首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
青藏高原作为"亚洲水塔",研究其降水来源对我国水安全和水资源利用有重要意义。本文使用中国地面气候资料日值数据集,并用GDAS资料驱动HYSPLIT(Hybrid Single Particle Lagrangian Integrated Trajectory)拉格朗日模式,分析了那曲地区2014年夏季的水汽输送轨迹和不同等级降水的轨迹。结果表明:(1)夏季水汽输送轨迹有明显的月、旬变化,主要是由于夏季风的向北推进造成的。印度洋、阿拉伯海、孟加拉湾、大西洋和中亚为5条主要的水汽输送路径。(2)小雨和中雨存在南方路径和西方路径,而大雨只存在南方路径;海洋的水汽输送对降水等级具有决定性作用。(3)1天前水汽来源大值区为雅鲁藏布江流域;3天前水汽来源大值区为印度与不丹的交界;大雨的水汽来源较小雨和中雨更加集中;水汽贡献分布集中的区域与水汽轨迹追踪的终点有较好的对应关系。(4)水汽源地:小雨主要来自阿拉伯海、孟加拉湾、印度、新疆以及中亚地区;中雨主要来自印度洋、阿拉伯海、孟加拉湾、印度、新疆以及中亚地区;大雨主要来自阿拉伯海和孟加拉湾。  相似文献   

2.
青藏高原作为“亚洲水塔”,研究其降水来源对我国水安全和水资源利用有重要意义。采用诊断分析和拉格朗日模式模拟的方法,对高原涡引起的一次那曲强降水进行了分析研究,确定了那曲地区的水汽来源并进一步量化了水汽源区对研究区夏季降水的贡献。结果表明:那曲上空上升运动强烈,且具备良好的水汽条件。有多次多个强对流云团相继生成,形成短时强降水。影响降水的绝大多数目标气块来自目标区域以南的相对较低的大气层,可追溯到孟加拉湾、阿拉伯海和印度洋。此外,青藏高原以西路径有一小部分目标气块来自中、低层大气。高层水汽主要为南亚高压反气旋输送。少数气块来自中国东部和南海。西边界和南边界的水汽输送为本次那曲强降水的主要来源,水汽源区主要为印度洋、阿拉伯海、印度、孟加拉湾、新疆和中亚。来自印度洋和阿拉伯海的水汽对降水区起到了关键的水汽贡献,局地水汽贡献忽略不计。  相似文献   

3.
陈斌  徐祥德  施晓晖 《气象学报》2011,69(5):810-818
以2007年7月中、下旬中国中东部地区系列极端降水为研究对象,分别以NCEP/NCAR分析资料和中尺度气象模式(WRF)模拟输出驱动拉格朗日三维粒子输送模式(FLEXPART),通过对极端降水有贡献的大气粒子群(气块)的后向轨迹,诊断了极端降水事件的水汽输送路径及其可能蒸发源区,并定量估算了不同水汽源区对降水事件的相对贡献大小。结果表明,极端降水事件的水汽输送可以向上游追溯到阿拉伯海和西亚地区,青藏高原的地形和副热带高压对水汽输送路径具有重要影响。源于热带和副热带低纬度地区的气块在到达降水区域之前,经历了多次的降水和蒸发过程,其中,阿拉伯海、印度半岛、孟加拉湾、中南半岛的缅甸以及中国西南部的川、滇等地区都是水汽的蒸发源区,上述所有源区为极端降水事件贡献了约80%的水汽。但是,不同水汽源区的相对贡献计算结果发现,陆地蒸发对水汽贡献相对重要,尤其是中南半岛的缅甸、中国的川、滇等地区的地表前期蒸发对这次极端降水的贡献超过了40%,这表明上游地区前期的土壤湿度异常可能对极端降水的发生具有重要的指示意义。  相似文献   

4.
以NCEP/NCAR每日4次的GFS (Global Forecast System) 再分析资料驱动大气三维输送模式FLEXPART (Flexible Particle Model), 借助于拉格朗日水汽输送和源区识别技术, 在考虑了空气块输送过程中的比湿变化基础上, 诊断三江源区大气的水汽来源、输送途径及其空间结构特征。结果表明:夏季三江源区短时输送 (6 d内) 的水汽主要来自于青藏高原以及其西北侧陆地区域, 而更长时间 (8~10 d) 的来源可追踪到阿拉伯海和孟加拉湾等远距离海洋区域; 水汽输送通道主要有两支, 第1支为沿着索马里海到阿拉伯海的跨赤道水汽输送, 第2支为在西风控制下从中亚乃至西亚地区向三江源区的输送。定量分析亦显示:6月青藏高原西侧的水汽输送贡献最大, 7月阿拉伯海成为了主要水汽来源, 8月阿拉伯海水汽输送贡献减小。  相似文献   

5.
春季高原东南角多雨中心的气候特征及水汽输送分析   总被引:9,自引:3,他引:6  
利用藏东南及滇西北的雨量资料和NCEP/NCAR再分析资料,揭示了青藏高原东南角多雨中心春季的"早雨季"气候事实,发现多雨中心雨季长达9个月,春汛期雨量占全年总雨量的30%~40%,降水极大值也可出现在春汛期。通过整层水汽通量诊断分析,研究了春季青藏高原东南角多雨中心的水汽输送特征,结果表明:青藏高原东南角多雨中心上游雅鲁藏布江流域存在一个水汽通量大值中心,在阿拉伯海北部与孟加拉湾北部及印缅北部也存在水汽通量大值区,相关分析发现,多雨中心的降水与上述水汽通量大值区存在显著相关性;水汽流场显示出雅鲁藏布江—布拉马普特拉河、孟加拉湾、阿拉伯海和南支槽前偏西水汽流向多雨中心输送水汽,使其成为"水汽汇",雅鲁藏布江、阿拉伯海的远距离水汽输送是多雨中心水汽来源不可忽视的重要因素。  相似文献   

6.
朱丽  刘蓉  王欣  王作亮  文军  赵阳  谢琰  张堂堂 《高原气象》2019,38(3):484-496
依据近10年黄河源区流域气象台站的降水观测资料,提取夏季降水最强月对应的异常特征,利用拉格朗日粒子扩散模式(Flexible Particle Dispersion Model,FLEXPART),针对目标时段开展大气粒子群(气块)的后向模拟,着重分析了流域内降水正负异常状态下的水汽输送特征及其差异,并评估各水汽源地对流域内三类降水的贡献。结果表明,以“S”型跨赤道输送(“由阿拉伯海至孟加拉湾和印度半岛再由青藏高原西南侧进入黄河源区”)和“几”型输送(“由南中国海经长江中下游平原后途径四川盆地再进入黄河源区”)为代表的南支路径是2012年7月黄河源区对应的主要水汽输送路径;而以东、西风急流作用下的两条远距离输送(“由南中国海至孟加拉湾和印度半岛东北部附近后再经由青藏高原西侧或北侧进入黄河源区”以及“由欧洲平原东部和中亚地区进入青藏高原西侧或北侧后到达黄河源区”)为代表的北支路径是2015年7月黄河源区对应的主要水汽输送路径。在对气块后向模拟追踪的同时,对其运动过程中的比湿变化进行了对应经纬度网格的空间平均,变化特征显示出喜马拉雅山南麓、四川盆地周边、孟加拉湾和青藏高原北侧是黄河源区流域降水对应的潜在水汽源地。由定量评估贡献率的结果可知:青藏高原北侧的广大干旱及半干旱草原地区是2015年7月黄河源区降水的最主要水汽来源,其贡献率高达52.9%;而在2012年,三个主要源地的贡献率差异远不及2015年显著;无论对应何种类型的降水,青藏高原西南部和北侧提供了黄河源区主要可供降水的外来水汽。  相似文献   

7.
薛一迪  崔晓鹏 《大气科学》2020,44(2):341-355
利用拉格朗日轨迹追踪模式FLEXPART(the Flexible Particle Model)和水汽源区定量贡献分析方法,研究了超强台风"威马逊"登陆期间(2014年7月17日06:00至19日06:00,协调世界时)强降水的水汽来源和源区定量贡献。结果表明,大量目标气块源自目标降水区西南侧和东侧,西南侧气块可追溯到阿拉伯海和孟加拉湾等地区,且大部分气块来自相对较低层大气,高度在输送途中变化不大,来自东侧的气块可追溯到西太平洋海域,气块初始位置相对较高,在输送途中逐渐降低;源区定量贡献分析显示:南海区域(C)贡献最大,目标降水区域(T)局地贡献次之,孟加拉湾(B)和西太平洋南部区域(D)贡献相当且均低于区域T;区域C和T对"威马逊"登陆期间降水贡献较大源于其较高的源区水汽摄取率(尤其是区域C)和较低的沿途损耗率(尤其是区域T);区域B源地水汽摄取量高于区域D,但从前者摄取的水汽到达目标降水区域而未被释放的比例明显高于后者,同时,两者沿途损耗率相当,造成两者对目标降水区域的最终贡献也相当;尽管阿拉伯海区域(A)水汽摄取亦较明显,但由于沿途的显著消耗,导致其对目标降水区域的最终贡献显著降低。FLEXPART轨迹追踪模式和水汽源区定量贡献分析方法,与以往常用的环流和水汽通量进行定性分析相比,可更为清晰和定量地揭示热带气旋降水的水汽来源特征。  相似文献   

8.
任伟  任燕  张庆 《气象科技》2022,50(1):94-102
利用拉格朗日后向轨迹追踪模式HYSPLIT,结合蒸发—降水诊断法及相关的水汽贡献定量分析法,分析了台风“温比亚”影响期间山东极端强降水的水汽来源及输送特征。结果表明:区域极端强降水的发生与大尺度的水汽输送和辐合密切相关;影响强降水的水汽源地主要有4个,它们分别位于印度洋→孟加拉湾→南海、低纬西太平洋、中纬度西北太平洋和中国东部;源区贡献定量分析表明,低纬西太平洋对极端降水的水汽贡献最大,中纬度西北太平洋次之,印度洋→孟加拉湾→南海与中国东部的贡献相当且均低于中纬度西北太平洋;进一步对比不同源区的水汽输送差异发现,虽然印度洋→孟加拉湾→南海初期摄取的水汽较多,但输送过程中过高的沿途水汽损耗,显著降低了其对极端降水的水汽贡献,尽管中纬度西北太平洋和中国东部地区初期摄取的水汽较少,但两者沿途的水汽损失亦小并且两者摄取的水汽在目标区实际转为降水的比例较高,因此两者最终的水汽贡献不容忽视。  相似文献   

9.
三江源作为中国长江、黄河、澜沧江三条大河的发源地,其水汽来源和输送对于下游地区的天气和气候具有重要影响。根据1994-2019年三江源地区的夏季降水数据表明,三江源地区的夏季7月降水量表现为多次的正负异常交换特征,正异常最强的为2012年(+1290 mm),负异常最强的为2015年(-802 mm)。本研究在此异常时段采用基于拉格朗日方法的FLEXPART模式进行模拟,后向追踪在研究时段内所有到达三江源区域的气块,着重分析了三江源在降水异常时段的水汽输送特征和水汽源地并评估了不同水汽源地对三江源区域内降水的贡献率。结果表明:三江源的水汽输送通道主要为南北两支,在降水正异常时段通过南支输送从青藏高原北侧、西侧和南侧进入三江源为主,在降水负异常时段通过北支输送从青藏高原北侧进入三江源为主,三江源的降水量越小,南支输送越弱,北支输送越强。三江源的潜在水汽源地对三江源区域内降水贡献最为重要的是青藏高原北侧,其次是青藏高原西侧和三江源本地,还有部分源地为青藏高原南侧、阿拉伯海和孟加拉湾。青藏高原北侧在三江源降水负异常期间对三江源降水的贡献率有所增加,而其他水汽源地的贡献率减小。  相似文献   

10.
基于1961-2020年夏季塔里木盆地33站逐日降水数据和NCEP/NCAR大气环流再分析数据,分析了塔里木盆地夏季降水的年代际变化特征及影响环流。结果表明,塔里木盆地夏季降水在1986/1987年发生了由少到多的年代际突变,降水显著增加的区域主要位于盆地的西部和北部,主要由降水日数的增加贡献。不同年代际背景下,影响塔里木盆地夏季降水的环流配置存在一定差异。1961-1986年,影响盆地夏季降水的中亚副热带急流位置显著南移,中亚上空的异常气旋位于40°N附近,水汽源于阿拉伯海;1987-2020年,影响盆地夏季降水的中亚上空异常气旋位置位于40°N以南,水汽源于孟加拉湾和西北太平洋。东大西洋—西俄罗斯大气遥相关型在塔里木盆地夏季降水的年代际变化中扮演了重要角色。  相似文献   

11.
新疆塔里木盆地是世界著名干旱区,年均降水量不足100 mm,2021年7月19日前后盆地出现罕见暴雨过程,最大累积雨量和日雨量为107.3 mm和78.5 mm(均达新疆大暴雨量级),通过分析此次暴雨水汽特征得出以下结论:(1)首次提出南亚高压“匀双体”概念,100 hPa南亚高压“西高东低”转“匀双体”过程中,500 hPa伊朗高压与高原反气旋、中亚低压与印度低压以及高原涡共同架构了“两高夹一低”环流形势。(2)揭示了在伊朗高压稳定反气旋环流下,阿拉伯海与孟加拉湾北部洋面的水汽进入盆地的大尺度环流及物理机制。阐明盆地暴雨水汽主源地为地中海及以西洋面、中亚地区、阿拉伯海和孟加拉湾,水汽输送有西方、东转西、西南+南方三条路径与轨迹,指出伊朗高压南侧东风和中亚地区西风在“东转西”水汽输送中具有关键作用,阿拉伯海和孟加拉湾的东风北上后与西风带汇合形成的水汽输送带是此次暴雨发生的重要条件。(3)水汽由西、南、东三个边界输入,东边界水汽收入主要源于低层东风,西和南两个边界水汽收入源于中高层三条路径,“西南+南方”路径水汽输送致使南边界水汽输入贡献明显大于西边界。塔里木盆地暴雨既要重视中亚低压,更...  相似文献   

12.
利用卫星遥感资料、逐月2.5°×2.5°和1°×1°NCEP/NCAR再分析资料、逐月1°×1°CRU降水资料,以青藏高原与天山山脉相连区域的热源为切入点,重点探讨高原与天山山脉相连区域的热源、天山区域大气水份循环和云水资源的相关特征,计算了整层水汽、水汽输送、水汽相关矢及视热源等动力、热力诊断物理量,分析了天山区域夏半年降水的时空分布和变化特征。结果表明,天山区域降水和整层水汽集中区位于天山西部;天山区域强垂直运动能够描述出地形效应引起的气流爬升特征。分析天山地区的大气视热源与水汽汇的垂直结构揭示了天山西部充沛云水资源和高原与天山山脉相连的类似"鱼尾"区域的视热源存在显著相关。利用对"鱼尾"地形的整层视热源与整层水汽输送通道的相关矢分析,追踪影响夏半年天山地区丰富云水资源的远距离海洋水汽源,结果发现,夏半年天山地区的水汽源主要来自南部的大西洋、孟加拉湾、阿拉伯海和北部的北冰洋。天山地区水汽、降水和"鱼尾"地形热源具有12年的显著周期,在该周期上,20世纪50年代至末期,"鱼尾"地形热源的周期变化比天山地区的整层水汽的周期变化提前3~4年,而在50-80年代天山地区的整层水汽比降水提前3~4年,之后至末期提前1~2年。天山区域云水资源的年际变化特征一定程度上反映了该区域大气水份循环结构对"鱼尾"地形热源的响应机制。  相似文献   

13.
青藏高原及附近水汽输送对其夏季降水影响的分析   总被引:1,自引:0,他引:1  
利用欧洲中期天气预报中心(ECMWF)提供的1979-2010年ERA-Interim再分析资料分析了青藏高原(下称高原)及附近夏季水汽输送通量分布情况,并结合基于迄今为止最全面的地面观测数据形成的高分辨率降水资料分析出4条影响夏季高原降水的水汽通道:西风带、阿拉伯海、孟加拉湾北部及南海通道。结果表明:高原夏季降水量高值年(1979、1984、1996、1998、2002、2004、2007年)、低值年(1994、2001、2006年)与孟加拉湾北部通道水汽输送强弱年有较好对应。夏季西风带通道的影响较弱,与其他3条低纬度通道的相关系数较小,是相对独立的水汽通道,主要影响高原西北部从狮泉河至塔里木盆地南侧地区;孟加拉湾北部通道影响高原中南偏东部地区;南海通道则对高原东南部以及中南部那曲、林芝、昌都、玉树等地区有影响;而阿拉伯海水汽通道与其他水汽通道都呈负相关关系,其中与孟加拉湾北部通道相关关系最显著,相关系数达到-0.65,该通道通过调节孟加拉湾北部通道和南海通道的向西水汽输送分量来影响高原中南偏西部地区的夏季降水。  相似文献   

14.
近几十年来,随着全球气候变暖,青藏高原降水整体呈现增加趋势,气候暖湿化趋势明显;与此同时,位于青藏高原东南缘的中国西南地区整体上呈现暖干化趋势,干旱事件频发。探讨青藏高原及其周边地区降水的水汽来源变化、揭示降水趋势性变化的原因已经成为当前研究热点。本文评述了近年来青藏高原降水的水汽来源研究,重点关注青藏高原变湿、西南地区变干的水汽来源变化原因以及青藏高原南北水汽来源差异,讨论了尚未解决的科学问题,展望了未来研究方向。现有研究表明,青藏高原以西的西风带控制区蒸散发贡献的水汽整体呈现减少趋势,青藏高原以南和以东的季风控制区蒸散发贡献的水汽整体呈现增加趋势,上述水汽源区贡献变化导致了青藏高原及其周边不同区域降水趋势性变化的差异。展望未来,水汽来源分析的模型和数据需要进一步验证及减少不确定性,青藏高原下垫面和蒸散发变化对周边地区降水的影响机制研究有待加强,全球变化与青藏高原降水水汽来源变化的关系尚需深入分析。  相似文献   

15.
青藏高原夏季降水的水汽分布特征   总被引:9,自引:3,他引:9       下载免费PDF全文
本文利用青藏高原上夏季降水资料以及NCEP再分析资料,分析了高原上夏季降水与邻近地区水汽输送的相互关系。结果发现,高原夏季降水与春季的水汽分布关系比降水与同期的关系更为密切,最明显的相关区位于南海-云贵高原-孟加拉湾一带以及帕米尔高原地区。青藏高原降水典型旱、涝年的水汽分布具有相反的特征。追踪最主要的水汽中心发现,水汽是从阿拉伯海一带逐渐向东移,然后再从高原的东南部进入高原。这种现象可能与索马里越赤道气流有关。  相似文献   

16.
基于华南地区76个站点的逐日降水资料及NCEP再分析资料,采用拉格朗日方法的气流轨迹模式(HYSPLIT_4),分析了1980—2011年华南前汛期锋面降水和季风降水的水汽输送轨迹、主要源地及不同源地水汽贡献率。结果表明:锋面降水阶段气流轨迹主要有来自西北太平洋的东风气流、阿拉伯海-孟加拉湾的西风气流和欧亚大陆的西北冷空气。在锋面降水偏多年,西北太平洋的东风气流水汽输送贡献为69%,比偏少年多14%,阿拉伯海-孟加拉湾的西风气流输送贡献为20%,比偏少年少10%,此阶段受来自西北太平洋的水汽影响较大。季风降水阶段气流轨迹主要有来自北印度洋的越赤道气流、西北太平洋的东风气流和欧亚大陆的西北冷空气,在季风降水偏多年,来自北印度洋的越赤道水汽输送贡献为88%,比偏少年多18%,而西北太平洋的水汽输送贡献为7%,比偏少年少15%,此阶段受西南越赤道气流的水汽输送影响较大。  相似文献   

17.
分析比较了中蒙(35°N~50°N,75°E~105°E)、中亚(28°N~50°N,50°E~67°E)和北非(15°N~32°N,17°W~32°E)三个典型干旱区水汽输送特征的异同,及其1961~2010年间的降水时空变化,分析了水汽来源和输送变化及其可能原因。结果显示,由于受不同的气候系统影响,中蒙、北非和中亚干旱区的降水在年内变化上有着显著不同。中蒙和北非干旱区降水呈现夏季风降水的特征;而中亚干旱区降水则为更多受到冬季风的影响。1961~2010年,随着全球气温上升,中蒙干旱区冬季纬向水汽输送增加而经向输送减少,总水汽输送增加;中亚干旱区冬季纬向输送减少而经向增加,总水汽输送减少;北非干旱区冬季纬向输送增加而经向输送减少,总水汽输送增加。夏季中蒙和北非干旱区经向、纬向输送均减小,中亚干旱区夏季纬向输送减少而经向减少,总输送增加。相应的,中蒙干旱区年、冬季和夏季降水分别以4.2、1.3和1.0 mm/10 a的趋势增加;而中亚干旱区冬季(1.2 mm/10 a)和夏季(0.1 mm/10 a)降水增加,年降水则呈减少趋势(-0.8 mm/10 a);北非干旱区年降水和夏季降水分别以0.5 mm/10 a和0.1 mm/10 a的速率增加。冬季中蒙干旱区主要水汽来源是水汽经向输送,而中亚干旱区水汽主要为纬向输送,经纬向水汽均为净输出是北非干旱区降水极少的主要原因,平均总水汽输送量约为-9.48×104 kg/s。冬季低纬度和高纬度环流通过定常波影响干旱区冬季降水。中蒙和中亚干旱区冬季降水主要受西太平洋到印度洋由南向北的波列影响,北非干旱区冬季降水主要和北大西洋上空由北到南的波列相联系。各干旱区的降水对海温变化有着不同的响应:中蒙干旱区冬季降水与冬季太平洋西海岸和印度洋海温呈显著正相关,夏季与海温相关不显著;中亚干旱区与地中海和阿拉伯海温相关,且与阿拉伯海温为正相关。  相似文献   

18.
新疆北部冬季降水异常成因   总被引:6,自引:1,他引:5       下载免费PDF全文
利用1960—2004年天山山区及以北地区(新疆北部)38个气象站日降水量和NECP/NCAR逐日4次再分析资料,分析了新疆北部11,12月和1月降水异常的环流和水汽特征。结果表明:冬季斯堪的纳维亚环流型(SCA环流型)与新疆冬季降水异常密切联系;11月水汽输送量最大,1月最小,西风气流输送水汽多少决定降水异常;降水异常偏多时,新地岛以东北冰洋、西伯利亚和阿拉伯海向中亚地区水汽输送异常,高纬度地区和低纬度地区向中亚地区输送水汽汇合后沿西风气流进入新疆,而非来自地中海和里海水汽源地;降水偏少时,里海以东随西风气流向新疆水汽输送减弱。关注SCA环流型活动以及西伯利亚和阿拉伯海向中亚地区水汽输送异常对冬季降水预测具有一定意义。  相似文献   

19.
采用第五次耦合模式比较计划(Coupled Model Intercomparison Project Phase 5,CMIP5)高分辨率全球统计降尺度预估数据集,针对近期(2020—2039年)、中期(2040—2059年)和长期(2080—2099年),以及全球1.5℃和2℃温升阈值,预估了青藏高原地区平均气温和降水、极端气温和极端降水的变化,定量估算了预估结果的不确定性来源。结果表明:(1)在RCP4.5和RCP8.5情景下,21世纪青藏高原地区平均气温和降水、极端气温和极端降水强度均显著增加,最长连续干旱天气减少。高原气候变化幅度超全球平均,至21世纪末,模式集合预估的气候变化幅度介于全球平均的1.5~3倍。(2)青藏高原地区受0.5℃额外增温的显著影响,年均气温、极端高温和极端低温均显著升高,平均及极端强降水均显著增加。(3)排放情景的选择对近期气候预估影响小,但对长期影响大。在相同排放情景下,内部变率主导了近期高原平均气温预估的不确定性,但至长期其贡献降至10%以下。模式和内部变率的不确定性对降水预估均有贡献,且都随时间减小,最大不确定性中心位于西部和北部边缘,噪声与信号比大于6。  相似文献   

20.
利用NCEP/NCAR再分析环流资料、CMAP降水量和NOAA海温资料研究了热带印度洋夏季水汽输送的时空变化特征,并考察其对南亚季风区夏季降水的影响.热带印度洋夏季异常水汽输送第一模态表现为异常水汽从南海向西到达孟加拉湾后分成两支,其中一支继续往西到达印度次大陆和阿拉伯海,对应印度半岛南端和中南半岛的西风水汽输送减弱,导致这些区域降水减少;第二模态表现为异常水汽从赤道东印度洋沿赤道西印度洋、阿拉伯海、印度半岛、中南半岛的反气旋输送,印度和孟加拉湾南部为反气旋异常水汽输送,水汽辐散、降水减少,而印度东北部为气旋性水汽输送,水汽辐合、降水增多.就水汽输送与局地海温的关系而言,水汽输送第一模态与热带印度洋海温整体增暖关系密切,而第二模态与同期印度洋偶极子关系密切.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号