首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since earthquake ground motions are very uncertain even with the present knowledge, it is desirable to develop a robust structural design method taking into account these uncertainties. Critical excitation approaches are promising and a new non‐stationary random critical excitation method is proposed. In contrast to the conventional critical excitation methods, a stochastic response index is treated as the objective function to be maximized. The power (area of power spectral density (PSD) function) and the intensity (magnitude of PSD function) are fixed and the critical excitation is found under these restrictions. It is shown that the original idea for stationary random inputs can be utilized effectively in the procedure for finding a critical excitation for non‐stationary random inputs. The key for finding the new non‐stationary random critical excitation is the exchange of the order of the double maximization procedures with respect to time and to the power spectral density function. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
Studies of structural responses and damage to high-frequency blast motion are very limited. Current practice uses some empirical allowable ground vibration limits in assessing structural performance. These empirical limits overlook the physical parameters that govern structural response and damage, such as the ground motion characteristics and inherent structural properties. This paper studies the response of RC frame structures to numerically simulated underground blast-induced ground motions. The structural response and damage characteristics of frame structures to ground motions of different frequencies are investigated first. The effects of blast ground motion spatial variations and soil–structure interaction on structural responses are also studied. A suitable discrete model that gives accurate response prediction is determined. A damage index defined based on the accumulated plastic hinge rotation is used to predict structural damage level. Numerical results indicated that both the low structural vibration modes (global modes) and the first elemental vibration mode (local) might govern the dynamic structural responses depending on the ground motion frequency and structural response parameters under consideration. Both ground motion spatial variations and soil–structure interaction effects are prominent. Neglecting them might yield inaccurate structural response prediction. The overall structural response and damage are highly ground motion frequency dependent. Numerical results of structural damage are also compared with some test results obtained in a previous study and with code specifications. Discussions on the adequacy of the code allowable ground vibration limits on RC frame structures are also made.  相似文献   

3.
The methodology for dealing with spatial variability of ground motion, site effects and soil–structure interaction phenomena in the context of inelastic dynamic analysis of bridge structures, and the associated analytical tools established and validated in a companion paper are used herein for a detailed parametric analysis, aiming to evaluate the importance of the above effects in seismic design. For a total of 20 bridge structures differing in terms of structural type (fundamental period, symmetry, regularity, abutment conditions, pier‐to‐deck connections), dimensions (span and overall length), and ground motion characteristics (earthquake frequency content and direction of excitation), the dynamic response corresponding to nine levels of increasing analysis complexity was calculated and compared with the ‘standard’ case of a fixed base, uniformly excited, elastic structure for which site effects were totally ignored. It is concluded that the dynamic response of RC bridges is indeed strongly affected by the coupling of the above phenomena that may adversely affect displacements and/or action effects under certain circumstances. Evidence is also presented that some bridge types are relatively more sensitive to the above phenomena, hence a more refined analysis approach should be considered in their case. Copyright @ 2003 John Wiley & Sons, Ltd.  相似文献   

4.
A stochastic approach has been formulated for the linear analysis of suspension bridges subjected to earthquake excitations. The transfer functions of various responses have been formulated while including the effects of dynamic Soil–Structure Interaction (SSI) via the use of the fixed-base modes of the structure. The excitation has been characterized by the ‘equivalent stationary’ processes corresponding to the free-field motions at each support and by an assumed coherency function between these motions. The proposed formulation considers the non-stationarity in the structural response due to sudden application of excitation by considering (i) the time-dependent frequency response functions, and (ii) the order statistics formulation for the peak factors in evolutionary response processes. The formulation has been illustrated by analysing the seismic response of the Golden Gate Bridge at San Francisco for two example excitations conforming to USNRC-specified design spectra. The significance of various governing parameters on the dynamic soil–structure interaction effects on the seismic response of suspension bridges has also been studied. It has been found that the contribution of the vertical component of ground motion to the bridge response increases with increasing soil compliance. Also, the extent to which the spatial variation of ground motion affects the bridge response depends on how significant the SSI effects are. Copyright © 1999 John Wiley & Sons Ltd.  相似文献   

5.
Results from experimental and numerical studies of earthquake‐excited small‐scale primary–secondary structures are presented. The primary structure considered is a plane three‐storey shear frame with a fundamental frequency of 5.5 Hz. The columns of the first floor are built with soft aluminium and they are stressed beyond its linear range of behaviour. After each test the elastic–plastic columns are replaced by a new set of undeformed virgin aluminium bars. The elastic–plastic shear frame is tested with and without an attached secondary structure. The secondary structure is modelled as an elastic SDOF oscillator, and its natural frequency is tuned to the fundamental frequency of the shear frame. Alternatively, the oscillator is mounted on the horizontal beam of the second and third floor. The base excitation of the structural model is characterized by a broad band random process with constant spectral density in a frequency range between 3 and 30 Hz. In the numerical study, the digital recorded acceleration of the base excites the mechanical model of the investigated structures. Numerical outcomes assuming fictitious unlimited elastic material behaviour of the shear frame are set in contrast to results from experiments and computational simulations where the measured non‐linear force displacement relation of the elastic–plastic floor is approximated by a piecewise linear curve. The effect of elastic–plastic materials on the dynamic interaction between primary and secondary structure is shown and the difference to unlimited elastic material behaviour is worked out in detail. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
Complex seismic behaviour of soil–foundation–structure (SFS) systems together with uncertainties in system parameters and variability in earthquake ground motions result in a significant debate over the effects of soil–foundation–structure interaction (SFSI) on structural response. The aim of this study is to evaluate the influence of foundation flexibility on the structural seismic response by considering the variability in the system and uncertainties in the ground motion characteristics through comprehensive numerical simulations. An established rheological soil‐shallow foundation–structure model with equivalent linear soil behaviour and nonlinear behaviour of the superstructure has been used. A large number of models incorporating wide range of soil, foundation and structural parameters were generated using a robust Monte‐Carlo simulation. In total, 4.08 million time‐history analyses were performed over the adopted models using an ensemble of 40 earthquake ground motions as seismic input. The results of the analyses are used to rigorously quantify the effects of foundation flexibility on the structural distortion and total displacement of the superstructure through comparisons between the responses of SFS models and corresponding fixed‐base (FB) models. The effects of predominant period of the FB system, linear vs nonlinear modelling of the superstructure, type of nonlinear model used and key system parameters are quantified in terms of different probability levels for SFSI effects to cause an increase in the structural response and the level of amplification of the response in such cases. The results clearly illustrate the risk of underestimating the structural response associated with simplified approaches in which SFSI and nonlinear effects are ignored. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Recently, several new optimum loading patterns have been proposed by researchers for fixed‐base systems while their adequacy for soil–structure systems has not been evaluated yet. Through intensive dynamic analyses of multistory shear‐building models with soil–structure interaction subjected to a group of 21 artificial earthquakes adjusted to soft soil design spectrum, the adequacy of these optimum patterns is investigated. It is concluded that using these patterns the structures generally achieve near optimum performance in some range of periods. However, their efficiency reduces as soil flexibility increases especially when soil–structure interaction effects are significant. In the present paper, using the uniform distribution of damage over the height of structures, as the criterion, an optimization algorithm for seismic design of elastic soil–structure systems is developed. The effects of fundamental period, number of stories, earthquake excitation, soil flexibility, building aspect ratio, damping ratio and damping model on optimum distribution pattern are investigated. On the basis of 30,240 optimum load patterns derived from numerical simulations and nonlinear statistical regression analyses, a new lateral load pattern for elastic soil–structure systems is proposed. It is a function of the fundamental period of the structure, soil flexibility and structural slenderness ratio. It is shown that the seismic performance of such a structure is superior to those designed by code‐compliant or recently proposed patterns by researchers for fixed‐base structures. Using the proposed load pattern in this study, the designed structures experience up to 40% less structural weight as compared with the code‐compliant or optimum patterns developed based on fixed‐base structures. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, a method for designing supplemental brace–damper systems in single‐degree‐of‐freedom (SDOF) structures is presented. We include the effects of the supporting brace stiffness in the dynamic response by using a viscoelastic Maxwell model. On the basis of the study of an SDOF under ground excitation, we propose a noniterative design procedure for simultaneously specifying both the damper and the brace while assuring a desired structural performance. It is shown that to increase the damper size beyond the value delivered by the proposed criteria will not provide any improvement but actually worsen the structural response. The design method presented here shows excellent agreement with the FEMA 273 design approach but offers solutions closer to optimality. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
This paper deals with the determination of critical earthquake load models for linear structures subjected to single‐point seismic inputs. The primary objective of this study is to examine the realism in critical excitations and critical responses vis a vis the framework adopted for the study and constraints that these excitations are taken to satisfy. Two alternative approaches are investigated. In the first approach, the critical earthquake is expressed in terms of a Fourier series that is modulated by an enveloping function that imparts transient nature to the inputs. The Fourier coefficients are taken to be deterministic and are constrained to satisfy specified upper and lower bounds. Estimates on these bounds, for a given site, are obtained by analysing past earthquake records from the same site or similar sites. The unknown Fourier coefficients are determined such that the response of a given structure is maximized subjected to these bounds and additional constraints on intensity, peak ground acceleration, peak ground velocity and peak ground displacement. In the second approach, the critical earthquake is modelled as a partially specified non‐stationary Gaussian random process which is defined in terms of a stationary random process of unknown power spectral density (psd) function modulated by a deterministic envelope function. The input is constrained to possess specified variance and average zero crossing rate. Additionally, a new constraint in terms of entropy rate representing the expected level of disorder in the excitation is also imposed. The unknown psd function of the stationary part of the input is determined so that the response of a given structure is maximized. The optimization problem in both these approaches is solved by using sequential quadratic programming method. The procedures developed are illustrated by considering the seismic response of a tall chimney and an earth dam. It is concluded that the imposition of lower and upper bounds on Fourier coefficients in the first approach and constraints on amount of disorder in the second approach are crucial in arriving at realistic critical excitations. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
A continuum model for the interaction analysis of a fully coupled soil–pile–structure system under seismic excitation is presented in this paper. Only horizontal shaking induced by harmonic SH waves is considered so that the soil–pile–structure system is under anti‐plane deformation. The soil mass, pile and superstructure were all considered as elastic with hysteretic damping, while geometrically both pile and structures were simplified as a beam model. Buildings of various heights in Hong Kong designed to resist wind load were analysed using the present model. It was discovered that the acceleration of the piled‐structures at ground level can, in general, be larger than that of a free‐field shaking of the soil site, depending on the excitation frequency. For typical piled‐structures in Hong Kong, the amplification factor of shaking at the ground level does not show simple trends with the number of storeys of the superstructure, the thickness and the stiffness of soil, and the stiffness of the superstructure if number of storeys is fixed. The effect of pile stiffness on the amplification factor of shaking is, however, insignificant. Thus, simply increasing the pile size or the superstructure stiffness does not necessarily improve the seismic resistance of the soil–pile–structure system; on the contrary, it may lead to excessive amplification of shaking for the whole system. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
An attempt has been made to explore the general trends in the seismic response of plan‐asymmetric structures without any restrictions imposed by a particular code. Systems with structural elements in both orthogonal directions under bi‐directional excitation were studied. Idealized single‐storey models with bi‐axial eccentricity were employed. The systems were torsionally stiff and, in the majority of cases, mass‐eccentric. The main findings are: in general, inelastic torsional response is qualitatively similar to elastic torsional response. Quantitatively, the torsional effect on the flexible side, expressed as an increase of displacements due to torsion, decreases slightly with increasing plastic deformation, unless the plastic deformations are small. The response on the stiff side generally strongly depends on the effect of several modes of vibration and on the influence of the ground motion in the transverse direction. These influences depend on the structural and ground motion characteristics in both directions. Reduction of displacements due to torsion, typical for elastic torsionally stiff structures, usually decreases with increasing plastic deformations. As an additional effect of large plastic deformations, a flattening of the displacement envelopes in the horizontal plane usually occurs, indicating that torsional effects in the inelastic range are generally smaller than in the elastic range. The dispersion of the results of inelastic torsional response analysis is generally larger than that of elastic analysis. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
A simple structure under earthquake excitation is modeled as a single‐degree‐of‐freedom system with nonlinear stiffness subject to modulated Kanai–Tajimi excitation. The nonstationary responses including the nonstationary probability densities of the system responses and the statistical moments are obtained in semi‐analytical form. By applying the stochastic averaging method based on the generalized harmonic functions, the averaged Fokker–Planck–Kolmogorov(FPK) equation governing the nonstationary probability density of the amplitude is derived. Then, the solution of the FPK equation is approximately expressed by a series expansion in terms of a set of properly selected basis functions with time‐dependent coefficients. According to the Galerkin method, the time‐dependent coefficients are solved from a set of linear first‐order differential equations. Thus, the nonstationary probability densities of the amplitude and the state responses as well as the statistic moments of the amplitude are obtained. Finally, two types of the modulating functions, i.e. constant function and exponential function, are considered to give some semi‐analytical formulae. The proposed procedures are checked against the Monte Carlo simulation. The effects of the structure natural frequency and the intensity of the excitation as well as the ground stiffness on the system responses are discussed. It should be pointed out that the proposed method is good for broadband excitation and light damping. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
利用小波多分辨率分析将地震动加速度分解为多频段小波分量,并运用复模态方法推导其计算层间隔震体系在地震作用下的动力响应公式,讨论各频段地震信号及结构响应的能量分配。同时利用小波时频工具分析地震动能量在时频域内的分布对层间隔震结构响应的影响,进而为考察地震动非平稳性对层间隔震结构非线性分析的影响提供方法。利用小波分析的以上优势,对一典型层间隔震结构分别进行弹性和弹塑性分析,结果表明弹性体系在地震作用下的响应可由该地震波各小波分量的响应叠加而得,地震动能量在时间上的集中会对层间隔震结构响应产生不利影响。  相似文献   

14.
The use of uniform hazard spectra which have the same probability of exceedance at different frequencies has been proposed for the future version of the National Building Code of Canada. Commonly used combination rules to estimate the peak responses of multi‐degree‐of‐freedom (MDOF) systems are the square root of sum of squares rule and the complete quadratic combination rule. However, the probability that the peak response of a MDOF system exceeds the one estimated by using these rules with the peak modal responses from the uniform hazard spectra cannot be inferred directly. The assessment of the probability of exceedance of the peak response of MDOF systems is presented by considering that the uncertainty in seismic excitation due to all potential earthquakes can be lumped in the power spectral density function of the ground acceleration with uncertain model parameters. This probability is evaluated based on the random vibration of linear systems and the first‐order reliability method. It is found that the under‐ or over‐estimations are less than about 5 or 10% if the modal contributions are not within 10–90% of, or not within 20–80% of, the absolute sum of the effective modal peak responses, respectively. Otherwise, severe under‐ or over‐estimation could result. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
The pseudo excitation method(PEM) has been improved into a more practical form,on which the analytic formulae of seismic response power spectral density(PSD) of simplified large-span structural models have been derived.The analytic formulae and numerical computing results of seismic response PSD have been derived to study the mechanism of multi-support excitation effects,such as the wave-passage effect and incoherence effect,for the seismic response of multiand large-span structures.By using a multi-span truss as an example,the influence of multi-support excitation effects on the seismic response of such structures is studied.  相似文献   

16.
The effectiveness of tuned mass dampers (TMD) in vibration control of buildings was investigated under moderate ground shaking caused by long‐distance earthquakes with frequency contents resembling the 1985 Mexico City (SCT) or the 1995 Bangkok ground motion. The elastic–perfectly plastic material behaviour was assumed for the main structure, with linear TMDs employed by virtue of their simplicity and robustness. The accumulated hysteretic energy dissipation affected by TMD was examined, and the ratio of the hysteretic energy absorption in the structure with TMD to that without it is proposed to be used, in conjunction with the peak displacement ratio, as a supplementary TMD performance index since it gives an indication of the accumulated damage induced in the inelastic structures. For the ground motions considered, TMD would be effective in reducing the hysteretic energy absorption demand in the critical storeys for buildings in the 1.8–2.8 s range. The consequence is reduction in damage of the buildings which would otherwise suffer heavy damage in the absence of TMD, resulting in economical restorability in the damage control limit state. This is of practical significance in view of the current trend toward performance‐based design. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
The paper shows that the rigid–plastic oscillator can be used to evaluate the maximum plastic displacement of any elastic–plastic oscillator under any earthquake. Motivated by this result a rigid–plastic response spectrum is introduced, which provides an easy method to calculate the maximum plastic displacement of a rigid–plastic oscillator for any given earthquake. Such a spectrum is easier to construct than the elastic–plastic response spectrum or the classical elastic one. By means of appropriate formulas presented in the paper, the rigid–plastic response spectrum can be used to determine a realistic upper bound to the maximum plastic displacement of any elastic–plastic oscillator under the given earthquake. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
根据《建筑抗震设计规范(GB50011—2001)》的反应谱曲线,确定了基于Clough-Penzien修正过滤白噪声模型的参数取值。采用时间包络函数考虑地震的非平稳特性,根据加速度峰值等效原则迭代计算得到地面的加速度功率谱密度曲线,然后通过曲线拟合得到与规范各种地震烈度、场地类别和设计地震分组相对应的谱参数。计算结果表明,与规范相对应的加速度功率谱密度曲线呈双峰型,Clough-Penzien谱能较好地拟合其曲线形状。最后给出了规范各种工况下的地面加速度功率谱参数值,为随机抗震计算分析提供了依据。  相似文献   

19.
20.
The seismic response of elasto‐plastic structures to both recorded and generated accelerograms is characterized by a large scattering of the results, even for accelerograms with similar peak ground acceleration values and frequency content. According to current code recommendations a design value of the seismic response of an elasto‐plastic structure can be computed as the mean of the responses to a certain number of spectrum‐fitting generated accelerograms. A more effective probabilistic approach is presented herein. It allows the analyst to calculate a design value of the seismic response characterized by a predefined non‐exceedance probability using a limited number of generated accelerograms. The results of the performed analyses are presented in diagrams that can be used for structural design applications. The applicability of the proposed method is demonstrated in the case of an elasto‐plastic structural system and the results are compared with those obtained applying current code recommendations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号