首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
晶质铀矿是花岗岩中广泛产出的副矿物,其铀离子价态的变化及比例关系,对于岩浆氧逸度具有一定的指示意义。笔者利用硅酸盐熔浆中U~(6+)-U~(4+)的平衡关系,推导出花岗岩副矿物——晶质铀矿的氧逸度计热力学计算方程,以及氧逸度(f O2)、温度(T)和不同价态铀离子比值(U~(6+)/U~(4+))的对数关系。以赣南五里亭花岗岩体为例,借助X射线光电子能谱分析,获得U~(6+)与U~(4+)的比例关系(U~(6+)/U~(4+)=0.30~0.46);利用晶质铀矿氧逸度计热力学方程,计算出该岩体形成时的平均氧逸度(为FMQ+0.58)。在温度(T)与氧逸度(lg f O2)协变图中,该结果靠近矿物反应缓冲线(FMQ),显示岩浆为弱还原性。因此,晶质铀矿U~(6+)/U~(4+)氧逸度计算结果能够代表岩浆源区的氧逸度特征,可作为常规氧逸度计算方法的一种有效补充。  相似文献   

2.
氧化还原障在热液铀矿成矿中的作用   总被引:5,自引:0,他引:5  
铀是变价元素,氧化还原条件控制铀的迁移和沉淀。铀在氧化环境中呈U~(6+)形式存在,在还原条件下则以U~(4+)形式存在。氧化态六价铀主要以可溶的碳酸铀酰/氟化铀酰络合物形式在水溶液中迁移,还原态四价铀主要以沥青铀矿和铀石等形式富集沉淀成矿。热液铀矿的形成需要一对空间上密切共生的氧化障/氧化剂和还原障/还原剂,二者缺一不可。首先,氧化障中氧化剂将富铀岩石中的铀大量氧化形成U~(6+),溶解进入水溶液迁移;第二,高氧化性富铀溶液遇到还原障,U~(6+)还原成U~(4+)沉淀下来,富集形成铀矿。前人虽然对铀的地球化学性质及氧化还原反应在铀成矿中作用已比较了解,但如何在实际铀矿成矿系统中准确识别氧化还原障,有效利用氧化还原障的控矿机理指导找矿,还存在一些模糊认识,制约了铀成矿理论的发展和找矿方法的提升。本文以我国最重要的砂岩型铀矿、火山岩型铀矿、花岗岩型铀矿和变质型铀矿为例,总结了与铀矿化有关的氧化还原障的主要类型,探讨了红层等蒸发盐地层(氧化障),有机质、煌斑岩等中基性岩脉(还原障)与铀矿之间的关系及控矿机制,揭示了成矿盆地中铀-煤、铀-气(油)共生的机制,阐明了翁泉沟硼、铁、铀矿共生原因,建立了不同类型铀矿成矿模型。  相似文献   

3.
松辽盆地北部是近年来发现的砂岩型铀矿找矿潜力较大的地区。采用电子探针及化学分析等方法,对该地区砂岩型铀矿中铀矿物的赋存状态及铀的价态进行研究。发现松辽盆地北部砂岩型铀矿铀的赋存状态以独立铀矿为主,主要为沥青铀矿和铀石;铀矿物颗粒细小,多以粒状、斑点状、团块状、条带状、网状、环带状及分散显微颗粒、显微颗粒集合体的形式存在,颗粒大小几微米至200μm;铀矿石主要与黄铁矿、石英、长石共生,分布在碎屑颗粒间或裂隙中,或充填于砂岩胶结物中,或围绕黄铁矿生长形成镶边状。从铀矿物的赋存状态及类型看,松辽盆地北部铀矿化可能存在两个成矿期,即同生沉积期和后生改造叠加期。矿石中U~(6+)/U~(4+)比值为0.30~2.07,平均为0.93,铀含量较高的矿石U~(6+)/U~(4+)比值高于铀含量较低的矿石,普遍大于1,有利于铀矿地浸开采。上述研究为松辽盆地北部砂岩型铀矿找矿、成矿机理研究提供了基础资料,同时对砂岩型铀矿选冶开采工艺的确定具有借鉴意义。  相似文献   

4.
贵州云峰铝土矿中铀矿物的发现   总被引:1,自引:1,他引:0  
有关铝土矿中铀富集的报道很多,但至今未见独立铀矿物存在的相关文献。本次研究采用岩相学观察、X衍射(XRD)、ICP-MS、电子探针(EPMA)、拉曼光谱分析等手段,对黔中典型的铝土矿——云峰铝土矿中的晶质铀矿进行了研究。研究发现该铝土矿床中,铀富集明显(w(U)(18×10~(-6)~62×10~(-6)),平均值35×10~(-6)),铀矿物大小呈微米至亚微米级,围绕锐钛矿边缘生长、或充填于高岭石微裂隙中、或散布于与黄铁矿密切相关的高岭石或硬水铝石中。铀矿物的主要组分为UO_2(w(UO_2)为52.2%~80.88%)和TiO_2(w(TiO_2)为1.85%~14.98%);电子探针面扫描显示铀矿物中钛分布不均匀;铀矿物的拉曼特征波长为442 cm~(-1)和454 cm~(-1),因此,初步推测铀矿物为晶质铀矿和含钛晶质铀矿。其形成过程大致如下,来源于下寒武统牛蹄塘组黑色岩系中的铀(U~(4+))在风化过程中氧化为U~(6+)、析出、被Al~-, Fe~-氧化物/氢氧化物吸附;在沉积和成岩过程中,随着三水铝石转变为勃姆石和硬水铝石、铁氧化/氢氧化物转变为黄铁矿,吸附的铀解吸、还原(U~(6+)至U~(4+))、最后形成铀矿物。  相似文献   

5.
铀是一种变价元素,在自然界主要以六价和四价离子的化合物形式存在。一些学者特别强调U~(6+)被还原为U~(4+)在成矿中的重要性。但实际上,作为成矿作用产物的铀矿物中都含有一定量的U~(6+),或铀以[UO_2]~(2+)形式形成铀酰矿物。大量地质现象和室内实验资料也表明,还原作用有助于铀成矿作用的进行,但并不都是直接通过U~(6+)还原为U~(4+)成矿,而多是通过对热液/流体性质的改变或其它方式促进铀的沉淀和富集。  相似文献   

6.
诸广山岩体南部中段花岗岩晶质铀矿标型特征的探讨   总被引:1,自引:0,他引:1  
陈鸣 《铀矿地质》1989,5(3):151-157
本文以花岗岩的副矿物组合类型为基础,从剖析晶质铀矿的晶形标型入手,探讨了诸广山岩体南部中段花岗岩晶质铀矿的标型特征。花岗岩的副矿物组合类型不同,晶质铀矿的产出特点以及某些矿物学特征也存在差异。晶质铀矿的含量、产状、粒度、晶形、晶胞参数及含氧系数等可反映出岩浆中的铀浓度、U~(4 )和UO_2~(2 )所占份额、氧逸度特点及其变化趋势的定性信息。  相似文献   

7.
纳米比亚欢乐谷地区白岗岩型铀矿矿物特征研究   总被引:3,自引:0,他引:3  
本文通过系统的岩矿鉴定和电子探针分析,对纳米比亚欢乐谷地区白岗岩型铀矿的矿物特征进行了详细的研究.该地区铀的赋存形式以独立铀矿物为主,少量以类质同像形式存在于钍矿物中.铀矿物的主要种类有:晶质铀矿、钍铀矿、铀石、铀钍石、钛铀矿、沥青铀矿、硅钙铀矿和钒钾铀矿等,其中,晶质铀矿、钍铀矿和钛铀矿等原生铀矿物约占69%,而反应边状铀石、铀钍石、沥青铀矿、钒钾铀矿和硅钙铀矿等次生铀矿物约占31%.由此可见,该区铀矿化主要表现为原始岩浆的分异作用与后期热液改造作用的相互叠加,其热液改造程度不大,仅使铀发生内部再分配.  相似文献   

8.
某辉沸石化-铀酰矿化铀矿床的成因研究   总被引:1,自引:0,他引:1  
本文指出,我国南部某铀矿床产于MS花岗岩体内,其矿石矿物主要为硅钙铀矿和钙铀云母,偶而出现沥青铀矿。矿体产在花岗岩的低温辉沸石化晕范围内,其上部矿化主要发育钙铀云母,下部主要发育硅钙铀矿。矿石中铀镭基本平衡。经初步研究认为,本矿床应是在早期沥青铀矿化预富集的基础上,经辉沸石化及铀酰矿化而形成的内生铀矿床。  相似文献   

9.
冷湖地区砂岩型铀矿是近年柴北缘新发现的具有工业价值的铀矿床,为了进一步研究该地区砂岩型铀成矿岩石学及矿物学特征、铀成矿条件等问题,本文在野外地质调查的基础上,利用偏光显微镜结合电子探针分析手段,对该区内大煤沟组中含矿岩石进行了系统研究。结果表明:研究区中侏罗统大煤沟组含矿岩石类型主要为(粉)砂质泥岩、薄层煤及细粒石英杂砂岩,整体发育一系列后生蚀变。研究区北东侧安南坝山古元古界达肯达坂群及赛什腾山海西期花岗岩为区内砂岩型铀成矿提供了丰富的铀源。砂岩型铀矿中铀主要以独立铀矿物沥青铀矿的形式赋存,其次含有少量分散吸附态铀,沥青铀矿总体呈不规则粒状、星点状、"串珠状、线状"及粉末状赋存于黄铁矿边缘、裂隙部位或黄铁矿与方解石的接触部位,吸附态铀主要赋存于炭屑及煤线内;区内沥青铀矿为柴北缘地区首次揭露并发现的独立铀矿物,总体上填补了柴北缘地区无独立铀矿物出露的空白。铀成矿条件方面,含矿目的层中方解石的发育,显示了铀成矿流体富含CO_2、H_2O等挥发分和矿化剂,其次出露的众多还原性介质(油气、炭屑及黄铁矿等)为区内砂岩型铀成矿提供了氧化还原反应必需的还原剂,最终将U~(6+)还原成U~(4+)以沥青铀矿等形式沉淀成矿。  相似文献   

10.
祁漫塔格中段目前已发现了黑山铀矿点和小狼牙山南、西大沟脑、西沟等4处铀矿化点,矿化赋存在海西-印支期花岗岩与古元古界金水口群的接触带附近,受接触带附近的断裂构造控制明显,与赤铁矿化、硅化和绿泥石化蚀变关系密切。黑山铀矿点矿石的电子探针分析结果表明,矿石中含有沥青铀矿和硅钙铀矿、钒钙铀矿、硅钾铀矿等。区内经历了加里东、海西、印支和燕山期多次构造-岩浆活动,断裂构造发育;金水口群变质岩和印支-燕山期二长花岗岩铀含量可达(5~12)×10-6,是成矿良好的铀源条件。因此,笔者认为该区具有较好的找矿前景。  相似文献   

11.
Dissolution experiments on single crystals of uranophane and uranophane-β, Ca(H2O)5[(UO2)(SiO3(OH)]2, from the Shinkolobwe mine of the Democratic Republic of Congo, were done in an aqueous HCl solution of pH 3.5 for 3 h, in HCl solutions of pH 2 for 5, 10 and 30 min, and in Pb2+-, Ba-, Sr-, Ca- and Mg-HCl solutions of pH 2 for 30 min. The basal surfaces of the treated uranophane crystals were examined using atomic-force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Solutions after dissolution experiments on single crystals and synthetic powders were analysed with inductively coupled plasma-optical emission spectroscopy (ICP-OES) and mass spectroscopy (ICP-MS). The morphology of the observed etch pits (measured by AFM) were compared to the morphology, predicted on the basis of the bond-valence deficiency of polyhedron chains along the edges of the basal surface. Etch pits form in HCl solutions of pH 2. Their decrease in depth with the duration of the dissolution experiment is explained with the stepwave dissolution model, which describes the lowering of the surrounding area of an etch pit with continuous waves of steps emanated from the etch pit into the rest of the crystal surface. Hillocks form in an HCl solution of pH 3.5, and the chemical composition of the surface (as indicated by XPS) shows that these hillocks are the result of the precipitation of a uranyl-hydroxy-hydrate phase. Well-orientated hillocks form on the surface of uranophane in a SrCl2-HCl solution of pH 2. They are part of an aged silica coating of composition Si2O2(OH)4(H2O)n. An amorphous layer forms on the surface of uranophane in a MgCl2-HCl solution of pH 2, which has a composition and structure similar to silicic acid. Small crystallites of uranyl-hydroxy-hydrate phases form on the surface of uranophane after treatment in Pb(NO3)2-HCl and BaCl2-HCl solutions of pH 2. Dissolution experiments on synthetic uranophane powders show that in the early stage of the experiments, the dissolution rate of uranophane increase in the sequence Pb(NO3)2-HCl < BaCl2-HCl < CaCl2-HCl < HCl < SrCl2-HCl < MgCl2-HCl, indicating that the dissolution of uranophane is more enhanced in solutions containing divalent cations of small ionic radii and high Lewis acidity (Mg, MgCl+).  相似文献   

12.
Boltwoodite and uranophane are uranyl silicates common in oxidized zones of uranium ore deposits. An understanding of processes that impact uranium transport in the environment, especially pertaining to the distribution of uranium between solid phases and aqueous solutions, ultimately requires determination of thermodynamic parameters for such crystalline materials. We measured formation enthalpies of synthetic boltwoodites, K(UO2)(HSiO4)·H2O and Na(UO2)(HSiO4)·H2O, and uranophane, Ca(UO2)2(HSiO4)2·5H2O, by high temperature oxide melt solution calorimetry. We also studied the aqueous solubility of these phases from both saturated and undersaturated conditions at a variety of pH. The combined data permit the determination of standard enthalpies, entropies and Gibbs free energies of formation for each phase and analysis of its potential geological impact from a thermodynamic point of view.  相似文献   

13.
Uraniferous iron grains occur in some radioactive granite plutons in the Eastern Desert of Egypt. Modal analysis of these grains indicates that weight abundance of uraniferous grains amounts to 17.50%, 18.00% and 26.00% of the total accessory heavy minerals of the uranium-mineralized samples of Gabal Gattar, El Missikat and El Erediya, respectively. These grains are mainly restricted to shear zones associated with strong hematitization, and occur either as fracture fillings or as interstitial grains among the main rock-forming minerals. Uraniferous iron grains are mainly composed of uranophane and β-uranophane coated and stained with limonite. These grains represent the main radioactive minerals in addition to the bright canary yellow to yellow uranophane and β-uranophane mineral grains. The data obtained on scanning electron microscopy and electron microprobe analysis confirm the abundance of iron in the darker colored varieties with respect to the light colored varieties. This mode of occurrence of the uranium minerals requires special consideration during mineral processing by physical means.  相似文献   

14.
The dissolution and growth of uranophane [Ca(UO2)2(SiO3OH)2·5H2O] have been examined in Ca- and Si-rich test solutions at low temperatures (20.5 ± 2.0 °C) and near-neutral pH (∼6.0). Uranium-bearing experimental solutions undersaturated and supersaturated with uranophane were prepared in matrices of ∼10−2 M CaCl2 and ∼10−3 M SiO2(aq). The experimental solutions were reacted with synthetic uranophane and analyzed periodically over 10 weeks. Interpretation of the aqueous solution data permitted extraction of a solubility constant for the uranophane dissolution reaction and standard state Gibbs free energy of formation for uranophane ( kJ mol−1).  相似文献   

15.
The Um Ara area, in the south Eastern Desert of Egypt contains a number of uranium occurrences related to granitic rocks. U-rich thorite, thorite and zircon are the main primary uranium- and thorium-bearing minerals found in mineralized zones of the Um Ara alkali-feldspar granites; uranophane is the most common secondary uranium mineral. U-rich thorite contains blebs of galena, has rims of uranophane and contains inclusions of Zr-rich thorite. Electron probe microanalysis (EPMA) provides an indication of a range of solid solution between thorite and zircon, in which intermediate phases, such as Th-rich zircon and Zr-rich thorite, were formed. These phases have higher sum of all cations per formula (2.05 to 2.06 apfu, for 4 oxygen atoms) than that of ideal thorite and zircon. This is attributed to the presence of substantial amount of interstitial cations such as Ca, U and Al in these phases. Some zircon grains are stoichiometric in composition, other altered grains display lower SiO2 and ZrO2 contents. Enrichment of Th and U in altered zircon preferentially involves coupled substitution (Ca2+ + (Th,U)4+ ↔ 2Zr4+ + 2Si4+), implying that significant U and Th may enter the Zr and Si position in zircon. Negative correlation of Zr vs. Hf and Al may indicate that Hf and Al have been introduced to the zircon during later fluid alteration rather than during the primary magmatic event. A two-stage metallogenetic model is proposed for the alteration processes and origin of U- and Th-bearing minerals in the Um Ara alkali-feldspar granite: 1) the first stage was dominated by hydrothermal alteration and accompanied by albitization, k-feldspathization, desilicification, chloritization, hematitization, silicification, argillization, fluoritization and corrosion of primary U-bearing minerals. Solid-solution between thorite and zircon occurred during this stage. The second stage occurred at the near-surface profile where circulating meteoric water played an important role in mobilizing the early formed primary U-bearing minerals. Uranium was likely transported as a calcium uranyl carbonate complexes. When these complexes lost their stabilities by precipitation of calcite, they decomposed in the presence of silica to form uranophane.  相似文献   

16.
Uranium minerals from the San Marcos District, Chihuahua, Mexico   总被引:1,自引:0,他引:1  
The mineralogy of the two uranium deposits (Victorino and San Marcos I) of Sierra San Marcos, located 30 km northwest of Chihuahua City, Mexico, was studied by optical microscopy, powder X-ray diffraction with Rietveld analysis, scanning electron microscopy with energy dispersive X-ray analysis, inductively coupled plasma spectrometry, and gamma spectrometry. At the San Marcos I deposit, uranophane Ca(UO2)2Si2O7·6(H2O) (the dominant mineral at both deposits) and metatyuyamunite Ca(UO2)(V2O8)·3(H2O) were observed. Uranophane, uraninite (UO2+x), masuyite Pb(UO2)3O3(OH)·3(H2O), and becquerelite Ca(UO2)6O4(OH)6 ·(8H2O) are present at the Victorino deposit. Field observations, coupled with analytical data, suggest the following sequence of mineralization: (1) deposition of uraninite, (2) alteration of uraninite to masuyite, (3) deposition of uranophane, (4) micro-fracturing, (5) calcite deposition in the micro-fractures, and (6) formation of becquerelite. The investigated deposits were formed by high-to low-temperature hydrothermal activity during post-orogenic evolution of Sierra San Marcos. The secondary mineralization occurred through a combination of hydrothermal and supergene alteration events. Becquerelite was formed in situ by reaction of uraninite with geothermal carbonated solutions, which led to almost complete dissolution of the precursor uraninite. The Victorino deposit represents the second known occurrence of becquerelite in Mexico, the other being the uranium deposits at Peña Blanca in Chihuahua State.  相似文献   

17.
The rare metal minerals of mineralized altered granites within the Ghadir and El-Sella shear zones, are represented by betafite, U-minerals (uraninite and uranophane), zircon, monazite, xenotime, and rutile in the Ghadir shear zone. While they are columbite-tantalite minerals as ferrocolumbite, pyrochlore, and fergusonite, Th-minerals (cheralite, uranothorite, and huttonite monazite), Hf-zircon, monazite and xenotime in the El-Sella shear zone. Hf-zircon in the El-Sella and Ghadir shear zones (increasing from the core to the rim) contains high inclusions of U-Th, and REE minerals such as cheralite, uranothorite, huttonite monazite and xenotime especially in the El Sella shear zone. The rare-metal minerals, identified from peralkminous granites of the shear zones are associated with muscovite, quartz, chlorite, fluorite, magnetite, and biotite that are restricted to the two shear zones. Uraninite (low Th content) occurring in the Ghadir shear zone indicates the hydrothermal origin, but there are thorite, uranothorite, cheralite, and Hf-zircon in the El Sella shear zone, also indicating the hyrothermal proccess after magmatic origin. Compositional variations of Ta/(Ta+Nb) and Mn/(Mn+Fe) in columbite from 0.07-0.42 and 0.04-0.33, respectively, and Hf contents in zircon are so high as to be 12%, especially in the rim in the El Sella shear zone. This feature re-flects the extreme degree of magmatic fractionation. Four samples from the altered granites of the Ghadir shear zone also are very low in TiO2 (0.04 wt%-0.17 wt%), Sr [(82-121)×10-6], and Ba [(36-380)×10-6], but high in Fe2O3T (0.46 wt%-0.68 wt%), CaO (0.64 wt%-1.23 wt%), alkalis (8.59 wt%-8.88 wt%), Rb [(11-203)×10-6], Zr [(98-121)×10-6], Nb [(9-276)×10-6], Ta [(2-139)×10-6], U [(14-63)×10-6], Th [(16-105)×10-6], Pb [(13-32)×10-6], Zn [(7-8)×10-6], Y [(15-138)×10-6], Hf [(3-9)×10-6], and ∑REE [(81-395)×10-6, especially LREE [(70-322)×10-6]. They are very high in Zr/Hf (15.07-85.96) and Nb/Ta (7.17-21.48), and low in Rb/Sr (2.56-3.36) and Th/U (0.096-3.36). Four samples of the altered granites from the El Sella shear zone are very low in TiO2 (0.23 wt%-0.38 wt%), Sr [(47-933)×10-6], and Ba [(82-175)×10-6] , with high Fe2O3T (1.96 wt%-2.87 wt%), CaO (0.43 wt%-0.6 wt%), alkalis (4.46 wt%-10.7 wt%), Rb [(109-313)×10-6], Zr [(178-1871)×10-6], Nb [(11-404)×10-6], U [(56-182)×10-6], Th [(7-188)×10-6], Ta [(0.5-57)×10-6], Pb [(12-28)×10-6], Zn [(1-13)×10-6], Y [(62-156)×10-6], Hf [(3-124)×10-6], and ∑REE [(101-184)×10-6], especially HREE [(7-139)×10-6]. This is consistent with the very fractionated, fluorine-bearing granitic rocks that were altered and sheared in the El Sella shear zone. Zr/Hf (14.23-39.79) and Nb/Ta (1.98-7.01) are very high, and Rb/Sr (0.14-1.7) and Th/U (0.25-2.5) are low in the Ghadir shear zone. Field evidence, textural relations, and the composi-tion of ore minerals suggest that the main mineralizing event was magmatic (615+/-7 Ma, and 644+/-7 Ma CHIME monazite), especially in the El Sella shear zone, with later hydrothermal alteration and local remobilization of the high-field-strength elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号