首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
This paper applies a Bayesian formulation to range-dependent geoacoustic inverse problems. Two inversion methods, a hybrid optimization algorithm and a Bayesian sampling algorithm, are applied to some of the 2001 Inversion Techniques Workshop benchmark data. The hybrid inversion combines the local (gradient-based) method of downhill simplex with the global search method of simulated annealing in an adaptive algorithm. The Bayesian inversion algorithm uses a Gibbs sampler to estimate properties of the posterior probability density, such as mean and maximum a posteriori parameter estimates, marginal probability distributions, highest-probability density intervals, and the model covariance matrix. The methods are applied to noise-free and noisy benchmark data from shallow ocean environments with range-dependent geophysical and geometric properties. An under-parameterized approach is applied to determine the optimal model parameterization consistent with the resolving power of the acoustic data. The Bayesian inversion method provides a complete solution including quantitative uncertainty estimates and correlations, while the hybrid inversion method provides parameter estimates in a fraction of the computation time.  相似文献   

2.
This paper investigates the inherent variability in the results of matched-field geoacoustic inversion algorithms. This algorithm-induced variability must be considered when interpreting inversion results in terms of environmental changes as a function of time or space. Fast simulated annealing (FSA), genetic algorithms (GA), and a hybrid algorithm (adaptive simplex simulated annealing; ASSA) are compared by performing multiple inversions of benchmark synthetic data (noise free and noisy) and acoustic data measured over both low- and high-speed sea-bed sediments in the MAPEX 2000 experiment. ASSA produced the lowest variability in inversion results for all cases, followed by GA and FSA. For the high-speed MAPEX 2000 case, the variability is essentially negligible, while for the low-speed case the variability is significant as compared with environmental variations reported in the literature.  相似文献   

3.
Reverberation in low-frequency active sonar systems operating in shallow water has often been observed to follow non-Rayleigh statistical distributions. McDaniel's model, generalized to allow noninteger valued parameters, has shown promise as being capable of accurately representing real data with a minimal parameterization. This paper first derives an exact analytical expression for the cumulative distribution function (CDF) of the generalized McDaniel model and then compares it with numerical inversion of the characteristic function. Both methods are seen to provide adequate and equivalent precision; however the characteristic function inversion method is significantly faster. The latter CDF evaluation technique is then applied to the analysis of simulated and real data to show that, when minimal data are available, McDaniel's model can more accurately represent a wide variety of non-Rayleigh reverberation than the K or Rayleigh mixture models. This result arises from the generality of McDaniel's model with respect to the K-distribution (i.e., the K-distribution Pfa estimate can be dominated by model mismatch error) and to its compact parameterization with respect to the Rayleigh mixture (i.e., the Rayleigh mixture model Pfa estimate is usually dominated by parameter estimation error)  相似文献   

4.
This paper presents the results obtained using the adaptive simulated annealing (ASA) algorithm to invert the test cases from the Geoacoustic Inversion Techniques Workshop held in May 2001. The ASA algorithm was chosen for use in our inversion software for its speed and robustness when searching the geoacoustic parameter solution space to minimize the difference between the observed and the modeled transmission loss (TL). Earlier work has shown that the ASA algorithm is approximately 15 times faster than a modified Boltzmann annealing algorithm, used in prior versions of our TL inversion software, with comparable fits to the measured data. Results are shown for the synthetic test cases, 0 through 3, and for the measured data cases, 4 and 5. The inversion results from the synthetic test cases showed that subtle differences between range-dependent acoustic model version 1.5, used to generate the test cases, and parabolic equation (PE) 5.0, used as the propagation loss model for the inversion, were significant enough to result in the inversion algorithm finding a geoacoustic environment that produced a better match to the synthetic data than the true environment. The measured data cases resulted in better fits using ASTRAL automated signal excess prediction system TL 5.0 than using the more sophisticated PE 5.0 as a result of the inherent range averaging present in the ASTRAL 5.0 predictions.  相似文献   

5.
A method for estimating properties of the ocean bottom such as bathymetry and geoacoustic parameters such as sound speed, density and attenuation, using matched-field inversion is considered. The inversion can be formulated as an optimization problem by assuming a discrete model of unknown parameters and a bounded search space for each parameter. The optimization then involves finding the set of parameter values which minimizes the mismatch between the measured acoustic field and modeled replica fields. Since the number of possible models can be extremely large, the method of simulated annealing, which provides an efficient optimization that avoids becoming trapped in suboptimal solutions, has been used. The matching fields are computed using a normal mode model. In inversions for range-dependent parameters, the adiabatic approximation is employed. This allows mode values to be precomputed for a grid of parameter values and stored in look-up tables for fast reference, which greatly improves computational efficiency. Synthetic inversion examples are presented for realistic range-independent and range-dependent environments  相似文献   

6.
7.
为了提高定位算法的环境宽容性,聚焦法将环境参数纳入了寻优空间。聚焦法虽然降低了对环境测量的要求,但是反演参数的增加也增加了反演的复杂性。基于海底反射特性,用两个参数对海底进行建模。通过标准的反演测试问题对简化地声模型在浅海聚焦定位中的有效性进行了分析。结果表明:基于简化地声模型的聚焦定位是可行的。在获得正确定位结果的同时,随着地声参数个数的减少,匹配场处理的便捷性得到了提高。文中引入的简化地声模型是聚焦问题中参数最少的地声模型,它可以有效减少聚焦定位参数维数以提升反演的便捷性。同时,简化地声模型在参数敏感性和耦合性上有较好的表现,这些优点可以保证定位结果的稳健性。  相似文献   

8.
A method is described for the estimation of geoacoustic model parameters by the inversion of acoustic field data using a nonlinear optimization procedure based on simulated annealing. The cost function used by the algorithm is the Bartlett matched-field processor (MFP), which related the measured acoustic field with replica fields calculated by the SAFARI fast field program. Model parameters are perturbed randomly, and the algorithm searches the multidimensional parameter space of geoacoustic models to determine the parameter set that optimizes the output of the MFP. Convergence is driven by adaptively guiding the search to regions of the parameter space associated with above-average values of the MFP. The performance of the algorithm is demonstrated for a vertical line array in a shallow water enviornment where the bottom consists of homogeneous elastic solid layers. Simulated data are used to determine the limits on estimation performance due to error in experimental geometry and to noise contamination. The results indicate that reasonable estimates are obtained for moderate conditions of noise and uncertainty in experimental geometry  相似文献   

9.
This paper describes results from geoacoustic inversion of low-frequency acoustic data recorded at a receiving array divided into two sections, a sparse bottom laid horizontal array (HLA) and a vertical array (VLA) deployed in shallow water. The data are from an experiment conducted by the Norwegian Defence Research Establishment (FFI) in the Barents Sea, using broadband explosives (shot) sources. A two-layer range-independent geoacoustic model, consistent with seismic profiles from the area, described the environment. Inversion for geoacoustic model parameters was carried out using a fast implementation of the hybrid adaptive simplex simulated annealing (ASSA) inversion algorithm, with replica fields computed by the ORCA normal mode code. Low-frequency (40-128 Hz) data from six shot sources at ranges 3-9 km from the array were considered. Estimates of sediment and substrate p-wave velocities and sediment thickness were found to be consistent between independent inversions of data from the two sections of the array.  相似文献   

10.
The application of an inversion methodology produces the first demonstration of a simultaneous solution for geoacoustic and source track parameters from acoustic data collected in a shallow-water, sandy sediment environment. Inversion solutions from data collected in the 2006 Shallow Water Experiment (SW06) are extracted from noise measurements of a surface ship source on an L-array. The methodology includes a screening algorithm to determine a set of frequencies for the inversion data. In addition, the methodology assesses the accuracy of the inversion solution and incorporates an estimation of parameter value uncertainties. The solution from the inversion of the horizontal component of the L-array data from the surface ship source before its closest point of approach (CPA) is used to construct modeled propagation loss for comparison with observed received level (RL) structure as the source departs from CPA. Inversion of the data from a single element in the vertical component of the L-array produces a solution that agrees with the solution obtained from the inversion of horizontal subaperture data. Also, modeled transmission loss (TL) structure obtained from the single-element inversion solution reproduces the depth dependence of the RL structure observed at other elements of the vertical component of the L-array.   相似文献   

11.
Matched-fieId inversion (MFI) undertakes to estimate the geometric and geoacoustic parameters in an ocean acoustic scenario by matching acoustic field data recorded at hydrophone array with numerical calculations of the field. The model which provides the best fit to the data is the estimate of the actual experimental scenario. MFI provides a comparatively inexpensive method for estimating ocean bottom parameters over an extensive area. The basic components of the inversion process are a sound propagation model and matching (minimization) algorithm. Since a typical MFI problem requires a large number of computationally intensive sound propagation calculations, both of these components have to be efficient. In this study, a hybrid inversion algorithm which uses a parabolic equation propagation model and combines the downhill simplex algorithm with genetic algorithms is introduced. The algorithm is demonstrated on synthetic range-dependent shallow-water data generated using the parabolic equation propagation model. The performance for estimating the model parameters is compared for realistic signal-to-noise ratios in the synthetic data  相似文献   

12.
为了对海底声学参数反演中的估计精度做出预估,合理解释反演结果,本文基于Jackson海底声散射模型,利用Sobol算法,对该模型中的耗散系数、速度比等7个参数进行定量的敏感度分析。Sobol算法可以给出参数的一阶敏感度和参数间相互作用的敏感度,适用于分析散射强度的影响因子。仿真结果表明,所选择的声波频率对于参数的敏感度影响不大,模型各参数交互作用较为强烈,速度比的全局敏感度最大,而耗散系数敏感度很小。将参数划分为地声属性参数、粗糙度参数和非均匀性参数,地声属性参数敏感度最大。模型参数敏感度分析结果对于反演有一定的指导作用。  相似文献   

13.
This communication presents a new multistep matched-field algorithm for geoacoustic inversion by subspace extraction with a threshold. In this algorithm, according to the varying sensitivities of geoacoustic parameters, parameters are separated into several subsets (or subspaces). Then, inversions are carried out in each sensitive subspace using an optimization algorithm, and for each inversion, a sub-subspace is extracted where values of objective functions are lower than a given threshold. Finally, in all the extracted sub-subspaces combined with the subspace of insensitive parameters, an inversion is performed for all parameters to find the optimal solution. After the extracting process, the search space is greatly reduced, and generally, the true parameter values will not be excluded from the sub-subspace if a reasonable threshold is designed. Thus, higher efficiency and accuracy can be obtained when compared with other algorithms. Simulation is carried out on synthetic data and results indicate that the new algorithm's performance is significantly superior to those of other algorithms.   相似文献   

14.
An overview of matched field methods in ocean acoustics   总被引:4,自引:0,他引:4  
A short historical overview of matched-field processing (MFP) is followed by background material in both ocean acoustics and array processing needed for MFP. Specific algorithms involving both quadratic and adaptive methods are then introduced. The results of mismatch studies and several algorithms designed to be relatively robust against mismatch are discussed. The use of simulated MFP for range, depth and bearing location is examined, using data from a towed array that has been tilted to produce an effective vertical aperture. Several experiments using MFP are reviewed. One successfully demonstrated MFP at megameter ranges; this has important consequences for experiments in global tomography. Some unique applications of MFP, including how it can exploit ocean inhomogeneities and make tomographic measurements of environmental parameters, are considered  相似文献   

15.
A common problem in sonar system prediction is that the ocean environment is not well known. Utilizing probabilistic based results from geoacoustic inversions we characterize parameters relevant to sonar performance. This paper describes the estimation of transmission loss and its statistical properties based on posterior parameter probabilities obtained from inversion of ocean acoustic array data. This problem is solved by first finding an ensemble of relevant environmental model parameters and the associated posterior probability using a likelihood based inversion of the acoustic array data. In a second step, each realization of these model parameters is weighted with their posterior probability to map into the transmission loss domain. This approach is illustrated using vertical-array data from a recent benchmark data set and from data acquired during the Asian Seas International Acoustics Experiment (ASIAEX) 2001 in the East China Sea. The environmental parameters are first estimated using a probabilistic-based geoacoustic inversion technique. Based on the posterior probability that each of these environmental models fits the ocean acoustic array data, each model is mapped into transmission loss. This enables us to compute a full probability distribution for the transmission loss at selected frequencies, ranges, and depths, which potentially could be used for sonar performance prediction.  相似文献   

16.
17.
A new adaptive Cartesian-grid for the CIP (constrained interpolation profile) method is proposed and applied to two-dimensional numerical simulations of violent free-surface flows. The CCUP (CIP combined and unified procedure) method is employed and combined with this adaptive Cartesian-grid for robust and efficient computation. This adaptive grid is capable of tracking regions where flows vary violently, and a much finer grid is then concentrated automatically on these regions to adapt to the violent changing of the flow. Unlike the abacus-like Soroban grid which is an adaptive meshless grid with complicated algorithms and inefficiency of evaluation of frequently computed spatial derivatives, the present approach not only simplifies computational algorithm but also enhances efficiency of frequently-computed spatial derivatives. It is also different from most of the remeshing schemes that no additional CPU-time for the value-mapping from the old grid to the new grid is taken in this adaptive grid system provided that the advection velocity is interpolated, since the value-mapping process is accomplished simultaneously within the advection process. To validate the accuracy and efficiency of this newly-proposed CFD model, several two-dimensional benchmark problems are performed, and the results are compared with experimental measurements and other published numerical results. Numerical simulations show that the proposed numerical model is robust, accurate, and efficient for strongly nonlinear free-surface flows.  相似文献   

18.
This paper examines geoacoustic inversion over a range-dependent multiple-layer seabed using a towed acoustic source and towed horizontal array. The approach is based on combining the results of a series of short-range, range-independent inversions to form a range-dependent representation of the environment. The data were collected in the Strait of Sicily during the MAPEX 2000 experiment. Issues such as the resolvability of multilayer structure and the sensitivity of various geoacoustic parameters are investigated by inversion of simulated data and by comparison of the MAPEX 2000 inversion results to a high-resolution seismic profile and to sediment core measurements. It appears that two, and in some cases possibly three, sediment layers can be resolved.  相似文献   

19.
Matched-field inversion is used to, estimate geoacoustic properties from data obtained in an experiment with a vertical line array (VLA). The experiment was carried out using broad-band sources (shots) in water depths of about 200 m on the continental shelf off Vancouver Island. The data were processed to obtain spectral components of the field for frequencies near the bubble frequency for the shot. The ocean bottom in this region consists of a layer of mainly sandy sediments (about 100 m thick) overlying older consolidated material. Consequently, the inversion was designed to estimate the parameters of a two-layer elastic sediment model. In the inversion, an adaptive global search algorithm was used to investigate the multidimensional space of geoacoustic models in order to determine the set of values corresponding to the best replica field. Convergence is driven by adaptively guiding the search to regions of the parameter space associated with above-average values of the matched field correlation between the measured and replica fields. The geoacoustic profile estimated by the inversion consisted of a 125-m layer with compressional speed ~1700 m/s and shear speed ~400 m/s, overlying a layer with compressional speed ~1900 m/s. This model is consistent with the results from conventional seismic experiments carried out in the same region  相似文献   

20.
In this paper, we use matched-field inversion methods to estimate the geoacoustic parameters for three synthetic test cases from the Geoacoustic Inversion Techniques Workshop held in May 2001 in Gulfport, MS. The objective of this work is to use a sparse acoustic data set to obtain estimates of the parameters as well as an indication of their uncertainties. The unknown parameters include the geoacoustic properties of the sea bed (i.e., number of layers, layer thickness, density, compressional speed, and attenuation) and the bathymetry for simplified range-dependent acoustic environments. The acoustic data used to solve the problems are restricted to five frequencies for a single vertical line array of receivers located at one range from the source. Matched-field inversion using simplex simulated annealing optimization is initially used to find a maximum-likelihood (ML) estimate. However, the ML estimate provides no information on the uncertainties or covariance associated with the model parameters. To estimate uncertainties, a Bayesian formulation of matched-field inversion is used to generate posterior probability density distributions for the parameters. The mean, covariance, and marginal distributions are determined using a Gibbs importance sampler based on the cascaded Metropolis algorithm. In most cases, excellent results were obtained for relatively sensitive parameters such as wave speed, layer thickness, and water depth. The variance of the estimates increase for relatively insensitive parameters such as density and wave attenuation, especially when noise is added to the data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号