首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The impact of vegetated filter strips (VFS) on sediment removal from runoff has been studied extensively in recent years. Vegetation is believed to increase water infiltration and decrease water turbulence thus enhancing sediment deposition within filter media. In the study reported here, field experiments have been conducted to examine the efficiency of vegetated filter strips for sediment removal from cropland runoff. Twenty filters with varying length, slope and vegetated cover were used under simulated runoff conditions with an average sediment concentration of 2700 mg/L. The filters were 2, 5, 10 and 15 m long with a slope of 2·3 and 5% and three types of vegetation. Three other strips with bare soil were used as a control. The experimental results showed that the average sediment trapping efficiency of all filters was 84% and ranging from 68% in a 2‐m filter to as high as 98% in a 15‐m long filter compared with only 25% for the control. The length of filter has been found to be the predominant factor affecting sediment deposition in VFS up to 10 m. Increasing filter length to 15 m did not improve sediment trapping efficiency under the present experimental conditions. The rate of incoming flow and vegetation cover percentage has a secondary effect on sediment deposition in VFS. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
Validation of a vegetated filter strip model (VFSMOD)   总被引:2,自引:0,他引:2  
Vegetated filter strips (VFS) are designed to reduce sediment load and other pollutants into water bodies. However, adaptation of VFS in the field has been limited owing to lack of data about their efficiency and performance under natural field conditions. A number of models are available that simulate sediment transport and trapping in VFS, but there is a general lack of confidence in VFS models owing to limited validation studies and model limitations that prevent correct application of these models under field conditions. The objective of this study is to test and validate a process‐based model (VFSMOD) that simulates sediment trapping in VFS. This model links three submodels: modified Green–Ampt's infiltration, Quadratic overland flow submodel based on kinematic wave approximation and University of Kentucky sediment filtration model. A total of 20 VFS, 2, 5, 10 and 15 m long and with various vegetation covers, were tested under simulated sediment and runoff conditions. The results of these field experiments were used to validate the VFS model. The model requires 25 input parameters distributed over five input files. All input parameters were either measured or calculated using experimental data. The observed sediment trapping efficiencies varied from 65% in the 2‐m long VFS to 92% in the 10‐m long filters. No increase in sediment removal efficiency was observed at higher VFS length. Application of the VFS model to experimental data was satisfactory under the condition that actual flow widths are used in the model instead of the total filter width. Predicted and observed sediment trapping efficiencies and infiltration volume fitted very well, with a coefficient of determination (R2) of 0·9 and 0·95, respectively. Regression analyses revealed that the slope and intercept of the regression lines between predicted versus observed infiltration volume and trapping efficiency were not significantly different than the line of perfect agreement with a slope of 1·0 and intercept of 0·0. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
The slope effects on sediment trapping process in vegetative filter strips (VFS) are usually neglected in current modelling practices for VFS operation, which hamper the VFS design and performance evaluation, especially on steep slopes. To fill the knowledge gap, 12 laboratory experiments of sediment trapping in VFS were conducted with three different inflow discharge (80, 100, and 120 ml s−1) and four slope angles (5,10, 15, and 20°). The experimental results show that, on steep slopes (10, 15, and 20°), a part of trapped sediment particles in VFS can be eroded again and then dragged to the downstream as bed load, whilst they do not move on gentle slope (5°). To describe the complex processes, a simple and effective modelling framework was developed for sloped VFS by coupling the slope infiltration, runoff, and modified sediment transport model. The model was tested against the experimental results and good agreements between the modelled and observed results were found in both runoff and sediment transport processes for all cases. On steep slopes, the sediment trapping performance of VFS decreases significantly because the erosion of deposited sediment particles can account for more than 60% of the sediment load in the outflow. The slope effect on sediment trapping efficiency of VFS varies greatly with soil, VFS, and slope properties. The model was compared with previous sediment transport equation and found that both methods can satisfactorily predict the sediment trapping of VFS on gentle slopes, but previous sediment transport equation is likely to overestimate the sediment trapping efficiency in VFS on steep slopes. This model is expected to provide a more realistic and accurate method for predicting runoff and sediment reduction in VFS on sloping surfaces.  相似文献   

4.
Particle selectivity plays an important role in clarifying sediment transport processes in vegetative filter strips (VFS). 10-m long grass strips at slopes of 5° and 15° were subjected to a series of sediment-laden inflows experiments with different particle sizes to investigate the sediment transport and its response to overland flow hydraulics. The inflow sediments came from local soil, river-bed sand, and mixed, with median particle size d50 of 39.9, 207.9 and 77.4 μm, respectively. Three independent repeated experiments were carried for each treatment. The results show that when the sediment trapping lasted for a certain length of time, the re-entrainment of some small-sized particles was greater than the deposition; that is, net loss occurred, which was not erosion of the original soil. Net loss of particles is mainly determined by the particle diameter. The coarser the inflow sediment particles and/or the steeper the slope, the coarser the particles can be net lost. Deposited sediment causes the VFS bed surface to become smooth and hydraulic resistance decrease exponentially. Unit stream power P is more suitable than shear stress τ of overland flow to be used to describe the process of sediment particle transport in VFS. The relationship between P and d50 of outflow sediment is very consistent with the form of power function with a constant term. These results are helpful to understand the physical process of sediment transport on vegetation hillslopes.  相似文献   

5.
Vegetative filter strips (VFSs) can effectively trap sediment in overland flow, but little information is available on its performance in controlling high‐concentration sediment and the runoff hydraulics in VFS. Flume experiments were conducted to investigate the sediment deposition, hydraulics of overland flow and their relationships in simulating VFS under a great range of sediment concentrations with four levels of vegetation cover (bare slope and 4%, 11% and 17%) and two flow rates (15 and 30 L min?1). Sediment concentrations varied from 30 to 400 kg m?3 and slope gradient was 9°. Both the deposited sediment load and deposition efficiency in VFS increased as the vegetation cover increased. Sediment concentration had a positive effect on the deposited load but no effect on deposition efficiency. A lower flow rate corresponded to greater deposition efficiency but had little effect on deposited load. Flow velocities decreased as vegetation cover increased. Sediment concentration had a negative effect on the mean velocity but no effect on surface velocity. Hydraulic resistance increased as the vegetation cover and sediment concentration increased. Sediment deposition efficiency had a much more pronounced relationship with overland flow hydraulics compared with deposited load, especially with the mean flow velocity, and there was a power relationship between them. Flow regime also affected the sediment deposition efficiency, and the efficiency was much higher under subcritical than supercritical flow. The results will be useful for the design of VFS and the control of sediment flowing into rivers in areas with serious soil erosion. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Vegetative filter strips (VFSs) are a commonly used conservation measure to remove pollutants from agricultural runoff. The effectiveness of VFSs has been widely studied at the plot scale, yet researchers generally agree that field scale implementations are far less effective. The purpose of this research was to develop a field scale VFS submodel for the Soil and Water Assessment Tool (SWAT). A model for the retention of sediments and nutrients in VFSs was developed from experimental observations derived from 22 publications. A runoff retention model was developed from Vegetative Filter Strip MODel (VFSMOD) simulations. This model was adapted to operate at the field scale by considering the effects of flow concentration generally absent from plot scale experiments. Flow concentration through 10 hypothetical VFSs was evaluated using high resolution (2 m) topographical data and multipath flow accumulation. Significant flow concentration was predicted at all sites, on average 10% of the VFS received half of the field runoff. As implemented in SWAT, the VFS model contains two sections, a large section receiving relatively modest flow densities and a smaller section treating more concentrated flow. This field scale model was incorporated into SWAT and verified for proper function. This model enhances the ability of SWAT to evaluate the effectiveness of VFSs at the watershed scale. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

7.
Vegetated filter strips (VFSs) are a best management practice (BMP) commonly implemented adjacent to row-cropped fields to trap overland transport of sediment and other constituents present in agricultural runoff. Although they have been widely adopted, insufficient data exist to understand their short and long-term effectiveness. High inter-event variability in performance has been observed, yet the majority of studies report average removal efficiencies over observed or simulated events, ignoring the disproportional effects of loads into and out of VFSs over longer periods of time. We argue that due to positively correlated sediment concentration-discharge relationships, disproportional contribution of runoff events transporting sediment over the course of a year (i.e., temporal inequality), decreased performance with increasing flow rates, and effects of antecedent moisture condition, VFS removal efficiencies over annual time scales may be significantly lower than reported per-event averages. By applying a stochastic approach, we investigated the extent of disparity between reporting average efficiencies from each runoff event over the course of 1 year versus the total annual load reduction. Additionally, we examined the effects of soil texture, concentration-discharge relationship, and VFS slope in contributing to this disparity, with the goal of revealing potential errors that may be incurred by ignoring the effects of temporal inequality in quantifying VFS performance. Simulation results suggest that ignoring temporal inequality can lead to overestimation of annual performance by as little as < 2% and to as much as > 20%, with the greatest disparities observed for soils with high clay content.  相似文献   

8.
There is little information on the performance of vegetative filter strips (VFS) in filtering high‐concentration sediment from subcritical overland flow. Flume experiments on simulated grass strips were conducted using combinations of three slope gradients (3°, 9° and 15°), five 1‐m‐wide slope positions (from upslope to downslope), two flow rates (60 and 20 L min‐1 m‐1) and sediment concentrations of 100–300 kg m‐3 under simulated rainfall and non‐rainfall conditions. The results showed that sediment deposition efficiency increased with VFS width as a power function. Rainfall significantly reduced sediment deposited within VFS. Higher sediment concentration corresponded to a larger sediment deposition load but reduced deposition efficiency. Flow rate had a negative effect on deposition efficiency but no effect on deposition load. Sediments were more easily deposited at the upper slope position than downslope, and the upper slope position had a higher percentage of coarse sediments. The deposited sediment had significantly greater median diameters (D50) than the inflow sediment. A greater proportion of coarse sediments larger than 25 µm in diameter were deposited, and particles smaller than 1 µm and of 10–25 µm had a better deposition performance than particles of 1–10 µm. Rainfall reduced the deposited sediment D50 at a slope gradient of 3° and had no significant influence on it at 9° or 15°. A higher sediment concentration led to a smaller D50 of the deposited sediment. Rainfall had no significant effect on overland flow velocity. Both the deposited sediment load and D50 decreased with increasing flow velocity, and flow velocity was the most sensitive factor impacting sediment deposition. The results from this study should be useful to control sediment flowing into rivers in areas with serious soil erosion. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
10.
The effects of slope, cover and surface roughness on rainfall runoff, infiltration and erosion were determined at two sites on a hillside vineyard in Napa County, California, using a portable rainfall simulator. Rainfall simulation experiments were carried out at two sites, with five replications of three slope treatments (5%, 10% and 15%) in a randomized block design at each site (0%bsol;64 m2 plots). Prior to initiation of the rainfall simulations, detailed assessments, not considered in previous vineyard studies, of soil slope, cover and surface roughness were conducted. Significant correlations (at the 95% confidence level) between the physical characteristics of slope, cover and surface roughness, with total infiltration, runoff, sediment discharge and average sediment concentration were obtained. The extent of soil cracking, a physical characteristic not directly measured, also affected analysis of the rainfall–runoff–erosion process. Average cumulative runoff and cumulative sediment discharge from site A was 87% and 242% greater, respectively, than at site B. This difference was linked to the greater cover, extent of soil cracking and bulk density at site B than at site A. The extent of soil cover was the dominant factor limiting soil loss when soil cracking was not present. Field slopes within the range of 4–16%, although a statistically significant factor affecting soil losses, had only a minor impact on the amount of soil loss. The Horton infiltration equation fit field data better than the modified Philip's equation. Owing to the variability in the ‘treatment’ parameters affecting the rainfall–runoff–erosion process, use of ANOVA methods were found to be inappropriate; multiple‐factor regression analysis was more useful for identifying significant parameters. Overall, we obtained similar values for soil erosion parameters as those obtained from vineyard erosion studies in Europe. In addition, it appears that results from the small plot studies may be adequately scaled up one to two orders of magnitude in terms of land areas considered. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
A critical review of sedimentation trap technique   总被引:31,自引:0,他引:31  
The published literature on the use of sediment traps has been reviewed and used to validate the conclusions of a theoretical analysis of the physical factors affecting the trapping of particles. Both practical and theoretical considerations lead us to recommed that the ‘best’ sediment trap for use in limnology is a simple cylinder with a diameter of from 5 to 20 cm and aspect ratio (ratio of length to diameter) of greater than 5 for small lakes and greater than 10 for more turbulent water bodies. We also demonstrate the need to know the approximate particle Reynolds number of particles being collected by sediment traps. A number of considerations lead us to advise against the use of collars, lattices, baffles, lids or refeence chambers. Recommendations are made on minimizing the unresolved problem of mineralization of organic material and on optimum length of exposure times, mooring systems, trap holding frames and sample handling.  相似文献   

12.
Surface roughness and slope gradient are two important factors influencing soil erosion. The objective of this study was to investigate the interaction of surface roughness and slope gradient in controlling soil loss from sloping farmland due to water erosion on the Loess Plateau, China. Following the surface features of sloping farmland in the plateau region, we manually prepared rough surfaces using four tillage practices (contour drilling, artificial digging, manual hoeing, and contour plowing), with a smooth surface as the control measure. Five slope gradients (3°, 5°, 10°, 15°, and 20°) and two rainfall intensities (60 and 90 mm/hr) were considered in the artificial rainfall simulation experiment. The results showed that the runoff volume and sediment yield increased with increasing slope gradient under the same tillage treatment. At gentle slope gradients (e.g., 3° and 5°), the increase in surface roughness prevented the runoff and sediment production, that is, the surface roughness reduced the positive effect of slope gradient on the runoff volume and sediment yield to a certain extent. At steep slope gradients, however, the enhancing effect of slope gradient on soil erosion gradually increased and surpassed the reduction effect of surface roughness. This study reveals the existence of a critical slope gradient that influences the interaction of surface roughness and slope gradient in controlling soil erosion on sloping farmland. If the slope gradient is equal to or less than the critical value, an increase in surface roughness would decrease soil erosion. Otherwise, the increase in surface roughness would be ineffective for preventing soil erosion. The critical slope gradient would be smaller under higher rainfall intensity. These findings are helpful for us to understand the process of soil erosion and relevant for supporting soil and water conservation in the Loess Plateau region of China.  相似文献   

13.
Restoring belts of perennial vegetation in landscapes is widely recognized as a measure of improving landscape function. While there have been many studies of the transport of pollutants through grass filter strips, few have addressed sediment related processes through restored tree belts. In order to identify these processes and quantify their relative contribution to sediment trapping, a series of rainfall simulations was conducted on a 600 m2 hillslope comprising a pasture upslope of a 15 year old tree belt. Although the simulated events were extreme (average recurrence intervals ~10 and 50 yr), the trapping efficiency of the tree belt was very high: at least 94% of the total mass of sediments was captured. All the size fractions were trapped with a minimum Sediment Trapping Ratio (STR) of 91% for the medium‐sized fragments. Fractions < 1·3 µm and > 182 µm were totally captured (STR = 100%). Through the joint analysis of sediment budgets and soil surface conditions, we identified different trapping processes. The main trapping process is the sedimentation (at least 62% of trapped sediment mass) with deposits in the backwater and as micro‐terraces within the tree belt. Modelling results show that the coarsest size fractions above 75 µm are preferentially deposited. Joint infiltration of water and sediments has also been noticed, however, this process alone cannot explain the selective trapping of the finest fractions. We suggest that the finest fractions transported by the overland flow may be trapped by adsorption on the abundant litter present within the tree belt. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
A new approach has been developed for the design of cross-equalization filters by the least-squares method. The filters estimated by this new exact method are subject to only two types of error: bias and random error. Cross-equalization filters estimated by a more conventional least-squares method are further subject to “transient error”. This type of error becomes important when designing filters from a data gate of a length comparable with the length of the filter, i.e., less than four times the length of the filter. The effect of altering various design parameters has been investigated for the new method. It has been found that the proportion of bias in the filter decreases as the effective filter length increases, whereas the random error in the filter decreases with increase in either the signal-to-noise ratio of the data or the ratio of the data duration to the filter length. The level of whitening applied to the auto-correlation matrix before inversion was not found to be a critical design parameter. Also, two techniques have been tested for reducing any anomalous d.c. component in the calculated filter.  相似文献   

15.
Short filters for calculating Hankel-transformations, with special attention to the d.c.-sounding problem, have been published in recent years. These filters, with a typical length of less than 25 coefficients, have made it possible to implement, e.g., VES-interpretation programs on microcomputers and 3-D electric and electromagnetic modeling programs on minicomputers. Initially the performance of the short filters was rather poor, but with the introduction of short optimized filters there has been a considerable improvement in the accuracy. An optimization procedure is applied to design a 20-point filter for the Fourier sine-transformation. This filter may be useful in electromagnetic prospecting theory, e.g., in the calculation of the electric and magnetic field from a line source.  相似文献   

16.
Numerical simulation experiments of water erosion at the local scale (20 × 5 m) using a process‐based model [Plot Soil Erosion Model_2D (PSEM_2D)] were carried out to test the effects of various environmental factors (soil type, meteorological forcing and slope gradient) on the runoff and erosion response and to determine the dominant processes that control the sediment yield at various slope lengths. The selected environmental factors corresponded to conditions for which the model had been fully tested beforehand. The use of a Green and Ampt model for infiltration explained the dominant role played by rainfall intensity in the runoff response. Sediment yield at the outlet of the simulated area was correlated positively with rainfall intensity and slope gradient, but was less sensitive to soil type. The relationship between sediment yield (soil loss per unit area) and slope length was greatly influenced by all environmental factors, but there was a general tendency towards higher sediment yield when the slope was longer. Contribution of rainfall erosion to gross erosion was dominant for all surfaces with slope lengths ranging from 4 to 20 m. The highest sediment yields corresponded to cases where flow erosion was activated. An increase in slope gradient resulted in flow detachment starting upstream. Sediment exported at the outlet of the simulated area came predominantly from the zone located near the outlet. The microrelief helped in the development of a rill network that controlled both the ratio between rainfall and flow erosion and the relationship between sediment yield and slope length. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
18.
Little information is available concerning the performance of grass strips for erosion control from steep cropland. An experiment was conducted on 5‐m‐long grass strips with slopes of 3°~15° that were subjected to silt laden runoff and simulated rainfall, to investigate the sediment trapping processes. The grass strips had three treatments including intact grass control (C), no litter (dead grass material covering the soil surface was removed) (NL), and no litter or leaves (only 2~3 cm grass stems and roots were reserved) (NLL). Generally the grass strips had a high effectiveness in trapping sediment from steep cropland runoff. Sediment trapping efficiency (STE) decreased with increasing slope gradient, and even for a 15° slope, STE was still more than 40%. Most sediment deposited in the backwater region before each grass strips. The removal of grass litter or/and leaves had no significant influence on STE. The sediment median size (D50) in inflow was greater than that in outflow, and the difference (ΔD50) decreased with increasing slope. A positive power relationship between STE and ΔD50 can be obtained. Grass strips were more effective in trapping sediments coarser than 10 or 25 µm, but sediments finer than 1 µm were more readily removed from runoff than particles in the range of 2 to approximately 10 µm. Grass litter had less influence on flow velocity than leaves because the deposited sediment partially covered the litter layer. Mean flow velocity and its standard deviation were negatively correlated with STE, and they can help make good estimation of STE. Results from this study should be useful in planting and managing forage grass to effectively conserve soil loss by runoff from steep slopes on the Loess Plateau of China. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
The bed of estuaries is often characterized by ripples and dunes of varying size. Whereas smaller bedforms adapt their morphological shape to the oscillating tidal currents, large compound dunes (here: asymmetric tidal dunes) remain stable for periods longer than a tidal cycle. Bedforms constitute a form roughness, that is, hydraulic flow resistance, which has a large-scale effect on tidal asymmetry and, hence, on hydrodynamics, sediment transport, and morphodynamics of estuaries and coastal seas. Flow separation behind the dune crest and recirculation on the steep downstream side result in turbulence and energy loss. Since the energy dissipation can be related to the dune lee slope angle, asymmetric dune shapes induce variable flow resistance during ebb and flood phases. Here, a noncalibrated numerical model has been applied to analyze the large-scale effect of symmetric and asymmetric dune shapes on estuarine tidal asymmetry evaluated by residual bed load sediment transport at the Weser estuary, Germany. Scenario simulations were performed with parameterized bed roughness of symmetric and asymmetric dune shapes and without dune roughness. The spatiotemporal interaction of distinct dune shapes with the main drivers of estuarine sediment and morphodynamics, that is, river discharge and tidal energy, is shown to be complex but substantial. The contrasting effects of flood- and ebb-oriented asymmetric dunes on residual bed load transport rates and directions are estimated to be of a similar importance as the controls of seasonal changes of discharge on these net sediment fluxes at the Lower Weser estuary. This corroborates the need to consider dune-induced directional bed roughness in numerical models of estuarine and tidal environments.  相似文献   

20.
The spatially distributed soil erosion and sediment delivery model WATEM/SEDEM was used to simulate the impact of riparian vegetated filter strips (RVFSs) on river sediment delivery at different spatial scales. For a field plot with a straight slope, sediment reduction by the RVFSs is comparable to results obtained through experimental set‐ups elsewhere (i.e. >70%). However, at the scale of an entire catchment, sediment reduction is much less (i.e. ±20%) due to (1) overland flow convergence, which reduces the sediment trapping efficiency of an RVFS, and (2) because part of the sediment bypasses the RVFSs through ditches, sewers and road surfaces. These results suggest that, at the catchment scale, RVFSs should be accompanied with other conservation techniques that are more appropriate for reducing river sediment loads, and that also reduce on‐site soil erosion. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号