首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
Water solubility in orthopyroxene   总被引:7,自引:0,他引:7  
The solubility of water in pure enstatite was measured on samples synthesized at 1,100 °C and pressures to 100 kbar. Enstatite crystals were grown under water-saturated conditions from a stoichiometric mixture of high-purity SiO2 and Mg(OH)2. Water contents were calculated from polarized FTIR spectra measured on oriented single crystals. The water solubility in orthoenstatite increases with pressure to 867ᆷ ppm H2O by weight at 75 kbar. At 100 kbar, in the stability field of high-clinoenstatite, a water solubility of 714ᆷ ppm was observed. The water solubility in enstatite at 1,100 °C can be described by the equation cH2O=AfH2O exp(-P(V/RT), where fH2O is water fugacity, A=0.0204 ppm/bar and (V=12.3 cm3/mol. The infrared spectra of the hydrous enstatite crystals show a sharp, intense band at 3,363 cm-1 and a broad, weaker band at 3,064 cm-1. Both bands are strongly polarized parallel c. Most likely, pairs of protons attached to non-bridging oxygen atoms substitute for Mg2+. In order to investigate the effect of chemical impurities on water solubility in enstatite, an additional series of experiments was carried out with gels doped with Al, B, or Li as starting material. Whereas, the presence of Li and B had no detectable effect on water solubility, the addition of about 1 wt% Al2O3 increased water solubility in enstatite from 199 to 1,100 ppm at 1,100°C and 15 kbar. In the infrared spectra of these aluminous samples, additional bands occur in the range from 3,450 to 3,650 cm-1. Similar bands are also observed in natural, aluminous orthopyroxenes and are most likely caused by protons coupled with Al according to the substitution of Al3++H+ for Si4+. A series of hydrous annealing experiments on a natural, gem-quality aluminous enstatite from Tanzania yielded water solubilities generally consistent with the results from the synthetic model systems. The results presented here imply that pure enstatite has a similar storage capacity for water as olivine; however, aluminous orthopyroxenes in the mantle may dissolve much larger amounts of water comparable with the entire mass of the present hydrosphere. Moreover, the mechanism of aluminum substitution in orthopyroxenes, i.e., the distribution of Al between tetrahedral and octahedral sites, may be a potential probe of water fugacity.  相似文献   

2.
The system MgO-CO2-H2O has been studied up to 1,400? C and 4,000bars pressure using the sealed-capsule quenching technique.No melting was observed. At 1,000 bars pressure magnesite dissociatesat 780? C, and brucite at 635? C, to periclase and vapor. Theunivariant reaction MgCO3?Mg(OH)2 MgO + V proceeds at 630?C, at 1,000 bars and at 700? C, at 4,000 bars. Solubility measurementsshow that, at 1,000 bars and temperatures up to 1,000? C, lessthan 1.5 weight per cent MgO is dissolved in the vapor phase.Brucite is unstable in the presence of vapors containing morethan a small amount of CO2. The maximum percentage of CO2 ina vapor that can coexist with brucite increases with decreasingpressure and with increasing temperature: 6 weight per centCO2 is the maximum at 630? C, 1,000 bars, and 4 weight per centat 700? C, 4,000 bars. The phase relations in the isobaric TXprism for 1,000 bars pressure are described. The results illustratetwo dissociation reactions, decarbonation and dehydration, occurringin the presence of a vapor phase containing two volatile components,H2O and CO2. Applications to metamorphism are briefly discussed.  相似文献   

3.
Quaternary monogenetic volcanism in the High Cascades of Oregonis manifested by cinder cones, lava fields, and small shields.Near Crater Lake caldera, monogenetic lava compositions include:low-K (as low as 0?09% K2O) high-alumina olivine tholeiite (HAOT);medium-K. calc-alkaline basalt, basaltic andesite, and andesite;and shoshonitic basaltic andesite (2?1% K2O, 1750 ppm Sr at54% SiO2). Tholeiites have MORB-like trace element abundancesexcept for elevated Sr, Ba, and Th and low high field strengthelements (HFSE), and they represent near-primary liquids. Theyare similar to HAOTs from the Cascades and adjacent Basin andRange, and to many primitive basalts from intraoceanic arcs.Calc-alkaline lavas show a well-developed arc signature of highlarge-ion lithophile elements (LILE) and low HFSE. Their Zrand Hf concentrations are at least partly decoupled from thoseof Nb and Ta; HREE are low relative to HAOT. Incompatible elementabundances and ratios vary widely among basaltic andesites.Some calc-alkaline lavas vented near Mount Mazama contain abundantgabbroic microxcnoliths, and are basaltic andesitic magmas contaminatedwith olivine gabbro. A calc-alkaline basalt and a few basaltic andesites have MgOand compatible trace element contents that suggest only minorfractionation. There appears to be a compositional continuumbetween primitive tholeiitic and calc-alkaline lavas. Compositionalvariation within suites of comagmatic primitive lavas, boththoleiitic and calc-alkaline, mainly results from differentdegrees of partial melting. Sources of calc-alkaline primarymagmas were enriched in LILE and LREE by a subduction componentand contained residual garnet, whereas sources of HAOTs hadlower LILE and LREE concentrations and contained residual clinopyroxene.High and variable LILE and LREE contents of calc-alkaline lavasreflect variations in fluid-transported subduction componentadded to the mantle wedge, degree of partial melting, and possiblyalso interaction with rocks or partial melts in the lower crust. Andesites were derived from calc-alkaline basaltic andesitesby fractionation of plagioclase+augite+magnetite+apatite ? orthopyroxeneor olivine, commonly accompanied by assimilation. Many andesitesare mixtures of andesitic or dacitic magma and a basaltic orbasaltic andesitic component, or are contaminated with gabbroicmaterial. Mingled basalt, andesite, and dacite of Williams Craterformed by multi-component, multi-stage mixing of basaltic andesiticmagma, gabbro, and dacitic magma. The wide range of compositionsvented from monogenetic volcanoes near Crater Lake is a resultof the thick crust coupled with mild tectonic extension superimposedon a subduction-related magmatic arc.  相似文献   

4.
Phase relations for the bulk compositions 3CaO·2FeOx·3SiO2+excessH2O and CaO·FeOx·2SiO2+excess H2O were determinedusing conventional hydrothermal techniques with solid phaseoxygen buffers to control fO2. Andradite, Ca3Fe3+2Si3O12, synthesized above 550 °C hasan average unit cell edge, ao, of 12.055±0.001 Å,and an index of refraction, n, of 1.887±0.003. Belowthis temperature, ao increases whereas n decreases, indicatingthe formation of a member of the andradite-hydroandradite solidsolution. At 2000 bars Pfluid andradite is stable above an fO2of 1015 bar at 800 °C and 10-32 bar at 400 °C. At lowerfO2 andradite+fluid gives way at successively lower temperaturesto the condensed assemblages magnetite+wollastonite, kirschsteinite(CaFe2+SiO4)+ wollastonite and kirschsteinite+xonotlite (Ca6Si6O17(OH)2). Synthetic hedenbergite, CaFe2+Si2O6, has average unit cell dimensionsof ao = 9.857± 0.004 Å, bo = 9.033±0.002Å, co = 5.254±0.002 Å and ß = 104.82°±0.03°,and refractive indices of n = 1.731±0.003 and n = 1.755±0.005.At 2000 bars Pfiuid, hedenbergite is stable below an fO2 of10-13 bar at 800 °C and 10-28 bar at 400 °C. Above thesefO2 values, hedenbergite+O2 breaks down to andradite+magnetite+quartz. The mineral pair andradite +hedenbergite thus limit the fO2range possible for their joint formation under equilibrium conditions. The hydration of wollastonite to xonotlite occurs at much lowertemperatures than previous experimental work indicated. A tentativehigh temperature limit for this reaction is set at 185°±15°C and 5000±25 bars and 210°±15 °Cand 2000±20 bars. Inasmuch as the growth of xonotlitefrom wollastonite + H2O was never accomplished, this high temperaturelimit does not represent an equilibrium univariant curve. Nine phases were encountered in the study of andradite and hedenbergite.They are andradite, hedenbergite, magnetite, wollastonite, kirschsteinite,xonotlite, quartz, ilvaite, and vapor (fluid). An invariantpoint analysis using the method of Schreinemakers shows thetopologic relations of the reactions involved. The resultinggrid can be used to interpret natural occurrences.  相似文献   

5.
The System CaO-CO2-H2O and the Origin of Carbonatites   总被引:2,自引:0,他引:2  
The ternary isobaric (TX) prism for the system CaO–CO2–H2Owas determined at 1,000 bars pressure between 600? C and 1,320?C. At this pressure, calcite melts incongruently at 1,310? C,portlandite (Ca(OH)2) melts congruently at 835? C, a binaryeutectic exists between calcite and portlandite at 685? C, meltingbegins at 740? C on the join calcite-water and the univariant(isobaric invariant) equilibria lime?calcite?portlandite?liquidand calcite?portlandite?liquid?vapour occur at 683? C and 675?C, respectively. The latter is the minimum liquidus temperaturein the TX prism, and the composition of this liquid is 65CaO,19CO2, 16H2O (in weight per cent). PT curves were determinedfor several univariant equilibria. In the binary system CaO-H2O,four univariant curves meet at an invariant point, at 810? Cand 100 bars pressure. Portlandite dissociates only at pressuresbelow this point. The minimum liquidus temperature in the ternarysystem varies between 685? C and 640? C in the pressure interval27 bars to 4, 000 bars. Liquids in the system are regarded as simplified carbonatitemagmas in which CaO represents the basic oxides, and CO2 andH2O the volatile constituents. The liquids have low viscosityas indicated by the rapid attainment of equilibrium and theobservation that crystal settling takes place in 15-min runs.The existence of such liquids at moderate temperatures througha wide pressure range leaves little reason to doubt a magmaticorigin for those carbonatites which appear to be intrusive.Differentiation could occur in multicomponent magmas by separationof the successive liquid fractions produced by crystallizationof calcite, dolomite, and siderite. The determined phase relationsdo not favour an origin by gas transfer. The results also suggestthat partial melting of limestones is likely at igneous contacts,and that impure limestones may be partially melted during high-graderegional metamorphism.  相似文献   

6.
Equilibrium H2O pressure (PeH2O) was fixed at values less thantotal pressure (PT) in melting experiments on mixtures of 1921Kilauea tholeiite, H2O, and CO2 (58.5 mole per cent H2O, 41.5mole per cent CO2), buffered by Ni+NiO. New determinations ofthe beginning of melting of mixtures of 1921 Kilauea tholeiiteand H2O buffered by quartz+fayalite+magnetite were made at 2and 3 kb. Microprobe analyses of coexisting glass, clinopyroxene,?olivine, ?amphibole were determined for several runs. Decreasing H2O fugacity (fH2O) to about six-tenths the fugacityof pure H2O (f?II2O) raises the solidus and the upper stabilitylimit of plagioclase. Plagioclase and clinopyroxene coexistin equilibrium with liquid-a feature not observed in the pureH2O system. Amphibole is stable to about 970 ?C at 2 kb, 1025?C at 5 kb and 1060 ?C at 8 kb. The Al (VI)+Ti contents of theamphibole increase with P, yielding kaersutite at 1050 ?C and8 kb. Calculated modes for the condensed phases reveal large differencesin the amount of glass (liquid) present and large differencesin liquid composition below and above the breakdown temperatureof amphibole at 5 and 8 kb. Liquids coexisting with amphibole,clinopyroxene, olivine, and magnetite are dacitic near the solidusand silica-rich andesites around 1000 ?C at 5 and 8 kb. Theresults of this study substantiate the model for the generationof the calc-alkaline suite by partial melting of H2O-rich basalts.  相似文献   

7.
Crystallization experiments were performed at 200 MPa in thetemperature range 1150–950°C at oxygen fugacitiescorresponding to the quartz–fayalite–magnetite (QFM)and MnO–Mn3O4 buffers to assess the role of water andfO2 on phase relations and differentiation trends in mid-oceanridge basalt (MORB) systems. Starting from a primitive (MgO9·8 wt %) and an evolved MORB (MgO 6·49 wt %),crystallization paths with four different water contents (0·35–4·7wt % H2O) have been investigated. In primitive MORB, olivineis the liquidus phase followed by plagioclase + clinopyroxene.Amphibole is present only at water-saturated conditions below1000°C, but not all fluid-saturated runs contain amphibole.Magnetite and orthopyroxene are not stable at low fO2 (QFM buffer).Residual liquids obtained at low fO2 show a tholeiitic differentiationtrend. The crystallization of magnetite at high fO2 (MnO–Mn3O4buffer) results in a decrease of melt FeO*/MgO ratio, causinga calc-alkaline differentiation trend. Because the magnetitecrystallization temperature is nearly independent of the H2Ocontent, in contrast to silicate minerals, the calc-alkalinedifferentiation trend is more pronounced at high water contents.Residual melts at 950°C in a primitive MORB system havecompositions approaching those of oceanic plagiogranites interms of SiO2 and K2O, but have Ca/Na ratios and FeO* contentsthat are too high compared with the natural rocks, implyingthat fractionation processes are necessary to reach typicalcompositions of natural oceanic plagiogranites. KEY WORDS: differentiation; MORB; oxygen fugacity; water activity; oceanic plagiogranite  相似文献   

8.
The Solubility of Sulphur in Hydrous Rhyolitic Melts   总被引:1,自引:1,他引:1  
Experiments performed at 2 kbar, in the temperature range 800–1000°C,with fO2 between NNO–2·3 and NNO+2·9 (whereNNO is the nickel–nickel oxide buffer), and varying amountsof sulphur added to hydrous metaluminous rhyolite bulk compositions,were used to constrain the solubility of sulphur in rhyolitemelts. The results show that fS2 exerts a dominant control onthe sulphur solubility in hydrous silicate melts and that, dependingon fO2, a rhyolitic melt can reach sulphur contents close to1000 ppm at high fS2. At fO2 below NNO+1, the addition of ironto a sulphur-bearing rhyolite magma produces massive crystallizationof pyrrhotite and does not enhance the sulphur solubility ofthe melt. For a given fO2, the melt-sulphur-content increaseswith fS2. For fixed fO2 and fS2, temperature exerts a positivecontrol on sulphur solubilities, at least for fO2 below NNO+1.The mole fraction of dissolved sulphur exhibits essentiallylinear dependence on fH2S at low fO2 and, although the experimentalevidence is less clear, on fSO2 at high fO2. The minimum insulphur solubility corresponds to the redox range where bothfH2S and fSO2 are approximately equal. A thermodynamic modelof sulphur solubility in hydrous rhyolite melts is derived assumingthat total dissolved sulphur results from the additive effectsof H2S and SO2 dissolution reactions. The model reproduces wellthe minimum of sulphur solubility at around NNO+1, in additionto the variation of the sulphide to sulphate ratio with fO2.A simple empirical model of sulphur solubility in rhyoliticmelts is derived, and shows good correspondence between modeland observations for high-silica rhyolites. KEY WORDS: sulphur; solubility; rhyolite; thermodynamics; fO2; fS2  相似文献   

9.
The Fish Canyon Tuff is one of the largest currently recognizedash-flow tuffs (> 3000 km3). It is a crystal-rich quartzlatite containing about 40 per cent phenocrysts of plagioclase,sanidine, biotite, hornblende, quartz, magnetite, sphene, andilmenite. Pyrrhotite occurs as inclusions in magnetite, sphene,and hornblende. The consistency of mineralogy and whole rockchemistry confirms that the Fish Canyon tuff is remarkably homogeneous.Most chemical variations can be accounted for by phenocryst-matrixfractionation, probably due to glass winnowing during eruptionand emplacement. The composition of the parent magma, correctedfor such winnowing, is very similar to that of calc-alkalinebatholiths such as the Boulder and the Sierra Nevada batholiths. Fe-Ti oxide geothermometers indicate temperatures of 800 ? 30?C for most of the outflow tuff. No evidence for a regular thermalgradient in the magma chamber could be detected. Two feldsparand Fe-Ti oxide equilibria indicate that the magma developedat depths of 25 to 30 km (about 9 kb pressure), and was eruptedwithout time for phenocryst re-equilibration. The reconstructedcomposition of the liquid in equilibrium with the phenocrystsalso suggests a deep source for this ash flow. A late, upperpackage of flow units have mineralogical characteristics whichmay reflect partial re-equilibration in a shallower environment. Oxygen fugacities are moderately high (log fO2 = — 11.5?0.3) but are similar to those obtained from other continentalcalc-alkaline ash-flow tuffs. The water fugacity is limitedby calculations using biotite equilibria and experimental workrelating to the stability of the phenocryst assemblage. Bestestimates are that water fugacity was 2000 ? 1000 bars. Theactivities of sulphurous gases are estimated at fSO2 = 2 to4 bars, fso2 = 150 to 200 bars, fH2S = 70 to 80 bars. The Fish Canyon Tuff therefore came from a deep, homogeneous,granitic magma body of batholithic proportions. Calculationsof its probable viscosity, density, and size indicate that thesystem should convect with any reasonable thermal gradient.Convective mixing may account for the homogeneity of the parentmagma body.  相似文献   

10.
Metapelitic country rocks were contact- and pyro-metamorphosed by the Tertiary Skaergaard Intrusion, East Greenland. In an initial stage of heating, while they were probably still in place within the host rock contact aureole, they overstepped a range of equilibrium and disequilibrium melting reactions and produced both a granitic melt and very refractory spinel+cordierite+plagioclase±corundum residuals. Parts of these refractory rocks were then subjected to another melting event after being entrained as xenoliths into the Skaergaard Marginal Border Group, where they experienced a temperature of about 1,000°C at a pressure of about 650 bars and at an oxygen fugacity about 0.2–0.5 log units below the FMQ buffer. Here, they underwent bulk melting, but did not mix with the Skaergaard magma, presumably because of the high viscosity contrast. The Al-rich melts crystallized to an assemblage of corundum+mullite+sillimanite+ plagioclase+spinel+rutile±tridymite±cordierite and they reacted with the surrounding basalt producing a strongly cryptically zoned rim of plagioclase (An55 close to the basalt to An90 close to the Al-rich melt). The assemblage in the inner parts of the xenoliths provides textural evidence for disequilibrium growth due to slow diffusivities in the highly viscous, probably water-free Al-rich melt. Later interaction of lower temperature ferrobasaltic to granophyric melts with the xenoliths along their margins and along cracks led to consumption of corundum and mullite and to the stable assemblage of spinel+cordierite+plagioclase+quartz+K-feldspar +magnetite+ilmenite at about 800°C.  相似文献   

11.
Iron-Titanium Oxide Minerals and Synthetic Equivalents   总被引:16,自引:0,他引:16  
Phase-equilibrium studies in the system FeO-Fe2O3—TiO2permit determination of the temperature and oxygen fugacityof formation of coexisting pairs of titaniferous magnetite andilmenite in many rocks. Temperatures thus obtained are probablyaccurate to ?50?C. Temperatures indicated for most igneous andmetamorphic rocks for which data are available are generallyconsistent with temperatures inferred by other methods. Temperaturesfor certain gabbroic rocks are too low for magmatic crystallizationand probably reflect the migration of ilmenite from titaniferousmagnetite to form separate granules upon cooling. The experimentally determined solubility of ilmenite in magnetiteis much too small to account for most ilmeno-magnetites by simpleexsolution. Subsolidus oxidation of magnetite-ulv?spinelgSSto yield ilmenite-magnetite intergrowths has been experimentallyverified and probably takes place during cooling of many igneousand perhaps some metamorphic rocks. Oxidation at surface orhypabyssal conditions may produce metastable titanomaghemites. In order of increasing intensity of oxidation, the followingFe—Ti oxide pairs occur in plutonic rocks: ulv?spinel-richmagnetiteSS+ilmeniteSS, ulv?spinel-poor magnetiteSS+ilmeniteSS,ulv?spinel-poor magnetiteSS+hematiteSS, hematiteSS+rutile.  相似文献   

12.
The system peridotite-H2O-CO2 serves as a simplified model forthe phase relations of mantle peridotite involving more thanone volatile component. Run products obtained in a study ofphase relations of four mantle peridotites in the presence ofH2O- and (H2O+CO2)-bearing vapors and with controlled hydrogenfugacity (fH2) at high pressures and temperatures have beensubjected to a detailed chemical investigation, principallyby the electron microprobe. Mg/(Mg+Fe) of all phases generally increases with increasingtemperature and with increasing Mg/(Mg+Fe) of the starting material.This ratio appears to decrease with increasing pressure forolivine, and for amphibole coexisting with garnet. DecreasingfH2from that of IW buffer to that of MH buffer decreases Mg/(Mg+Fe)of the partial melt from approximately 0?85 to approximately0?50, whereas the Fo content of coexisting olivine increasesslightly less than 3 per cent and the Mg/(Mg+Fe) of clinopyroxeneincreases about 4 per cent. However, the variations in Fo contentof olivines are within those observed in olivines from naturalmantle peridotite. The chemistry of other silicate mineralsdoes not significantly reflect variations of fH2. Consequently,the peridotite mineralogy and/or chemistry is not a good indicatorfor the fH2 conditions during crystallization. All crystalline phases, except amphibole, and to some extentgarnet, show increasing Cr content with increasing temperatureand increasing Cr content of the starting material, resultingin a positive correlation with Mg/(Mg+Fe). Partial melts aredepleted in Cr2O3 relative to the crystalline phases. High Mg/(Mg+Fe)and Cr2O3 are thus expected in crystal residues after partialmelting. The absolute values depend on degree of melting andthe composition of the parent peridotite.  相似文献   

13.
LUHR  JAMES F. 《Journal of Petrology》1990,31(5):1071-1114
The equilibrium phase relations of two volcanic rocks from thesubduction-related Mexican Volcanic Belt have been determinedwith an argon-pressurized internally heated vessel. One rockis the trachyandesite erupted from El Chich?n Volcano in 1982;the other is a primitive basalt erupted from Jorullo Volcanoin 1759. A simplified synthetic equivalent to the trachyandesitewas also investigated in lesser detail. All charges were saturatedwith hydrous vapor and a sulfur-bearing mineral. Temperatureranged from 800 to 1000?C, pressure from 1 to 4 kb, and fo2was controlled by four different solid oxygen buffers in a doublegold capsule configuration: fayalite-magnetite-quartz (FMQ),Ni-NiO (NNO), manganosite-hausmanite (MNH), and magnetite-hematite(MTH). Pyrrhotite was the only sulfur-bearing mineral observed in chargesbuffered under FMQ and NNO, whereas anhydrite crystallized underthe more oxidizing MNH or MTH; both of these observations areconsistent with those of earlier workers. With increasing temperatureand pressure, SiO2 and K2O decreased in the experimental melts,whereas Al2O3 and CaO increased. Sulfur solubility in silicatemelts was low (<0?1 wt% equivalent SOt3) for pyrrhotite-saturatedcharges, but significantly greater (to 1?3 wt.% SOt3) when anhydritewas present. Sulfur solubility in anhydrite-saturated meltsshowed strong positive dependence on both temperature and Pvapor. Sulfur amounted to some 2?5 wt.% (SOt3) of the total ejectaduring the 1982 El Chich?n eruptions, and the original magmaticsulfur content was in the range 1?25–2–5 wt% SOt3.Extrapolations of experimental temperature and pressure dependencesfor sulfur solubility indicate that such concentrations couldbe contained in a hydrous, oxidized, basaltic parent melt generatedunder Benioff zone conditions. During ascent through the uppermantle and crust, the sulfur solubility limit of the melt wouldcontinuously decrease; in response, most of the sulfur wouldbe transferred from the melt to anhydrite crystals and a separategas phase. Trachyandesite pumices erupted from El Chich?n in1982 contained both pyrrhotite and anhydrite at a temperatureof 800?C. The composition of the natural pyrrhotite yieldedan fo2 estimate 1 log unit above the NNO buffer. Based on compositionalvariations in the experimental melts with temperature and pressure,the composition of the matrix glass in the 1982 pumices indicatesequilibration of the magmatic liquid at about Ptotal=Pvapor=2kb just before eruption. At that time, sulfur in El Chich?ntrachyandesite was about equally partitioned between anhydritemicrophenocrysts and some 20 vol.% gas phase in which H2S wasprobably the dominant sulfur-bearing species. The melt thencontained only 0?05 wt.% SOt3, consistent with experimentalsolubility limits at 800?C and Pvapor=2 kb.  相似文献   

14.
The temperature dependence of water solubility in enstatite   总被引:3,自引:0,他引:3  
The solubility of water in pure enstatite was measured on samples synthesized under water-saturated conditions at 15 kbar and temperatures ranging from 700 to 1,100°C. Polarized FTIR measurements on millimetre-sized, clear crystals showed that water solubility increases strongly with temperature, from 101 ppm by weight at 700°C to 269 ppm by weight at 1,100°C. The position and shape of the infrared bands hardly changes with temperature, with one notable exception: a band close to 3,380 cm–1 is present in samples synthesized between 700 and 1,000°C, while this band is absent from samples synthesized at 1,100°C. This effect appears to be very reproducible and points towards a slight change in the crystal structure of enstatite between 1,000 and 1,100°C at 15 kbar. The water solubility data of this study as well as those of Rauch and Keppler (Contrib Mineral Petrol 143:525–536, 2002) can be reproduced by the equation where K is water solubility, is water fugacity, A is 0.01354 ppm/bar, Vsolid=12.1 cm3/mol is the volume change of enstatite during incorporation of water, and H1 bar=-4,563 J/mol is the reaction enthalpy at 1 bar. This equation predicts the following behaviour of water solubility in enstatite as a function of pressure and temperature: (1) water solubility increases with pressure up to a maximum around 80 kbar; (2) water solubility decreases with temperature at 1 bar; and (3) water solubility increases with temperature between 10 and 100 kbar. If the observed temperature dependence for enstatite were representative for other upper mantle minerals as well, it would have the following implications: (1) Lateral temperature gradients in the upper mantle could cause major variations in water contents at the same depth; in particular, hot mantle plumes may scavenge water from the surrounding shallow upper mantle. (2) The scavenging of water by hot plumes could be a major factor in increasing the mobility of plumes. (3) The predicted temperature dependence of water solubility at the base of the upper mantle may allow plumes to bypass the transition zone water filter postulated by Bercovici and Karato (Nature 425:39–44, 2003).  相似文献   

15.
The Synthesis and Stability of Anthophyllite   总被引:1,自引:1,他引:0  
The pure magnesium orthorhombic amphibole, anthophyllite, hasbeen synthesized and its upper and lower stability limits havebeen established by reversible hydrothermal experiments. Thesynthetic mineral has refractive indices nx=1?587?0?001, ny=1?602?0?005,nz=1?613?0?001, and unit-cell dimensions of a0=18?61?0?02 ?,b0=18?01?0?06 ?, c0=5?24?0?01 ?. The mineral is stable overa narrow temperature range in the presence of the phase H2O.At a PH2O of 1,000 bars the upper stability limit is 745??10?C and the lower stability limit is 667??8? C. Rate studies indicate that anthophyllite can nucleate at temperaturesabove its upper stability limit by disintegration of talc sheetsinto strips of double chains. The activation energy for thisprocess is 150?30 kcal mol–1. Application of the data to rocks of the Balmat area, New York,suggests that the equilibrium pressure of water during the metamorphismwas significantly less than the total pressure. The data indicatethat monomineralic zones of anthophyllite in ultramafic rocksare due to the presence of a steep gradient in the activityof H2O, or a steep gradient in temperature, or both, acrossthe zones.  相似文献   

16.
Arenal volcano is nearly unique among arc volcanoes with its 42 year long (1968–2010) continuous, small-scale activity erupting compositionally monotonous basaltic andesites that also dominate the entire, ~7000 year long, eruptive history. Only mineral zoning records reveal that basaltic andesites are the result of complex, open-system processes deriving minerals from a variety of crystallization environments and including the episodic injections of basalt. The condition of the mafic input as well as the generation of crystal-rich basaltic andesites of the recent, 1968–2010, and earlier eruptions were addressed by an experimental study at 200 MPa, 900–1,050 °C, oxidizing and fluid-saturated conditions with various fluid compositions [H2O/(H2O + CO2) = 0.3–1]. Phase equilibria were determined using a phenocryst-poor (~3 vol%) Arenal-like basalt (50.5?wt% SiO2) from a nearby scoria cone containing olivine (Fo92), plagioclase (An86), clinopyroxene (Mg# = 82) and magnetite (Xulvö = 0.13). Experimental melts generally reproduce observed compositional trends among Arenal samples. Small differences between experimental melts and natural rocks can be explained by open-system processes. At low pressure (200 MPa), the mineral assemblage as well as the mineral compositions of the natural basalt were reproduced at 1,000 °C and high water activity. The residual melt at these conditions is basaltic andesitic (55 wt% SiO2) with 5 wt% H2O. The evolution to more evolved magmas observed at Arenal occurred under fluid-saturated conditions but variable fluid compositions. At 1,000 °C and 200 MPa, a decrease of water content by approximately 1 wt% induces significant changes of the mineral assemblage from olivine + clinopyroxene + plagioclase (5 wt% H2O in the melt) to clinopyroxene + plagioclase + orthopyroxene (4 wt% H2O in the melt). Both assemblages are observed in crystal-rich basalt (15 vol%) and basaltic andesites. Experimental data indicate that the lack of orthopyroxene and the presence of amphibole, also observed in basaltic andesitic tephra units, is due to crystallization at nearly water-saturated conditions and temperatures lower than 950 °C. The enigmatic two compositional groups previously known as low- and high-Al2O3 samples at Arenal volcano may be explained by low- and high-pressure crystallization, respectively. Using high-Al as signal of deeper crystallization, first magmas of the 1968–2010 eruption evolved deep in the crust and ascent was relatively fast leaving little time for significant compositional overprint by shallower level crystallization.  相似文献   

17.
The system peridotite-H2O–CO2 serves as a simplified modelfor the phase relations of mantle peridotite involving morethan one volatile component. Run products obtained in a studyof phase relations of four mantle peridotites in the presenceof H2O- and (H2O+CO2)- bearing vapors and with controlled hydrogenfugacity (fH2) at high pressures and temperatures have beensubjected to a detailed chemical investigation, principallyby the electron microprobe. Mg/(Mg+Fe) of all phases generally increases with increasingtemperature and with increasing Mg/(Mg+Fe) of the starting material.This ratio appears to decrease with increasing pressure forolivine, and for amphibole coexisting with garnet. DecreasingfH2 from that of IW buffer to that of MH buffer decreases Mg/(Mg+Fe)of the partial melt from approximately 0-85 to approximately0.50, whereas the Fo content of coexisting olivine increasesslightly less than 3 per cent and the Mg/(Mg+Fe) of clinopyroxeneincreases about 4 per cent. However, the variations in Fo contentof olivines are within those observed in olivines from naturalmantle peridotite. The chemistry of other silicate mineralsdoes not significantly reflect variations of fH2. Consequently,the peridotite mineralogy and/or chemistry is not a good indicatorfor the fH2 conditions during crystallization. All crystalline phases, except amphibole, and to some extentgarnet, show increasing Cr content with increasing temperatureand increasing Cr content of the starting material, resultingin a positive correlation with Mg/(Mg+Fe). Partial melts aredepleted in Cr2O3 relative to the crystalline phases. High Mg/Mg+Fe)and Cr2O3 are thus expected in crystal residues after partialmelting. The absolute values depend on degree of melting andthe composition of the parent peridotite. Liquids formed by anatexis of mantle peridotite are andesiticunder conditions of XH2Ov > 0.6 to at least 25 kb total pressureand to more than 200?C above the peridotite solidus. This observationsupports numerous suggestions that andesite genesis in islandarcs may result from partial melting of underlying peridotitemantle. In contrast to basaltic rocks, the absence of amphibole(paragasitic hornblende) does not affect the silica-saturatednature of the liquids. Increasing K2O content of the startingmaterial (up to 1 wt. per cent K2O) results in increasing potassiumcontent of the amphibole (1 wt. per cent K2O) as well as theappearance of phlogopite. The liquid under these conditionsis relatively K20-poor (less than 1 wt. per cent K2O). Partial melts are olivine normative with XH2O 0.5, and initialliquids contain normative ol and ne at XH2O 0.4. The alkalinityof these liquids increases with decreasing XH2O below valuesof 0.5. The (ol+opx)-normative liquids resemble oceanic basaltswhereas (ol+ne)-normative liquids resemble olivine nepheliniteand melilite basalt. Low aHlo and high aCo2 conditions may bethose under which kimberlites and related rocks are formed inthe mantle.  相似文献   

18.
We have determined the Fe-Mg fractionation between coexistinggarnet and orthopyroxene at 20–45 kb, 975–1400?C,and the effect of iron on alumina solubility in orthopyroxeneat 25 kb, 1200?C, and 20 kb, 975?C in the FMAS system. The equilibriumcompositions were constrained by experiments with crystallinestarting mixtures of garnet and orthopyroxene of known initialcompositions in graphite capsules. All iron was assumed to beFe2+. A mixture of PbO with about 55 mol per cent PbF2 provedvery effective as a flux. The experimental results do not suggest any significant dependenceof KD on Fe/Mg ratio at T 1000?C. The lnKD vs. l/T data havebeen treated in terms of both linear and non-linear thermodynamicfunctional forms, and combined with the garnet mixing modelof Ganguly & Saxena (1984) to develop geothermometric expressionsrelating temperature to KD and Ca and Mn concentrations in garnet. The effect of Fe is similar to that of Ca and Cr3+ in reducingthe alumina solubility in orthopyroxene in equilibrium withgarnet relative to that in the MAS system. Thus, the directapplication of the alumina solubility data in the MAS systemto natural assemblages could lead to significant overestimationof pressure, probably by about 5 kb for the relatively commongarnetlherzolites with about 25 mol per cent Ca+Fe2+ in garnetand about 1 wt. per cent Al2O3 in orthopyroxene.  相似文献   

19.
The subsolidus phase relationships of magnetite, hercynite,hematite, corundum, wostite, and iron are described. The phaseswere synthesized from chemical mixtures. Reactions and solidsolution between them were induced under controlled conditionsof composition, temperature, total vapor pressure, and partialpressure of oxygen. Reaction rates are slow, so that the experimentslasted from 1 to 40 days, and quenching is completely successful. A solvus was determined which limits solid solution along themagnetitc-hercynite join at temperatures below 860o?15oC. Compositionsof the spinel solid solutions were determined by measuring theshift of the (440) reflection, using a powder X-ray diffractometer.The calibration curve, 20 vs. composition, was made from measurementsof spinel solid solutions synthesized in the one-phase region.The cell edge ao changes from 8–391?0.002 A (magnetic,Fe+2Fe2+2O4OJ to 8.150?0.004 (hercynite, Fe+2Al2O4)by ao?8.391–0.00190x- 0.5X210-5 (X is mol per cent FeAl2O4 in solid solution). In the system Fe-Al2-O3-O there are five univariant assemblages: 1. Hematite-corundum+magnetite +V (vapor) 2. Corundum+magnetite+hercynite+V 3. Magnetite+hercynite+w?stite+V 4. Hercynite+wilstite+iron+V 5. Hercynite+iron+corundum+V The lines were located by determining the composition of themagnetite, hercynite, hematite, and corundum solid solutionsfor each assemblage. The diagrams provide a basis for the discussion of the paragenesisof the oxide minerals. The progressive metamorphism of lateritedeposits can be represented by (1) laterites and bauxites: hematiteH+hydratedaluminum oxides; (2) diasporites: hematite+diaspore+corundum,with magnetite as a rare accessory; (3) emery: corundum+magnetite,with hematite as an accessory. The path of these mineral changeson the diagrams shows the decrease in oxygen content of thesolids with decrease in the partial pressure of oxygen and relatesthe aluminum content of the magnetite to temperature. The occurrences of hercynite are discussed. It is a rare mineralbecause it requires unusual conditions to grow, i.e. relativelylow oxygen pressure and an extremely Fe-Al-rich environment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号