (RhAsS), (IrAsS), and (Ir,Rh)AsS. The discovered drop-like inclusions of noble-metal arsenides suggest the separation of the initial sulfide-arsenide melt into two immiscible liquids. By indirect features, the micromineral inclusions are divided into primary, crystallized from melt, and secondary, produced in solid-phase reactions. The results of study are compared with literature experimental data obtained by the isothermal-annealing method and with the behavior of noble metals and As during the formation of zonal massive orebodies at the Noril'sk- and Sudbury-type deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号