首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Geomorphological mapping in the West Drumochter Hills provides evidence of a readvance of locally nourished glaciers during the Loch Lomond (Younger Dryas) Stade, in the form of an icefield 67.7 km2 in area drained by outlet glaciers. The icefield limits accord broadly with those proposed by Sissons (1980) but all geomorphic, stratigraphic and sedimentological evidence conflicts with a recent proposal that the landforms in the area reflect southwestwards retreat of the last ice sheet. Up‐valley continuity of recessional moraines indicates that the ice remained active and close to climatic equilibrium during the earlier stages of glacier retreat, consistent with slow warming following the coldest part of the stade. The pattern of equilibrium line altitudes (ELAs) across the icefield is consistent with transfer of snow by westerly and southerly winds. The ELA of the reconstructed icefield as a whole is 622–629 m, although this figure is likely to be lower than the regional (climatic) ELA because the icefield probably received additional snow blown from adjacent plateau surfaces and slopes. Inclusion of potential snow‐blow areas in the ELA calculation yields a value of 648–656 m; the climatic ELA is therefore likely to have lain between 622 and 656 m. Mean June to August temperature at the ELA, based on chironomid assemblages at two sites, falls within the range 4.0 ± 0.7°C. Empirical relationships between temperature and precipitation at modern glacier ELAs indicate that mean annual precipitation (MAP) at the ELA was 1977 ± 464 mm, statistically indistinguishable from modern values. Comparison with precipitation values calculated for the Isle of Mull on the west coast suggest that the precipitation gradient across the Central Highlands of Scotland was steeper during the Loch Lomond Stade than at present, probably as the result of efficient scavenging of precipitation from westerly airflows by the West Highland Icefield. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
Geomorphological mapping of northern Arran provides evidence for two advances of locally nourished glaciers, the younger being attributable to the Loch Lomond Stade (LLS) of ca. 12.9–11.5 k yr BP, primarily through the mutually exclusive relationship between glacial limits and Lateglacial periglacial features. The age of the earlier advance is unknown. Inferred LLS glacier cover comprised two small icefields and eight small corrie or valley glaciers and totalled 11.1 km2. ELAs reconstructed using area–altitude balance ratio methods range from 268 m to 631 m for individual glaciers, with an area‐weighted mean ELA of 371 m. ELAs of individual glaciers are strongly related to snow‐contributing areas. The area‐weighted mean ELA is consistent with a north–south decline in LLS ELAs along the west coast of Great Britain. This decline has an average latitudinal gradient of 70 m 100 km?1, equivalent to a mean southwards ablation‐season temperature increase of ca. 0.42°C 100 km?1. Mean June–August temperatures at the regional climatic ELA, estimated from chironomid assemblages in SE Scotland, lay between 5.7 ± 0.1°C and 4.1 ± 0.2°C. Empirical relationships between temperature and precipitation at modern glacier ELAs indicate equivalent mean annual precipitation at the ELA lay between 2002 ± 490 mm and 2615 ± 449 mm. These figures suggest that stadial precipitation on Arran fell within a range between +8% and ?33% of present mean annual precipitation. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
The Late Quaternary glaciation of Tibet has received considerable attention in the last few decades due to its influence on the regional climate, especially the Asian summer monsoon. Recently, however, it has been argued that the Tibetan ice sheet also might have played an important role in initiating global-scale palaeoclimatic changes. Controversy, however, exists on the nature of Late Quaternary ice cover over Tibet due largely to the subjectivity in the interpretation of the sparse and complex geomorphological evidence. We have examined this problem in the light of δ 18O data (a temperature proxy) of ice cores-from the Dunde ice cap on the northern flank of Tibet. Considering only the gross features in the Dunde ice-core isotopic data, we have interpreted a temperature decrease of 4°–6°C and consequent lowering of equilibrium line altitude (ELA) in the range 700–850 m during the last glacial stage (LGS). This could have caused depression of the snow line below the mean altitutde of the Tibetan plateau, resulting in an areally extensive but marginally thick ice cover. However, if one also considers the possibility that precipitation on the Tibetan plateau during LGS may have been significantly lower than at present, the ELA depression would be much less than that estimated by considering the temperature effect alone.  相似文献   

4.
Geomorphological mapping of Mull provides evidence for an icefield 143 km2 in area flanked by six corrie glaciers with a total area of ca. 13 km2. The absence of Lateglacial periglacial features, shorelines and pollen sites from the area occupied by this readvance, together with radiocarbon dating of shell fragments, confirm that it occurred during the Loch Lomond (Younger Dryas) Stade. The thickness of glacigenic deposits within the area of the readvance is attributed to reworking of paraglacial sediments. Up‐valley continuity of recessional moraines indicates that the ice remained active and near to equilibrium during retreat, consistent with slow warming following the coldest part of the stade. Reconstructed equilibrium line altitudes (ELAs) imply vigorous snow‐blowing by westerly winds, and are consistent with a general southwestwards decline in ELAs across the Scottish Highlands. An ELA of 250 m was calculated for the Mull Icefield using an ablation:accumulation balance ratio (ABR) approach. Palaeotemperature and palaeoprecipitation estimates were derived by calculating a theoretical regional ELA from meteorological data and assuming that the combination of temperature and precipitation implied by the theoretical ELA approximates conditions at 250 m on Mull during the Loch Lomond Stade. The result indicates a mean July sea‐level temperature of 5.7 ± 0.5°C and a mean annual precipitation at 250 m of ca. 2700–3800 mm (best estimate 3200 mm), indicating higher precipitation totals than at present owing to more vigorous atmospheric circulation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
Lake sediment, glacier extent and tree rings were used to reconstruct Holocene climate changes from Goat Lake at 550 m asl in the Kenai Mountains, south‐central Alaska. Radiocarbon‐dated sediment cores taken at 55 m water depth show glacial‐lacustrine conditions until about 9500 cal. yr BP, followed by organic‐rich sedimentation with an overall increasing trend in organic matter and biogenic silica content leading up to the Little Ice Age (LIA). Through most of the Holocene, the northern outlet of the Harding Icefield remained below the drainage divide that currently separates it from Goat Lake. A sharp transition from gyttja to inorganic mud about AD 1660 signifies the reappearance of glacier meltwater into Goat Lake during the LIA, marking the maximum Holocene (postglacial) extent. Meltwater continued to discharge into the lake until about AD 1900. A 207 yr tree‐ring series from 25 mountain hemlocks growing in the Goat Lake watershed correlates with other regional tree‐ring series that indicate an average summer temperature reduction of about 1°C during the 19th century compared with the early–mid 20th century. Cirque glaciers around Goat Lake reached their maximum LIA extent in the late 19th century. Assuming that glacier equilibrium‐line altitudes (ELA) are controlled solely by summer temperature, then the cooling of 1°C combined with the local environmental lapse rate would indicate an ELA lowering of 170 m. In contrast, reconstructed ELAs of 12 cirque glaciers near Goat Lake average only 34 ± 18 m lower during the LIA. The restricted ELA lowering can be explained by a reduction in accumulation‐season precipitation caused by a weakening of the Aleutian low‐pressure system during the late LIA. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
Changes in vegetation were tracked from a well-dated sediment core from a boreal lake, Lake 239, at ~200-year resolution over the Holocene. This presently oligotrophic lake is located ~100-km east from the present-day parkland-forest ecotone in northwestern Ontario. Near-shore sediment core transects from Lake 239 have previously shown this lake was at least 8-m lower than present in the mid-Holocene, or ~58% less lake volume in comparison to today. Large shifts were expected in the terrestrial vegetation if the low lake levels were related to climate. The core from Lake 239 shows increases in the relative abundance and concentration of pollen such as Cupressaceae and Ambrosia, indicating a more open boreal forest between ~4500–8000 cal yr BP. Pollen-based inferences of average, summer and winter temperatures suggest that temperatures were on average up to 1–2 °C warmer than today, with winter temperatures up to 4 °C warmer. The pollen inferences also suggest enhanced precipitation, likely in the summer, but with an overall increase in evaporation and evapotranspiration resulting in reduced effective moisture. To assess regional climate changes, pollen-based reconstructions of temperature and precipitation were developed and synthesized from sediment cores from eight previously published lakes, from which pollen sites were available to both the west and east of Lake 239, spanning present-day prairie lakes to forested lakes up to 300 km east of the prairie-boreal ecotone. All sites show shifts in pollen assemblages that indicate a warm mid-Holocene period; prairie sites west of the Experimental Lakes Area (ELA) show mid-Holocene decreases in precipitation relative to today, whereas sites near or east of ELA show consistent increases in precipitation, but with increased temperatures and enhanced evaporation during the mid-Holocene.  相似文献   

7.
A combined geomorphological–physical model approach is used to generate three‐dimensional reconstructions of glaciers in Pacific Far NE Russia during the global Last glacial Maximum (gLGM). The horizontal dimensions of these ice masses are delineated by moraines, their surface elevations are estimated using an iterative flowline model and temporal constraints upon their margins are derived from published age estimates. The equilibrium line altitudes (ELAs) of these ice masses are estimated, and gLGM climate is reconstructed using a simple degree–day melt model. The results indicate that, during the gLGM, ice masses occupying the Pekulney, Kankaren and Sredinny mountains of Pacific Far NE Russia were of valley glacier and ice field type. These glaciers were between 7 and 80 km in length, and were considerably less extensive than during pre‐LGM phases of advance. gLGM ice masses in these regions had ELAs of between 575 ± 22 m and 1035 ± 41 m (above sea level) – corresponding to an ELA depression of 350–740 m, relative to present. Data indicate that, in the Pekulney Mountains, this ELA depression occurred because of a 6.4°C reduction in mean July temperature, and 200 mm a?1 reduction in precipitation, relative to present. Thus reconstructions support a restricted view of gLGM glaciation in Pacific Far NE Russia and indicate that the region's aridity precluded the development of large continental ice sheets. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
Only a few chronological constraints on Lateglacial and Early Holocene glacier variability in the westernmost Alps have hitherto been obtained. In this paper, moraines of two palaeoglaciers in the southern Écrins massif were mapped. The chronology of the stabilization of selected moraines was established through the use of 10Be cosmic ray exposure (CRE) dating. The equilibrium line altitude (ELA) during moraine deposition was reconstructed assuming an accumulation area ratio (AAR) of 0.67. Ten pre‐Little Ice Age (LIA) ice‐marginal positions of the Rougnoux palaeoglacier were identified and seven of these have been dated. The 10Be CRE age of a boulder on the lowermost sampled moraine indicates that the landform may have been first formed during a period of stable glaciers at around 16.2±1.7 ka (kiloyears before AD 2017) or that the sampled boulder experienced pre‐exposure to secondary cosmic radiation. The moraine was re‐occupied or, alternatively, shaped somewhat before 12.2±0.6 ka when the ELA was lowered by 230 m relative to the LIA ELA. At least six periods of stable ice margins occurred thereafter when the ELA was 220–160 m lower than during the LIA. The innermost dated moraine stabilized at or before 10.9±0.7 ka. Three 10Be CRE ages from a moraine of the Prelles palaeoglacier indicate a period of stationary ice margins at or before 10.9±0.6 ka when the ELA was lowered by 160 m with respect to the end of the LIA. The presented 10Be CRE ages are in good agreement with those of moraines that have been attributed to the Egesen stadial. Assuming unchanged precipitation, summer temperature in the southern Écrins massif at ~12 ka must have been at least 2 °C lower relative to the LIA.  相似文献   

9.
Cosmogenic 36Cl was measured in bedrock and moraine boulders in the Za Mnichem Valley (High Tatra Mountains). The post‐LGM deglaciation of the study area occurred about 15.9 ka ago. The northernmost part of the valley slopes was ice‐free around 15 ka ago. The terminal moraine on the valley threshold was finally stabilized 12.5 ka ago during the Younger Dryas cold event (Greenland Stadial 1). At that time, the Za Mnichem glacier was 1.3 km long and had an area of 0.57 km2. The AAR equilibrium line of the glacier was located at 1990 m a.s.l., which corresponds to an ELA depression of ~500 m compared to today. The mean summer temperature was colder by 4°–4.5°C than the present‐day temperature. The mean annual temperature was colder by 6°C than today. Such conditions suggest a decrease of the annual precipitation by ~15–25% compared with the present‐day annual average. These data indicate a probable uniform temperature change across central and western Europe, with the precipitation being the most significant factor affecting the mass balance of mountain glaciers. The spatial distribution of balance data suggests increasing continentality towards the east during the Younger Dryas.  相似文献   

10.
Equilibrium line altitudes (ELAs) of alpine glaciers are sensitive indicators of climate change and have been commonly used to reconstruct paleoclimates at different temporal and spatial scales. However, accurate interpretations of ELA fluctuations rely on a quantitative understanding of the sensitivity of ELAs to changes in climate. We applied a full surface energy- and mass-balance model to quantify ELA sensitivity to temperature and precipitation changes across the range of climate conditions found in the Andes. Model results show that ELA response has a strong spatial variability across the glaciated regions of South America. This spatial variability correlates with the distribution of the present-day mean climate conditions observed along the Andes. We find that ELAs respond linearly to changes in temperature, with the magnitude of the response being prescribed by the local lapse rates. ELA sensitivities to precipitation changes are nearly linear and are inversely correlated with the emissivity of the atmosphere. Temperature sensitivities are greatest in the inner tropics; precipitation becomes more important in the subtropics and northernmost mid-latitudes. These results can be considered an important step towards developing a framework for understanding past episodes of glacial fluctuations and ultimately for predicting glacier response to future climate changes.  相似文献   

11.
Geomorphological evidence for four former local glaciers has been mapped in the Aran and Arenig Mountains, North Wales. Former glacial extent was deduced from the distribution and assemblage of end and lateral moraines, hummocky moraine, boulder limits, drift limits and periglacial trimlines. Comparison of infilled lake sediment stratigraphies inside and outside of the former glacier limits suggests a Loch Lomond Stadial (Late Devensian) age of the former glaciers (c. 12.9–11.5 cal. ka BP ). This finding is also supported by periglacial–landform contrasts between the land inside and outside of the glacier limits. Reconstruction of the four glaciers illustrates a mean equilibrium line altitude (ELA) of c. 504 m. From the reconstructed ELAs and the combination of precipitation and snowblow input for total accumulation, by analogy with Norwegian glaciers, a mean sea‐level July temperature is calculated at 8.4°C. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
《Quaternary Research》1986,26(1):135-152
Biostatistical analysis of modern pollen assemblages in 152 Japanese surface samples shows that Cryptomeria japonica can normally grow in areas with a mean January temperature of approximately −7° to 7°C, a mean August temperature of 19° to 27°C, and an effective precipitation (total precipitation during the growing season) of over 1000 mm. The full-glacial distribution of the species on both the Sea of Japan and the Pacific coasts (35–36°N lat) indicates that in these areas the maximum possible reduction of temperature was 8.7–10.2°C in January and 6.0–7.3°C in August, and that the effective precipitation was low, being 1000–1350 mm, or 40–55% below the modern level, provided that the species has not changed its physiological characteristics. Populations of C. japonica expanded northward and upslope from their full-glacial areas of distribution immediately after late-glacial climatic amelioration. This expansion appears to have been regulated mainly by the availability of effective precipitation which became high in northeastern Honshu about 4000 yr ago. After about 2500 yr B.P., C. japonica was planted extensively by humans in moist, temperate climatic regions (excluding Hokkaido), and now has its widest distribution since at least the last full-glacial interval.  相似文献   

13.
Equilibrium-line-altitude (ELA) reconstructions using the toe-to-headwall-altitude ratio method for paleoglaciers in the Cordilleras Blanca and Oriental, northern Peruvian Andes (7–10°S; 77°20'–77°35'W), indicate that ELAs during the last glacial maximum (LGM; marine isotope stage 2) were c . 4300 m in the Cordillera Blanca, c . 3900–3600 m on the west side of the Cordillera Oriental, and c . 3200 m on the east (Amazon Basin) side of the Cordillera Oriental. Comparison with estimated modern ELAs and glaciation thresholds indicate that ELA depression ranged from c . 700 m in the Cordillera Blanca to c . 1200 m on the east side of the Cordillera Oriental. This augments data from many mountain ranges in middle- and low-latitude regions that indicate that ELAs during the LGM were depressed by c . 1000 m. Published palynological evidence for drier conditions during the LGM in the tropical Andes suggests that ELA depression of this amount involved a temperature reduction (> 5–6°C) that greatly exceeded the tropical sea-surface temperature depression estimates of CLIMAP (< 2°C). The west to east increase in ELA depression during the LGM indicates that the steep modern precipitation gradients may have been even steeper during the LGM.  相似文献   

14.
Kovanen, D. J. & Slaymaker, O. 2005 (May): Fluctuations of the Deming Glacier and theoretical equilibrium line altitudes during the Late Pleistocene and Early Holocene on Mount Baker, Washington, USA. Boreas , Vol. 34, pp. 157–175. Oslo. ISSN 0300–9483.
The Deming Glacier is presently nourished by an ice-cap type accumulation area on Mount Baker (3285 m a.s.l.). The specific meso-scale (>10km) form and isolation of the Mount Baker stratovolcano seem to influence temperature and precipitation gradients (contemporary climate data). These data are used as a reference when calculating paleo-equilibrium-line altitudes (ELAs). Six radiocarbon dates are reported, between 10 680 70 and 10 500 70 14C yr BP (12 903–12 183 cal. yr BP) from detrital logs in drift that were buried during an advance of the Deming Glacier (altitude 3230–1158 m) during possibly the Younger Dryas interval. The calculated range of theoretical ELA depressions (ΔELA) relative to modern is 400–355 m using two different methods. Assuming no change in precipitation, ablation-season temperature would have been 2.5–2.2C cooler, which is consistent with other paleoclimatic reconstructions in this region. Alternatively, assuming that the modern reference climate is appropriate, and based on regressions of modern-day glacial conditions, the predicted mean winter precipitation necessary to support the former Deming Glacier was in the order of 200–150% (mean 175%) or 119–86% (mean 103%). This amount of precipitation could result from reinvigorated moisture transport into the North Cascades and increased seasonality at the end of the last glaciation.  相似文献   

15.
We present interesting application of artificial intelligence for investigating effect of the COVID-19 lockdown on 3-dimensional temperature variation across Nigeria (2°–15° E, 4°–14° N), in equatorial Africa. Artificial neural networks were trained to learn time-series temperature variation patterns using radio occultation measurements of atmospheric temperature from the Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC). Data used for training, validation and testing of the neural networks covered period prior to the lockdown. There was also an investigation into the viability of solar activity indicator (represented by the sunspot number) as an input for the process. The results indicated that including the sunspot number as an input for the training did not improve the network prediction accuracy. The trained network was then used to predict values for the lockdown period. Since the network was trained using pre-lockdown dataset, predictions from the network are regarded as expected temperatures, should there have been no lockdown. By comparing with the actual COSMIC measurements during the lockdown period, effects of the lockdown on atmospheric temperatures were deduced. In overall, the mean altitudinal temperatures rose by about 1.1 °C above expected values during the lockdown. An altitudinal breakdown, at 1 km resolution, reveals that the values were typically below 0.5 °C at most of the altitudes, but exceeded 1 °C at 28 and 29 km altitudes. The temperatures were also observed to drop below expected values at altitudes of 0–2 km, and 17–20 km.  相似文献   

16.
Tasmania is important for understanding Quaternary climatic change because it is one of only three areas that experienced extensive mid‐latitude Southern Hemisphere glaciation and it lies in a dominantly oceanic environment at a great distance from Northern Hemisphere ice sheet feedbacks. We applied exposure dating using 36Cl to an extensive sequence of moraines from the last glacial at Mt. Field, Tasmania. Glaciers advanced at 41–44 ka during Marine oxygen Isotope Stage (MIS) 3 and at 18 ka during MIS 2. Both advances occurred in response to an ELA lowering greater than 1100 m below the present‐day mean summer freezing level, and a possible temperature reduction of 7–8°C. Deglaciation was rapid and complete by ca. 16 ka. The overall story emerging from studies of former Tasmanian glaciers is that the MIS 2 glaciation was of limited extent and that some glaciers were more extensive during earlier parts of the last glacial cycle. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
We present an interdisciplinary study on data and modeling intercomparison, concerning the possible existence of a Tibetan ice sheet and its climatological implications during the ice age. In the ice sheet model the fields of ice flow and temperature are calculated, and a highly parameterized formulation of the yearly snow balance is used, defining the forcing at the surface of the ice sheet. The data set used, supplies the height of the equilibrium line of the glaciers (=ELA) and documents the maximum extension of the glaciated areas. With prescribed snow accumulation above the ELA and melting below, the model is integrated for 10 000 model years and the model glaciation is then compared with the data.The main results are: Provided the height of the glacial equilibrium line has been reconstructed correctly, a Tibetan ice sheet can be bult up within 10 000 model years, using moderate rates of precipitation (maximum snow fall: 100 mm/year). Comparison of data and model glaciation suggests an increase of precipitation from the NW to the E of Tibet and from the S to the NE, which reflects the presently observed pattern of the monsoon circulation.  相似文献   

18.
This study investigates the variability of extreme rainfall (temperature) events in the twenty-first century based on 18 (24)-member multimodel simulations of models participating in phase 5 of the Couple Model Intercomparison Project (CMIP5). The study employed extreme indices defined by the WMO’s Experts Team on Climate Change Detection Indices, under two radiative forcing scenarios: RCP4.5 and RCP8.5. Two 30-year time periods, mid- (2021–2050) and end (2071–2100) of the twenty-first century, are considered for investigation of extremes, relative to the baseline period (1961–1990). Mann–Kendall test statistic and Sen’s slope estimator are used to investigate trend. Temperature shows a remarkable increase with an increase in radiative forcing. A sharp augmentation in temperature is projected towards the end of the twenty-first century. There will be almost zero cool days and cold nights by the end of the century. Very wet and extremely very wet days increase, especially over Uganda and western Kenya. Variation in maximum 1-day precipitation (R × 1 day) and maximum 5-day precipitation amount shows a remarkable increase in variance towards the end of the twenty-first century. Although the results are based on relatively coarse resolution data, they give likely conditions that can be utilized in long-term planning and be relied on in advanced studies.  相似文献   

19.
Northern Folgefonna (c. 23 km2), is a nearly circular maritime ice cap located on the Folgefonna Peninsula in Hardanger, western Norway. By combining the position of marginal moraines with AMS radiocarbon dated glacier‐meltwater induced sediments in proglacial lakes draining northern Folgefonna, a continuous high‐resolution record of variations in glacier size and equilibrium‐line altitudes (ELAs) during the Lateglacial and early Holocene has been obtained. After the termination of the Younger Dryas (c. 11 500 cal. yr BP), a short‐lived (100–150 years) climatically induced glacier readvance termed the ‘Jondal Event 1’ occurred within the ‘Preboreal Oscillation’ (PBO) c. 11 100 cal. yr BP. Bracketed to 10 550–10 450 cal. yr BP, a second glacier readvance is named the ‘Jondal Event 2’. A third readvance occurred about 10 000 cal. yr BP and corresponds with the ‘Erdalen Event 1’ recorded at Jostedalsbreen. An exponential relationship between mean solid winter precipitation and ablation‐season temperature at the ELA of Norwegian glaciers is used to reconstruct former variations in winter precipitation based on the corresponding ELA and an independent proxy for summer temperature. Compared to the present, the Younger Dryas was much colder and drier, the ‘Jondal Event 1’/PBO was colder and somewhat drier, and the ‘Jondal Event 2’ was much wetter. The ‘Erdalen Event 1’ started as rather dry and terminated as somewhat wetter. Variations in glacier magnitude/ELAs and corresponding palaeoclimatic reconstructions at northern Folgefonna suggest that low‐altitude cirque glaciers (lowest altitude of marginal moraines 290 m) in the area existed for the last time during the Younger Dryas. These low‐altitude cirque glaciers of suggested Younger Dryas age do not fit into the previous reconstructions of the Younger Dryas ice sheet in Hardanger. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
李亚鹏  张威  柴乐  唐倩玉  葛润泽  孙波 《冰川冻土》2022,44(4):1165-1174
平衡线高度(equilibrium line altitude,ELA)是冰川响应气候变化的直接反映,分析其变化特征对于了解现在和过去的气候具有重要意义。念青唐古拉山中段作为西南季风通道以及怒江与雅鲁藏布江的分水岭,ELA变化及特征研究可为不同流域冰川变化与气候相互关系提供参考。基于遥感影像及气候数据,结合模型计算的冰川ELA数据作为输入参数,建立多元线性回归方程,重建并分析了1984—2019年间念青唐古拉山中段冰川ELA变化。结果表明:研究时段内平均ELA为5 360 m a.s.l.,总体呈上升趋势,上升速率为1.57 m?a-1。ELA年变化量显示出波动变化特征,波动范围为5 360~5 420 m a.s.l.,上升幅度为60 m。受印度季风、流域位置及冰川朝向等因素影响,各流域ELA变化具有差异性,霞曲流域、易贡藏布流域和麦曲流域多年平均ELA高程分别为5 335 m a.s.l.、4 987 m a.s.l.和5 317 m a.s.l.,平均上升幅度分别为265 m、314 m和335 m,上升速率分别7.57 m?a-1、8.97 m?a-1和9.57 m?a-1。对冰川区多年ELA变化的气候响应分析显示,ELA变化主要受气温控制,随气温变化1 ℃,冰川ELA总体波动幅度为126.02 m。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号