首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The eudialyte-group of minerals (EGM) is one of the most important index minerals of the peralkaline (agpaitic) nepheline syenites. They crystallize in varied physico-chemical conditions ranging from the early-magmatic (orthomagmatic) to late-magmatic and even in the post-magmatic (hydrothermal) stage. In India, the only agpaitic nepheline syenite gneisses of the Sushina Hill region contain both late-magmatic as well as hydrothermal eudialytes. Compositionally these are Mn-Nb-Ca rich eudialytes and are comparable to the other EGM occurrences such as Ilímaussaq (Greenland), Tamazeght (Morocco), Mont-Saint Hilaire (Canada) and Pilansberg (South Africa). High Mn content (>6.5 wt.%) for both varieties of the Sushina EGM indicates that they are highly evolved in nature. In terms of the calculated site occupancy, particularly the [M(3)] and [M(2)], the Sushina eudialytes mimic some Pilansberg eudialytes. In addition to the eudialyte, the host nepheline syenite gneiss also contains an unknown Na-Zr-silicate (NZS) which is often found to be replacing both types of eudialytes. Compositionally these NZS can be tentatively represented as Na2Zr2S6O17. These NZS are characterized by much higher Zr, but lower Mn and Nb concentrations compared to the associated eudialytes. Two distinct varieties of eudialyte and NZS indicate subtle changes in the alkalinity during their formations. The formation of the late-magmatic as well as hydrothermal eudialyte essentially took place at somewhat elevated pH conditions. The replacement or alteration of eudialytes by NZS indicates a decreasing pH condition. In terms of the chemical composition the late-magmatic eudialytes can be represented as a solid-solution series between the kentbrooksite-taseqite-aqualite while the hydrothermal eudialyte represents solid-solution between kentbrooksitetaseqite -Ce-zirsilite.  相似文献   

2.
Sushina nepheline syenite gneisses of Early Proterozoic North Singhbhum Mobile Belt (NSMB), eastern India suffered regional metamorphism under greenschist-amphibolite transitional facies condition. The Agpaitic Sushina nepheline syenite gneisses consist of albite, K-feldspar, nepheline (close to Morozewicz-Buerger composition), aegirine, biotite, epidote, piemontite, sodalite, cancrinite, natrolite and local alkali amphibole. Accessory phases include zircon, hematite, magnetite, rare pyrochlore and occasional eudialyte and manganoan calcic zirconosilicates. Mineral chemistry of albite, K-feldspar, nepheline, aegirine, alkali amphibole, natrolite and zirconium silicate minerals are described. The detailed textural features together with chemical data of some minerals indicate metamorphic overprint of these rocks. A new reaction is given for the genesis of metamorphic epidote. Metamorphic piemontite suggests greenschist facies metamorphism under high fO2 (Hematite-Magnetite buffer). Up to 15.34 mol% of jadeite component in aegirine suggests that the metamorphic grade of the nepheline syenite gneiss reached at least to greenschist-amphibolite transitional facies or higher. Nepheline geothermometry suggests temperature of metamorphism <500 °C, which is consistent with greenschist facies metamorphism of surrounding chlorite-biotite-garnet phyllite country rock.  相似文献   

3.
Aegirines with almost 7.0 wt.% ZrO2 have been discovered in nepheline syenites from the Motzfeldt Centre, South Greenland. The analyses require the postulate of a new endmember pyroxene composition with the formula NaFM0.5Zr0.5Si2O6.A possible acronym is FM-NAZ. Aegirines rich in this component occur in rocks in which there is no other zirconium-bearing phase such as eudialyte.These zirconian pyroxenes have crystallised from magmas which were peralkaline, low in lime and silica and relatively low in oxygen fugacity compared with other nepheline syenites. These factors have combined to prevent the usual crystallisation of such Zr-phases as eudialyte, zircon or baddeleyite.  相似文献   

4.
Aegirines with almost 7.0 wt.% ZrO2 have been discovered in nepheline syenites from the Motzfeldt Centre, South Greenland. The analyses require the postulate of a new endmember pyroxene composition with the formula NaFM0.5Zr0.5Si2O6.A possible acronym is FM-NAZ. Aegirines rich in this component occur in rocks in which there is no other zirconium-bearing phase such as eudialyte.These zirconian pyroxenes have crystallised from magmas which were peralkaline, low in lime and silica and relatively low in oxygen fugacity compared with other nepheline syenites. These factors have combined to prevent the usual crystallisation of such Zr-phases as eudialyte, zircon or baddeleyite.  相似文献   

5.
6.
云南个旧碱性杂岩体由边缘相碱长正长岩和中心相霞石正长岩组成。全岩地球化学分析表明,该碱性杂岩体具有高碱、富钾、富铁、低镁、高分异的碱性-过碱性岩石特征,晚期更富集碱金属元素; LREE/HREE值为20~59,(La/Sm)N=8~50,(Sm/Yb)N=1.2~5.0,富集轻稀土元素,轻稀土元素较重稀土元素分馏程度高,具Eu负异常,亏损Ti、Nb、P、K、Sr等元素,富集Zr、Hf、Th、La、Ce、Nd、U、Rb等元素,岩浆来源与幔源物质有关;碱长正长岩和霞石正长岩具有相似的微量元素和稀土元素特征,具有同源岩浆分异演化的特点; Rb/Sr、Nb/Ta、Zr/Hf等比值均高于或接近于原始地幔的相应值; CIPW标准矿物计算结果表明边缘相碱长正长岩中出现紫苏辉石、锥辉石、橄榄石,中心相霞石正长岩中出现橄榄石。结合(Th/Nb)N和Nb/La值特征以及前人Sr-Nd同位素研究成果,认为个旧碱性杂岩体的岩浆来源于遭受交代作用的富集地幔部分熔融,同时受有限的地壳混染作用而成,形成于后碰撞的伸展环境。碱性岩浆演化晚期更加富碱、经历了更高程度的结晶分异作用是稀土元素、Nb、Ga和Zr元素超常富集的重要原因。  相似文献   

7.
辽宁赛马碱性岩体早年因产铀矿而闻名,该岩体主要由响岩、霞石正长岩和异霞正长岩组成,其中铀、锆和稀土等元素矿化主要集中于异霞正长岩岩浆阶段。异性石是异霞正长岩中特征的锆-稀土矿物,主要分为两期,晚期异性石表现出更加富集Nb、REE等高场强元素的特点。早期异性石经历了一系列的热液蚀变,根据蚀变强弱程度,蚀变矿物组合可分为:(1)异性石+钠锆石+霓石±钠沸石;(2)异性石+钠锆石+锆石+钠沸石±霓石;(3)异性石假晶,假晶主要由残余异性石+钠锆石+锆石+钠沸石+霓石+钾长石+铈硅磷灰石组成。相比于岩浆锆石,蚀变组合中次生锆石具有富Ca、Al、Fe的特点,与异性石本身化学成分和流体性质密切相关。通过对异性石及其蚀变组合的精细矿物学研究,我们得知假晶的形成可能是异性石"溶解-再沉淀"的结果,致使假晶形成的流体至少包括:(1)占主导的富Na(±K)、Al、F的自交代流体;(2)少量晚期富Ca流体。假晶中次生锆石和铈硅磷灰石的结晶说明了Zr和REE等高场强元素的热液活动性,自交代碱性流体和富Ca流体在此过程中起到"搬运"和"提纯"的作用,这对认识碱性岩稀有、稀土成矿机制具有重要的指示意义。  相似文献   

8.
The Sakharjok Y-Zr deposit in Kola Peninsula is related to the fissure alkaline intrusion of the same name. The intrusion ∼7 km in extent and 4–5 km2 in area of its exposed part is composed of Neoarchean (2.68–2.61 Ma) alkali and nepheline syenites, which cut through the Archean alkali granite and gneissic granodiorite. Mineralization is localized in the nepheline syenite body as linear zones 200–1350 m in extent and 3–30 m in thickness, which strike conformably to primary magmatic banding and trachytoid texture of nepheline syenite. The ore is similar to the host rocks in petrography and chemistry and only differs from them in enrichment in zircon, britholite-(Y), and pyrochlore. Judging from geochemical attributes (high HSFE and some incompatible element contents (1000–5000 ppm Zr, 200–600 ppm Nb, 100–500 ppm Y, 0.1–0.3 wt % REE, 400–900 ppm Rb), REE pattern, Th/U, Y/Nb, and Yb/Ta ratios), nepheline syenite was derived from an enriched mantle source similar to that of contemporary OIB and was formed as an evolved product of long-term fractional crystallization of primary alkali basaltic melt. The ore concentrations are caused by unique composition of nepheline syenite magma (high Zr, Y, REE, Nb contents), which underwent subsequent intrachamber fractionation. Mineralogical features of zircon-the main ore mineral—demonstrate its long multistage crystallization. The inner zones of prismatic crystals with high ZrO2/HfO2 ratio (90, on average) grew during early magmatic stage at a temperature of 900–850°C. The inner zones of dipyramidal crystals with average ZrO2/HfO2 = 63 formed during late magmatic stage at a temperature of ∼500°C. The zircon pertaining to the postmagmatic hydrothermal stage is distinguished by the lowest ZrO2/HfO2 ratio (29, on average), porous fabric, abundant inclusions, and crystallization temperature below 500°C. The progressive decrease in ZrO2/HfO2 ratio was caused by evolution of melt and postmagmatic solution. The metamorphic zircon rims relics of earlier crystals and occurs as individual rhythmically zoned grains with an averaged ZrO2/HfO2 ratio (45, on average) similar to that of the bulk ore composition. The metamorphic zircon is depleted in uranium in comparison with magmatic zircon, owing to selective removal of U by aqueous metamorphic solutions. Zircon from the Sakharjok deposit is characterized by low concentrations of detrimental impurities, in particular, contains only 10–90 ppm U and 10–80 ppm Th, and thus can be used in various fields of application.  相似文献   

9.
Natural nepheline, a synthetic Na-rich nepheline, and synthetic kalsilite were ion exchanged in molten MNO3 or MCl (M = Li, Na, K, Ag) at 220–800° C. Crystalline products were characterized by wet chemical and electron microprobe analysis, single crystal and powder X-ray diffraction, and transmission electron microscopy and diffraction. Two new compounds were obtained: Li-exchanged nepheline with a formula near (Li,K0.3,□)Li3[Al3(Al,Si)Si4O16] and a monoclinic unit cell with a = 951.0(6) b = 976.1(6) c = 822.9(5)pm γ = 119.15°, and Ag-exchanged nepheline with a formula near (K,Na,□)Ag3[Al3(Al,Si)Si4O16] and a hexagonal unit cell with a = 1007.4(8) c = 838.2(1.0) pm. Both compounds apparently retain the framework topology of the starting material. Ion exchange isotherms and structural data show that immiscibility between the end members is a general feature in the systems Na-Li, Na-Ag, and Na-K. For the system Na-K, a stepwise exchange is observed with (K,D)Na3[Al3(Al,Si)Si4O16] as an intermediate composition which has the nepheline structure and is miscible with the sodian end member (Na,□)Na3[Al3(Al,Si)Si4O16], but not with the potassian end member (K,□)4[Al3(Al,Si)Si4O16] which shows the kalsilite structure; there was no indication for the formation of trior tetrakalsilite (K/(K + Na)≈0.7) at the temperatures studied (350 and 800° C). The exact amount of vacancies □ on the alkali site depends upon the starting material and was found to be conserved during exchange, with ca 0–0.2 and 0.3–0.4 vacancies per 16 oxygen atoms for the synthetic and natural precursors, respectively. Thermodynamic interpretation of the Na-K exchange isotherms shows, as one important result, that the sodian end member is unstable with respect to the intermediate at K/(K+Na)≈0.25 by an amount of ca 45 kJ/mol Na in the large cavity at 800° C (52 kJ/mol at 350° C).  相似文献   

10.
研究目的】河南方城大庄是新探明的中型铌-稀土矿床(Nb2O3资源量16245 t;伴生TRE2O3资源量30147 t),矿体主要赋存在碱性正长岩内。【研究方法】本文在野外地质调查基础上,对含矿碱性正长岩与无矿碱性正长岩开展了岩石学、岩相学和地球化学的对比研究。【研究结果】研究结果表明,含矿与无矿碱性正长岩均富碱、富铝,为典型的A型花岗岩,两类岩石的碱金属含量无明显差别,但(Na2O+K2O)/CaO、FeO*/MgO、K2O/MgO等参数明显不同。含矿碱性正长岩高场强元素Nb、Ta、Ce、U、Th、Zr、Y明显富集,Ba、Sr、P、Eu明显亏损;无矿碱性正长岩大离子亲石元素Rb、高场强元素Nb、Ta、Y和Th元素明显富集,而Ba、U、Sr、P、Ti和重稀土元素明显亏损,但亏损程度低于含矿碱性正长岩。【结论】方城大庄含矿碱性正长岩不是无矿碱性正长岩热液蚀变(钠长石化)的结果,二者应是同一岩浆体系不同演化阶段溶体固结的产物,含矿碱性正长岩的分异演化程度明显高于无矿化的碱性正长岩。方城大庄稀有稀土元素的富集与岩浆高演化、分异过程密切相关。这一研究可为区域找矿勘查提供一定的地质依据。创新点:岩石学和地球化学对比研究显示大庄Nb-REE矿中含矿碱性正长岩具有比无矿岩体更高的演化程度,表明成矿元素的富集与岩浆高分异演化密切相关,为找矿勘查提供了一定的岩石学证据。  相似文献   

11.
12.
Dualite has been found at Mount Alluaiv, the Lovozero Pluton, the Kola Peninsula in peralkaline pegmatoid as sporadic, irregularly shaped grains up to 0.3–0.5 mm across. K-Na feldspar, nepheline, sodalite, cancrinite, aegirine, alkaline amphibole, eudialyte, lovozerite, lomonosovite, vuonnemite, lamprophyllite, sphalerite, and villiaumite are associated minerals. Dualite is yellow, transparent or translucent, with conchoidal fracture. The new mineral is brittle, with vitreous luster and white streaks. The Mohs hardness is 5. The measured density is 2.84(3) g/cm3 (volumetric method); the calculated density is 2.814 g/cm3. Dualite dissolves and gelates in acid at room temperature. It is nonfluorescent. The new mineral is optically uniaxial and positive; ω = 1.610(1), ɛ = 1.613(1). Dualite is trigonal, space group R3m. The unit cell dimensions are a = 14.153(9), c = 60.72(5) ?, V = 10533(22) ?, Z = 3. The strongest reflections in the X-ray powder pattern [d, ? (I,%)(hkl)] are as follows: 7.11(40)(110), 4.31(50)(0.2.10), 2.964(100)(1.3.10), 2.839(90)(048), 2.159(60)(2.4.10, 0.4.20), 1.770(60)(2.4.22, 4.0.28, 440), 1362(50)(5.5.12, 3.0.42). The chemical composition (electron microprobe, H2O calculated from X-ray diffraction data) is as follows, wt %: 17.74 Na2O, 0.08 K2O, 8.03 CaO, 1.37 SrO, 0.29 BaO, 2.58 MnO, 1.04 FeO, 0.79 La2O3, 1.84 C2O3, 0.88 Nd2O3, 0.20 Al2O3, 51.26 SiO2, 4.40 TiO2, 5.39 ZrO2, 1.94 Nb2O5, 0.58 Cl, 1.39 H2O,-O = 0.13 Cl2; they total is 99.67. The empirical formula calculated on the basis of 106 cations as determined by crystal structure is (Na29.79Ba0.1K0.10)Σ30(Ca8.55Na1.39REE1.27Sr0.79)Σ12 · (Na3.01Mn1.35Fe0.872+Ti0.77)Σ6(Zr2.61Nb0.39)Σ3 (Ti2.52Nb0.48)Σ3(Mn0.82Si0.18)Σ1(Si50.77Al0.23)Σ51 O144[(OH)6.54(H2O)1.34·Cl0.98]Σ8.86). The simplified formula is Na30(Ca,Na,Ce,Sr)12(Na,Mn,Fe,Ti)6Zr3Ti3 MnSi51O144 (OH,H2O,Cl)9). The name dualite is derived from Latin dualis (dual) alluding to the dual taxonomic membership of this mineral, which is at the same time zirconosilicate and titanosilicate. The crystal structure is characterized by two module types (alluivite-like and eudialyte-like) alternating along a threefold axis with a doubled c period relative to eudialyte and close chemical affinity to rastsvetaevite (Khomyakov et al., 2006a) and labyrynthite (Khomyakov et al., 2006b). According to the authors’ crystal chemical taxonomy of the eudialyte group, the new mineral belongs to one of three subgroups characterized by a 24-layered structural framework. Dualite is a mineral formed during the final stages of peralkaline pegmatite formation. The type material of dualite is deposited at the Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow. Original Russian Text ? A.P. Khomyakov, G.N. Nechelyustov, R.K. Rastsvetaeva, 2007, published in Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 2007, Pt CXXXVI, No. 4, pp. 68–73. Approved by the Commission on New Minerals and Mineral Names, International Mineralogical Association, July 8, 2005.  相似文献   

13.
The thermoelastic behaviour of a natural gedrite having the crystal-chemical formula ANa0.47 B(Na0.03 Mg1.05 Fe0.862+ Mn0.02 Ca0.04) C(Mg3.44 Fe0.362+ Al1.15 Ti0.054+) T(Si6.31 Al1.69)O22 W(OH)2 has been studied by single-crystal X-ray diffraction to 973 K (Stage 1). After data collection at 973 K, the crystal was heated to 1,173 K to induce dehydrogenation, which was registered by significant changes in unit-cell parameters, M1–O3 and M3–O3 bond lengths and refined site-scattering values of M1 and M4 sites. These changes and the crystal-chemical formula calculated from structure refinement show that all Fe2+ originally at M4 migrates into the ribbon of octahedrally coordinated sites, where most of it oxidises to Fe3+, and there is a corresponding exchange of Mg from the ribbon into M4. The resulting composition is that of an oxo-gedrite with an inferred crystal-chemical formula ANa0.47 B(Na0.03 Mg1.93 Ca0.04) C(Mg2.56 Mn0.022+ Fe0.102+ Fe1.223+ Al1.15 Ti0.054+) T(Si6.31 Al1.69) O22 W[O1.122− (OH)0.88]. This marked redistribution of Mg and Fe is interpreted as being driven by rapid dehydrogenation at the H3A and H3B sites, such that all available Fe in the structure orders at M1 and M3 sites and is oxidised to Fe3+. Thermoelastic data are reported for gedrite and oxo-gedrite; the latter was measured during cooling from 1,173 to 298 K (Stage 2) and checked after further heating to 1,273 K (Stage 3). The thermoelastic properties of gedrite and oxo-gedrite are compared with each other and those of anthophyllite.  相似文献   

14.
The detailed study of the mineral composition of the nepheline syenite pegmatite from the Saharjok Intrusion has resulted in the finding of behoite and mimetite, a mineral species identified in the Kola region for the first time. The pegmatite body at the contact between nepheline syenite and essexite is unusual in textural and structural features and combination of mineral assemblages including unique beryllium mineralization. Behoite Be(OH)2 is an extremely rare beryllium mineral. It occurs as powderlike aggregates in the leaching cavities between euhedral pyroxene crystals. Behoite was identified by comparison of X-ray powder diffraction data of the studied mineral phase and behoite from the Be-bearing tuff in the type locality of this mineral (Utah, United States). Mimetite was found in the same pegmatite of the Saharjok intrusion. It forms unusual parallel-fibrous aggregates with individual fibers as long as ∼1 mm and only ∼1 μm across. X-ray powder diffraction data and the chemical composition characterize the mineral as hexagonal phase Pb5[AsO4]3Cl. Both behoite and mimetite are the products of late hydrothermal alteration of primary minerals (meliphanite, galena, arsenopyrite, and loellingite). The secondary phases freely crystallized in the cavities remaining after the leached nepheline.  相似文献   

15.
Fluoro-sodalite was synthesized for the first time at temperatures of 400–800°C and H2O pressures of 1–2 kbar in the Si–Al–Na–H–O–F system. X-ray diffraction and infrared spectroscopic investigations showed that fluorine is incorporated in the sodalite structure as anionic octahedral groups, [AlF6]3–, the number of which can vary from 0 to 1. Correspondingly, the end-members of the F-sodalite series are Na7(H2O)8[Si5Al7O24] and Na8(AlF6)(H2O)4[Si7Al5O24]. Depending on the composition of the system, F-sodalite associates at 500–650°C with nepheline, albite, cryolite, and villiaumite, which are joined by analcime below 500°C and aluminosilicate melt above 650°C. Fluorine-bearing sulfate–chlorine-sodalite was found for the first time in a pegmatite sample from the Lovozero massif. The highest fraction of the fluorine end-member in natural sodalite is 0.2. The incorporation of F into the sodalite structure requires much more energy compared with Cl and SO 4 2- , because it is accompanied by a structural rearrangement and a transition from tetrahedral Al to octahedral Al.  相似文献   

16.
Peralkaline syenite and granite dykes cut the Straumsvola nepheline syenite pluton in Western Dronning Maud Land, Antarctica. The average peralkalinity index (PI?=?molecular Al/[Na?+?K]) of the dykes is 1.20 (n?=?29) and manifests itself in the presence of the Zr silicates eudialyte, dalyite and vlasovite, and the Na–Ti silicate, narsarsukite. The dykes appear to have intruded during slow cooling of the nepheline syenite pluton, and the petrogenetic relationship of the dykes and the pluton cannot be related to closed-system processes at low pressure, given the thermal divide that exists between silica-undersaturated and oversaturated magmas. Major and trace element variations in the dykes are consistent with a combination of fractional crystallization of parental peralkaline magma of quartz trachyte composition, and internal mineral segregation prior to final solidification. The distribution of accessory minerals is consistent with late-stage crystallization of isolated melt pockets. The dykes give an Rb–Sr isochron age of 171?±?4.4 Ma, with variable initial 87Sr/86Sr ratio (0.7075?±?0.0032), and have an average ε Nd of ? 12.0. Quartz phenocrysts have δ18O values of 8.4–9.2‰, which are generally in O-isotope equilibrium with bulk rock. Differences in the δ18O values of quartz and aegirine (average Δquartz?aegirine = 3.5‰) suggest aegirine formation temperatures around 500 °C, lower than expected for a felsic magma, but consistent with poikilitic aegirine that indicates subsolidus growth. The negative ε Nd (< ? 10) and magma δ18O values averaging 8.6‰ (assuming Δquartz?magma = 0.6‰) are inconsistent with a magma produced by closed-system fractional crystallization of a mantle-derived magma. By contrast, the nepheline syenite magma had mantle-like δ18O values and much less negative ε Nd (average ??3.1, n?=?3). The country rock has similar δ18O values to the granite dykes (average 8.0‰, n?=?108); this means that models for the petrogenesis of the granites by assimilation are unfeasible, unless an unexposed high-δ18O contaminant is invoked. Instead, it is proposed that the peralkaline syenite and granite dykes formed by partial melting of alkali-metasomatised gneiss that surrounds the nepheline syenite, followed by fractional crystallization.  相似文献   

17.
The Boziguoer A-type granitoids in Baicheng County,Xinjiang,belong to the northern margin of the Tarim platform as well as the neighboring EW-oriented alkaline intrusive rocks.The rocks comprise an aegirine or arfvedsonite quartz alkali feldspar syenite,an aegirine or arfvedsonite alkali feldspar granite,and a biotite alkali feldspar syenite.The major rock-forming minerals are albite,K-feldspar,quartz,arfvedsonite,aegirine,and siderophyllite.The accessory minerals are mainly zircon,pyrochlore,thorite,fluorite,monazite,bastnaesite,xenotime,and astrophyllite.The chemical composition of the alkaline granitoids show that SiO2 varies from 64.55% to 72.29% with a mean value of 67.32%,Na2O+K2O is high (9.85%-11.87%) with a mean of 11.14%,K2O is 2.39%-5.47% (mean =4.73%),the K2O/Na2O ratios are 0.31-0.96,Al2O3 ranges from 12.58% to 15.44%,and total FeOT is between 2.35% and 5.65%.CaO,MgO,MnO,and TiO2 are low.The REE content is high and the total SREE is (263-1219) ppm (mean =776 ppm),showing LREE enrichment and HREE depletion with strong negative Eu anomalies.In addition,the chondrite-normalized REE patterns of the alkaline granitoids belong to the "seagull" pattern of the right-type.The Zr content is (113-1246) ppm (mean =594 ppm),Zr+Nb+Ce+Y is between (478-2203) ppm with a mean of 1362 ppm.Furthermore,the alkaline granitoids have high HFSE (Ga,Nb,Ta,Zr,and Hf) content and low LILE (Ba,K,and Sr) content.The Nb/Ta ratio varies from 7.23 to 32.59 (mean =16.59) and the Zr/Hf ratio is 16.69-58.04 (mean =36.80).The zircons are depleted in LREE and enriched in HREE.The chondrite-normalized REE patterns of the zircons are of the "seagull" pattern of the left-inclined type with strong negative Eu anomaly and without a Ce anomaly.The Boziguoer A-type granitoids share similar features with A1-type granites.The average temperature of the granitic magma was estimated at 832-839℃.The Boziguoer A-type granitoids show crust-mantle mixing and may have formed in an anorogenic intraplate tectonic setting under high-temperature,anhydrous,and low oxygen fugacity conditions.  相似文献   

18.
The Dongueni Mont nepheline syenite intrudes migmatitic paragneisses and siliciclastic metasediments of the Barue Complex, Mozambique. This study reports the whole-rock geochemical, U-Pb and Nd isotopic data of the nepheline syenite. The ferroan and alkalic geochemical characteristics are typical of alkaline rocks formed in a within-plate setting. The strong depletion in high field strength elements(HFSEs)(e.g. Ba, Nb, P,and Ti) and enrichment in large ion lithophile elements(LILEs)(e.g. Rb, Th, K, and Pb) are consistent with magmatism in a continental alkaline magmatic province associated with intracontinental rifting. Zircon U-Pb data yielded crystallization ages from 498 ± 19 to 562± 14 Ma,consistent with the Pan-African Orogeny and the inherited zircons yield an age of 1040 Ma, which supports the presence of a Mesoproterozoic crust. Theε_(Nd)(t) values from the nepheline syenite samples range from-15.1 to-16.1 and the T_(DM)values from 1.77 to 1.67 Ga, which indicate that the initial nepheline syenite magma formed from a tholeiitic or mantle source in a within-plate setting with crustal assimilation.  相似文献   

19.
The crystal chemistry of silica-rich,alkali-deficient nepheline   总被引:1,自引:0,他引:1  
Coarse crystals of an extremely silica-rich, potassium-deficient nepheline have been synthesized hydrothermally with albite. Electron microprobe analysis yielded the formula: □1.76Ko.24Na6.00Al6.24-Si9.76O32. A crystal structure analysis of this nepheline has revealed (1) a disordered Si-Al distribution, (2) full occupancy of the smaller cavity site by sodium atoms, and (3) the larger cavity is vacant except for the minor potassium content, with the size of this cavity being the same as when largely occupied with potassium atoms. In addition, the crystal structure of another nepheline prepared by alkali exchange in molten NaCl showed that when Na atoms replace the K atoms of the large cavity: (1) this cavity does not collapse around the smaller atoms, and therefore, (2) the sodium atoms occupy an offcenter position displaced by about 0.3 Å from the cavity center in order to form a rather one-sided bonding configuration with some of the cavity wall oxygen atoms. These structures further support the strong site preference indicated earlier by Buerger and coworkers and restated by Barth: that for the large cavity K > □ ? Na and for the small cavity site Na>Ca(?)?K, □. Perfect compliance with this site preference scheme would tend to restrict nephelines to the Barth compositional join: □2Na6Al6Si10O32-K2Na6Al8Si8O32, neglecting the minor Ca component usually present. Thirteen new electron microprobe analyses of nephelines from a variety of occurrences and sixteen additional microprobe analyses from the literature which comply with nepheline-structure allowed stoichiometry, are plotted showing that (1) natural nephelines closely conform to this site preference scheme with less than 10% of the large cavity sites containing sodium atoms, that is, the analyses cluster near the Barth join, and (2) examples of natural nephelines can be found at nearly all intermediate compositions along this join.  相似文献   

20.
Shombole, a nephelinite-carbonatite volcano in south Kenya, erupted silicate lavas, carbonatite dikes and tuffs, and pyroclastic rocks similar to those at other East African alkaline centres. Shombole lavas containing cpx + nepheline + accessory minerals range from perovskite-bearing nephelinites (43% SiO2, volatile-free) to sphene-bearing and phonolitic nephelinites (46–49% SiO2) and phonolites (49–56% SiO2) and have low peralkalinity ([Na+K]/Al 1.15) which does not correlate with SiO2. Early fractionation of olivine and clinopyroxene strongly depleted Ni and Cr concentrations (10 ppm); fractionation of perovskite, melanite, sphene, and apatite produced negative correlations of all REE with SiO2. Many lavas contain cognate intrusive xenoliths and xenocrysts and oscillatory zoning is a common feature of clinopyroxene, nepheline, and melanite crystals, indicating recycling of intrusive material. Irregular calcite-rich bodies in many samples are interpreted as quenched immiscible Ca-carbonatite liquid, and [Ca-carbonate]-silicate liquid immiscibility is observed in experiments with one nephelinite. Chemical variation in the Shombole suite can be modeled as a combination of crystal fractionation (clinopyroxene and heavy minor phases) and retention of neutral density nepheline derived from disaggregated xenoliths entrained during emplacement of dike swarms. Six newly analyzed lavas from Oldoinyo L'engai, northern Tanzania, are geochemically similar to Shombole nephelinites except that they have relatively high Na2O+K2O (average 18% vs 12%) and Zr (average 680 ppm vs 400 ppm). They are extremely peralkaline and are not typical of nephelinites from other centres. Three with [Na+K]/Al1.5 contain euhedral wollastonite phenocrysts; three with [Na+K]/Al2.0 contain combeite (Na2Ca2Si3O9) phenocrysts and pseudomorphs after wollastonite. Both types contain abundant sodalite phenocrysts (+nepheline+clinopyroxene+melanite+sphene). Seven other wollastonite nephelinite samples from L'engai have been described, but it is a lava type rarely seen in other centres. Combeite has been described from only two other locations (Mt. Shaheru, Zaire; Mayener Feld, Eifel). The hyperalkaline L'engai nephelinites have compositions similar to those of experimental silicate liquids immiscible with natrocarbonatite. Textural evidence for both carbonate-silicate (as carbonate globules) and silicate-silicate (as two optically discrete glasses with distinct compositions) liquid immiscibility is observed in the samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号