首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
《国际泥沙研究》2020,35(1):97-104
The flood season is the main period of flow,sediment transport,and sedimentation in the lower Yellow River(LYR).Within the flood season,most of the flow,sediment transport,and sedimentation occurs during flood events.Because of the importance of floods in forming riverbeds in the LYR,the regularity of sediment transport and sedimentation during floods in the LYR was studied.Measured daily discharge and sediment transport rate data for the LYR from 1960 to 2006 were used.A total of 299 floods were selected;these floods had a complete evolution of the flood process from the Xiaolangdi to the Lijin hydrological stations.For five hydrological stations(Xiaolangdi,Huayuankou,Gaocun,Aishan,and Lijin),a correlation was first established for floods of different magnitudes between the average sediment transport rate at a given station and the average sediment concentration at the closest upstream station.The results showed that the sediment transport rate at the downstream station was strongly correlated with the inflow(upstream station) sediment concentration during a flood event.A relation then was established between sedimentation in the LYR and the average sediment concentration at the Xiaolangdi station during a flood event.From this relation,the critical sediment concentrations were obtained for absolute erosion,sedimentation equilibrium,and absolute deposition during floods of different magnitudes in the LYR.The results of the current study contri b ute to a better understanding of the mechanisms of sediment transport and the regularity of sedimentation in the LYR during floods,and provide technical support to guide the joint operation of reservoirs and the regulation of the LYR.  相似文献   

2.
The channel boundary conditions along the Lower Yellow River (LYR) have been altered significantly since the 1950s with the continual reinforcement and construction of both main and secondary dykes and river training works. To evaluate how the confined complex channel–floodplain system of the LYR responds to floods, this study presents a detailed investigation of the relationship between the tempo‐spatial distribution of sedimentation/erosion and overbank floods occurred in the LYR. For large overbank floods, we found that when the sediment transport coefficient (ratio of sediment concentration of flow to flow discharge) is less than 0.034, the bankfull channel is subject to significant erosion, whereas the main and secondary floodplains both accumulate sediment. The amount of sediment deposited on the main and secondary floodplains is closely related to the ratio of peak discharge to bankfull discharge, volume of water flowing over the floodplains, and sediment concentration of overbank flow, whereas the degree of erosion in the bankfull channel is related to the amount of sediment deposited on the main and secondary floodplains, water volume, and sediment load in flood season. The significant increase in erosion in the bankfull channel is due to the construction of the main and secondary dykes and river training works, which are largely in a wide and narrow alternated pattern along the LYR such that the water flowing over wider floodplains returns to the channel downstream after it drops sediment. For small overbank floods, the bankfull channel is subject to erosion when the sediment transport coefficient is less than 0.028, whereas the amount of sediment deposited on the secondary floodplain is associated closely with the sediment concentration of flow. Over the entire length of the LYR, the situation of erosion in the bankfull channel and sediment deposition on the main and secondary floodplains occurred mainly in the upper reach of the LYR, in which a channel wandering in planform has been well developed.  相似文献   

3.
A quasi-2D unsteady flow and sediment transport model suitable for the simulation of large lowland river systems,including their floodplains,is presented.The water flow and sediment equations are discretised using an interconnected irregular cells scheme,in which different simplifications of the 1D de Saint Venant equations are used to define the discharge laws between cells.Spatially-distributed transport and deposition of fine sediments throughout the river-floodplain system are simulated.The model is applied over a 208-km reach of the Parana River between the cities of Diamante and Ramallo(Argentina) comprising a river-floodplain area of 8100 km~2.After calibration and validation,the model is applied to predict water and sediment dynamics during synthetically generated extraordinary floods of100,1000,and 10,000 years return period.The potential impact of a 56-km long road embankment constructed across the entire floodplain is simulated and compared to model results without the embankment.The embankment results in increases in upstream water levels,inundation extent,flow duration,and sediment deposition.  相似文献   

4.
Hydraulic engineering is usually based on theoretical analysis and/or numerical modelling simulation. As the dynamic behaviour of sediment movement under unsteady flow is still unclear, and field measurement is comparatively difficult during a large flood, prior investigations through flume experiments are required. A series of flume experiments, conducted using different inflow hydrographs without sediment supply from upstream, was carried out to investigate the sediment transport process under unsteady flow conditions. A series of triangular hydrographs were performed in the experiments. The results indicate that a temporal lag was found between the flow hydrograph peak and the sediment hydrograph peak because large size sand dunes lasted for a short period in the falling limb of the flow hydrograph. The temporal lag was found to be about equal to 6–15% of the flow hydrograph duration. Owing to the temporal lag, the total bedload yield in the rising period was less than that in the falling period. Furthermore, the measured total bedload yield in the unsteady flow experiments was larger than the predicted value, which was estimated by using the results obtained from the equivalent steady flow experiment. The peak bedload transport rate for unsteady flow conditions was also larger than the predicted value. The ratios of the measured to the predicted quantities mentioned above were found to be constant values for different shapes of hydrographs. It is, therefore, expected that the analytical results of sediment transport from equivalent steady flow can be a good reference for sediment transport under unsteady flow conditions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
1 INTRODUCTION Flow and sediment transport in natural rivers are generally unsteady, and exhibit temporal and spatial lags. Traditionally, in most hydraulic engineering problems the unsteady flow and sediment transport are approximately treated as steady …  相似文献   

6.
RANGE SURVEY OF DEPOSITION IN THE LOWER YELLOW RIVER   总被引:3,自引:0,他引:3  
1 GENERAL DESCRIPTION The Yellow River, running out of the gorges below the Sanmenxia (SMX) and Xiaolangdi (XLD) reservoirs, flows through the vast North China alluvial plain, and finally empties into the Bohai Sea (Fig. 1). The upper part of the Lower Yellow River (LYR), nearly 400 km in length, is confined by levees along both banks. The river wanders with a shallow main channel and broad flood plains. The lower part has a relatively narrow and deep main channel and less b…  相似文献   

7.
A 1:50 scale hydraulic model was designed, based on Froude number similarity and using hydrological and sediment data from a small braided gravel-bed river (the North Branch of the Ashburton River, Canterbury, New Zealand). Eighteen experiments were conducted; seven using steady flows, and eleven using unsteady flows. The experiments were carried out in a 20 m × 3 m tilting flume equipped with a continuous sediment feed and an automated data acquisition and control system. In all experiments water at 30°C was used to reduce viscosity-related scale effects. Analyses of the experimental data revealed that bedload transport rates in braided channels are highly variable, with relative variability being inversely related to mean bedload transport rate. Variability was also found to be cyclic with short-term variations being caused by the migration of bedforms. Bedload transport was found to be more efficient under steady flow than under unsteady flow, and it was postulated that this is caused by a tendency for channel form to evolve towards a condition which maximizes bedload transport for the occurring flow. Average bedload transport rate was found to vary with channel form, although insufficient measurements were made to define a relationship.  相似文献   

8.
A depth-averaged 2-D numerical model for unsteady flow, salinity and cohesive sediment transport in estuaries is established using the finite volume method on the non-staggered, curvilinear grid. The convection terms are discretized by upwind schemes, the diffusion terms are by the central difference scheme, and the time derivative terms are by the three-time-level implicit scheme. The coupling of flow velocity and water level in the 2-D shallow water equations is achieved by the SIMPLEC algorithm with the Rhie and Chow's momentum interpolation method. The sediment model calculates the settling, deposition, erosion and transport of cohesive sediment, taking into account the influence of sediment size, sediment concentration, salinity and turbulence intensity on the flocculation of cohesive sediment. The flow model is first tested against the measurement data in the Tokyo Bay and San Francisco Bay, showing good agreements. And then, the entire model of flow, salinity and sediment transport is verified in the Gironde Estuary. The water elevation, flow velocity, salinity and sediment concentration are well predicted.  相似文献   

9.
The choice of a river training strategy is extremely important for the Lower Yellow River (LYR). Currently, the wide-river training strategy applies in the training of the LYR. However, remarkable changes in the hydrological processes in the Yellow River basin, as well as immediate pressure from socio-economic development in the Yellow River basin, make it necessary to consider if there is a possibility to change the river training strategy from wide-river training to narrow-river training. This research investigates the impacts of different river training strategies on the LYR through numerical simulations. A one-dimensional (1-D) model was used to simulate the fluvial processes for the future 50 years and a three-dimensional (3-D) model was applied to study typical floods. The study focused on river morphology, the results show that if the present decreasing trend in both water discharge and sediment load persists, the deposition rate in the LYR will further decrease no matter what strategy is applied. Especially, narrow-river training can achieve the aim to increase the sediment transport capacity in the LYR compared with wide-river training. However, if the incoming water and sediment load recovers to the mean level of the last century, main channel shrinkage due to sedimentation inevitably occurs for both wide-river and narrow-river training. Most importantly, this study shows that narrow-river training reduces the deposition amount over the whole LYR, but it provides little help in alleviating the development of the “suspended river”. Instead, narrow-river training can cause aggradation in the transitional reach where the river pattern changes from highly wandering to meandering, further worsening the “hump deposition” there. Because of uncertainty regarding future changes in hydrological processes in the Yellow River basin, and the lack of feasible engineering measures to mitigate “suspended river” and “hump deposition” problems in the LYR, caution should be exercised with respect to changes in the river training strategy for the LYR.  相似文献   

10.
I.INTRODUCTIONBedloadtransportinsteadyuniformopenchannelflowhasbeenextensiVelystudied.Manyoftheformulasdevelopedforthepredictionofbedloadtransportinuniformopen-channelflowcanbebroughtinthefollowingform(ChienandWan,1983);ac=f(O)(l)xvhereacisthedimensionlessparameterofbedloadtranSPortandOisthedimensionlessparameterofflowintensity.TheseparametersaredefinedasfwheregsisthebedloadtranspoftratePerunitwidthindryweight;disthesedimentdiameter,Sisthebedslopeofthechannel;Rbisthehydraulicradiusdue…  相似文献   

11.
One-dimensional numerical models are popularly used in sediment transport research because they can be easily programmed and cost less time compared with two- and three-dimensional numerical models. In particular, they possess greater capacity to be applied in large river basins with many tributaries. This paper presents a one-dimensional numerical model capable of calculating total-load sediment transport. The cross-section-averaged sediment transport capacity and recovery coefficient are addressed in the suspended load model. This one-dimensional model, therefore, can be applied to fine suspended loads and to hyperconcentrated flows in the Yellow River. Moreover, a new discretization scheme for the equation of unsteady non-uniform suspended sediment transport is proposed. The model is calibrated using data measured from the Yantan Reservoir on the Hongshui River and the Sanmenxia Reservoir on the Yellow River. A comparison of the calculated water level and river bed deformation with field measurements Shows that the improved numerical model is capable of predicting flow, sediment transport, bed changes, and bed-material sorting in various situations, with reasonable accuracy and reliability.  相似文献   

12.
It has been thought for some time that bedload sediment transport rates may differ markedly in ephemeral and perennial rivers and, supporting this thought, there has been observation of very high rates of bedload transport by flash floods in the ephemeral river Nahal Yatir. However, until now, there has been no quantitative model resolving the observation, nor a theory capable of explaining why bedload transport rates by unsteady flash floods can be reasonably well described by bedload transport capacity formulae initially derived for steady flows. Here a time scale analysis of bedload transport is presented as pertaining to Nahal Yatir, which demonstrates that bedload transport can adapt sufficiently rapidly to capacity determined exclusively by local flow regime, and accordingly the transport capacity formulations developed for steady flows can be applied even under unsteady flows such as flash floods. Complementing the time scale analysis, a series of computational exercises using a coupled shallow water hydrodynamic model are shown to adequately resolve the observation of the very high rates of bedload transport by flash floods in Nahal Yatir. While bedload transport rates in ephemeral and perennial rivers differ remarkably when evaluated against a pure flow parameter such as specific stream power, they are essentially reconciled if assessed with a physically sensible parameter incorporating not only the flow regime but also the sediment particle size. The present finding underpins the practice of fluvial geomorphologists relating measured bedload transport to local flow and sediment characteristics only, irrespective of whether the flow is unsteady or steady. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
A conceptual modeling framework for developing process-based mathematical models of sediment generation, transport, and deposition on broad shallow flow areas is presented. The governing equations relevant to process-based modeling of broad shallow flow sediment processes on small watersheds are presented and the effects of space and time averaging on the predictive equations are described. Starting from the most general one-dimensional, unsteady model of sediment processes, simpler model structures are obtained and the successive simplifications made on the governing equations in order to obtain simpler and less detailed formulations are described. Specific model formulations are given for illustrative purposes and applications of these models to erosion and sediment yield prediction from broad shallow flow areas are shown using sediment data from rainfall simulator plots. In spite of some progress made in the development of process-based erosion and sediment yield models from broad shallow flow areas, further developmental modeling efforts must be based on a clear separation between hydrologic and hydraulic processes, and the soil properties which are significant for each.  相似文献   

14.
Bankfull discharge is a key parameter in the context of river engineering and geomorphology, as an indicator of flood discharge capacity in alluvial rivers, and varying in response to the incoming flow and sediment regimes. Bankfull channel dimensions have significantly adjusted along the Lower Yellow River (LYR) due to recent channel degradation, caused by the operation of the Xiaolangdi Reservoir, which has led to longitudinal variability in cross‐sectional bankfull discharges. Therefore, it is more representative to describe the flood discharge capacity of the LYR, using the concept of reach‐averaged bankfull discharge. Previous simple mean methods to estimate reach‐scale bankfull discharge cannot meet the condition of flow continuity or account for the effect of different spacing between two sections. In this study, a general method to calculate cross‐sectional bankfull discharge using the simulated stage‐discharge relation is outlined briefly, and an integrated method is then proposed for estimating reach‐scale bankfull discharge. The proposed method integrates a geometric mean based on the log‐transformation with a weighted average based on the spacing between two consecutive sections, which avoids the shortcomings of previous methods. The post‐flood reach‐scale bankfull discharges in three different channel‐pattern reaches of the LYR were estimated annually during the period from 1999 to 2010 using the proposed method, based on surveyed post‐flood profiles at 91 sedimentation sections and the measured hydrological data at seven hydrometric sections. The calculated results indicate that: (i) the estimated reach‐scale bankfull discharges can effectively represent the flood discharge capacity of different reaches, with their ranges of variation being less than those of typical cross‐sectional bankfull discharges; and (ii) the magnitude of the reach‐scale bankfull discharge in each reach can respond well to the accumulative effect of incoming flow and sediment conditions. Finally, empirical relationships for different reaches in the LYR were developed between the reach‐scale bankfull discharge and the previous four‐year average discharge and incoming sediment coefficient during flood seasons, with relatively high correlation coefficients between them being obtained, and the reach‐scale bankfull discharges in different reaches predicted by the delayed response model were also presented for a comparison. These relations for the prediction of reach‐scale bankfull discharges were validated using the cross‐sectional profiles and hydrological data measured in 2011. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
In a flume experiment with steady flow conditions, H. A. Einstein recognised the transport of bedload particles as consisting of steps of rolling, sliding, or saltation with intermittent rest periods, and introduced the concept of an average, ‘virtual’ transport velocity. This virtual velocity then has also been derived from tracer studies in the field by dividing the travelled distance of a tracer by the duration of competent flow. As a consequence, the virtual velocity in the field is represented by one single value only, despite the unsteady flow variables. Tracer measurements in a river have not been yet used to express transport velocity as a direct function of these actual variables, and insights from tracer measurements into the processes of sediment transport remain limited. In particular, the unsteady conditions for bedload in the field have impeded the derivation of sediment transport characteristics as determined from laboratory experiments, as well as the transfer of laboratory insights to a field setting. We introduce a method of data regression for the derivation of an ‘unsteady’ virtual velocity from repeated surveys of tracer positions. The regression program called graVel (provided as supplementary material) relates the integral of an excess flow variable term to measured travel distances, yielding the most probable threshold value for entrainment and the coefficient of linear and non‐linear formulas. An extended regression allows additional fitting of the exponent in non‐linear formulas. Application to published tracer data from the Mameyes River, Puerto Rico, shows that the unsteady virtual velocity is more likely governed by non‐linear relations to excess Shields stress, similar to bedload transport, than by relations linking the particle velocity linearly to excess shear velocity. Partial agreements with non‐dimensional results derived from the larger, non‐wadeable Mur River encourage the establishment of a generalised formula for the unsteady virtual velocity. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
1 INTRODUCTION Rivers as a source of life can at the same time impose devastating conditions on the environment. It is , therefore, imperative to analyse and predict river behaviour for different given conditions and engineering activities. Therefore, the use of simulation tools in this field has become a necessity. Many computational tools for simulation of sediment transport in rivers are now available that can be used for prediction and design under different flow conditions. However, …  相似文献   

17.
A 2D depth-averaged model for hydrodynamic,sediment transport and river morphological adjustment is presented.The sediment transport submodel considers non-uniform sediment,bed surface armoring,impact of secondary flow on the direction of bed-load transport,and transverse slope of river bed.The bank erosion submodel incorporates a simple simulation method for updating bank geometry during either degradational or aggradational bed evolution.The model is applied to a 180°bend with a constant radius under unsteady flow conditions,and to Friedkin’s laboratory meander channels.The results are in acceptable agreement with measurements,confirming the two dimensional model’s potential in predicting the formation of river meandering and improving understanding of patterning processes.Future researches are needed to clarify some simplifications and limitations of the model.  相似文献   

18.
The current study proposes a novel framework for the numerical model for estimating the temporal scour considering unsteady sediment inflow and the sediment sorting process. The framework was applied to local scour upstream of a slit weir. The scour model is based on an ordinary nonlinear differential equation derived from sediment continuity and scour rate equations. A one-dimensional(1-D)Boussinesq-type model coupled with nonequilibrium sediment transport was incorporated in the scour model to...  相似文献   

19.
Laboratory observations and computational results for the response of bedform fields to rapid variations in discharge are compared and discussed. The simple case considered here begins with a relatively low discharge over a flat bed on which bedforms are initiated, followed by a short high‐flow period with double the original discharge, during which the morphology of the bedforms adjusts, followed in turn by a relatively long period of the original low discharge. For the grain size and hydraulic conditions selected, the Froude number remains subcritical during the experiment, and sediment moves predominantly as bedload. Observations show rapid development of quasi‐two‐dimensional bedforms during the initial period of low flow with increasing wavelength and height over the initial low‐flow period. When the flow increases, the bedforms rapidly increase in wavelength and height, as expected from other empirical results. When the flow decreases back to the original discharge, the height of the bedforms quickly decreases in response, but the wavelength decreases much more slowly. Computational results using an unsteady two‐dimensional flow model coupled to a disequilibrium bedload transport model for the same conditions simulate the formation and initial growth of the bedforms fairly accurately and also predict an increase in dimensions during the high‐flow period. However, the computational model predicts a much slower rate of wavelength increase, and also performs less accurately during the final low‐flow period, where the wavelength remains essentially constant, rather than decreasing. In addition, the numerical results show less variability in bedform wavelength and height than the measured values; the bedform shape is also somewhat different. Based on observations, these discrepancies may result from the simplified model for sediment particle step lengths used in the computational approach. Experiments show that the particle step length varies spatially and temporally over the bedforms during the evolution process. Assuming a constant value for the step length neglects the role of flow alterations in the bedload sediment‐transport process, which appears to result in predicted bedform wavelength changes smaller than those observed. However, observations also suggest that three‐dimensional effects play at least some role in the decrease of bedform wavelength, so incorporating better models for particle hop lengths alone may not be sufficient to improve model predictions. Published in 2011. This article is a US Government work and is in the public domain in the USA.  相似文献   

20.
1 INTRODUCTION Large-scale flood disasters have frequently occurred in the middle Yangtze River since the 1990抯. The Jingjiang River and Dongting Lake (Fig. 1) comprise the most serious area of flood disasters. The main characteristic of recent disasters is low discharge and high water stage. Recent research has begun to pay more attention to the important role of sediment deposition (Li and Ni, 1998). Though the Yangtze River is not an overloaded river, the amount of sediment trans…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号