首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Land use and land cover change (LUCC) can modify the physical and thermodynamic characteristics of the land surface, including surface roughness, albedo, and vegetation fraction, among others. These direct changes can result in a series of impacts on regional climate. In this paper, the simulated results over China under the scenario of LUCC using weather research and forecasting model are presented. The period for the simulation is from December 2006 to December 2011. Two experiments are initialized by the LUCC datasets derived from the MODIS data of 2001 and 2008, respectively. The results show that the LUCC in most areas of China reduces the surface albedo and increases the surface temperature. Especially in the Hetao Plain, the magnitude of increased surface temperature is above 0.5 °C in winter, and the increase in winter is more obvious than in summer. The precipitation in the Hetao Plain increases. The sensible heat in most parts of East China is reduced, while the latent heat is increased in most areas of China.  相似文献   

2.
在耦合模式WRF/Noah-MP中加入考虑地下水过程的动态灌溉方案,设计两组试验(分别为考虑和不考虑地下水灌溉),连续模拟10 a(2001—2010年),来研究华北平原地下水灌溉的区域气候效应。结果表明,地下水灌溉导致华北平原地下水位下降,在少雨的季节灌溉量大,水位下降较快。在灌溉期(3—9月),灌溉引起的土壤湿度升高影响了地表能量的分配(潜热增加,感热减少),导致2 m气温显著降低0.6—1.0℃,同时也降低了灌溉区夏季模拟偏高的气温。灌溉对灌溉区边界层大气有升高湿度和冷却降温的作用,对春季的影响局限在边界层内,而夏季的影响持续到5000 m以上。夏季灌溉对降水的影响远强于春季,灌溉的升高湿度和冷却效应分别对夏季降水产生正反馈和负反馈,共同影响灌溉区的降水变化。灌溉通过对水汽输送的影响,引起非灌溉区降水的变化,而长江中下游流域夏季降水的增多可能与高空西风急流轴位置南移有关。   相似文献   

3.
秦卓凡  廖宏  陈磊  朱佳  钱静 《大气科学》2021,45(6):1273-1291
汾渭平原因其封闭的地形条件以及煤炭为主的能源结构,大气污染问题一直存在,并于2018年被列入大气污染防控的重点区域。文章利用2015年以来PM10、PM2.5、SO2、NO2、CO、O3质量浓度的观测数据和空气质量指数(Air Quality Index,简称AQI),分析了汾渭平原AQI及大气污染物质量浓度的时空分布特征;使用多元线性回归模型研究了气象条件对冬季PM2.5和夏季O3浓度日最大8 h滑动平均值(MDA8_O3)日变化和年际变化的影响。研究发现,汾渭平原的空气质量在2015~2017年间逐年变差,在2018~2019年有所好转,污染较重的城市为西安、渭南、咸阳、临汾、运城、三门峡、洛阳,集中在汾河平原与渭河平原交界处。汾渭平原的首要大气污染物多为PM2.5、PM10或O3,三者占比之和约90%。重污染时期主要集中在天气条件不利及污染物排放量大的冬季供暖期,但夏季O3浓度的升高趋势使得汾渭平原夏季污染情况越来越严重。影响汾渭平原冬季PM2.5浓度和夏季MDA8_O3日变化最主要的气象要素都是2 m高度气温(简称T2M),相对贡献分别是45.5%、35.3%,都表现为正相关;第二主要的气象要素都是2 m相对湿度(简称RH2M),相对贡献分别是41.5%(正相关)、25.4%(负相关)。影响汾渭平原冬季PM2.5浓度年际变化最主要的2个气象要素是T2M和RH2M,其相对贡献分别为43.6%、31.9%,且都呈正相关,2015~2019年汾渭平原冬季气象条件的变化会导致PM2.5浓度上升,部分削弱了人为减排导致的下降趋势(?8.3 μg m?3 a?1)。影响汾渭平原夏季MDA8_O3年际变化最主要的2个气象要素是T2M(正相关)和850 hPa风速(WS850,负相关),其相对贡献分别为71.7%、16.3%。2015~2019年汾渭平原夏季气象条件的变化导致O3污染呈上升趋势(1.2 μg m?3 a?1),但O3污染的总上升趋势(8.7 μg m?3 a?1)中,人为排放变化的贡献更大(7.5 μg m?3 a?1)。本研究表明,汾渭平原大气污染形势严峻,其颗粒物污染问题尚未解决,还面临着新的臭氧污染的挑战,汾渭平原内的11个地级市分属陕西、山西、河南三省管辖,三省交界处又是重污染区域,所以需要三省联合防治防控,协同改善汾渭平原的空气质量。  相似文献   

4.
In the North China Plain, the grain yield of irrigated wheat-maize cropping system has been steadily increasing in the past decades under a significant warming climate. This paper combined regional and field data with modeling to analyze the changes in the climate in the last 40 years, and to investigate the influence of changes in crop varieties and management options to crop yield. In particular, we examined the impact of a planned adaptation strategy to climate change -“Double-Delay” technology, i.e., delay both the sowing time of wheat and the harvesting time of maize, on both wheat and maize yield. The results show that improved crop varieties and management options not only compensated some negative impact of reduced crop growth period on crop yield due to the increase in temperature, they have contributed significantly to crop yield increase. The increase in temperature before over-wintering stage enabled late sowing of winter wheat and late harvesting of maize, leading to overall 4–6% increase in total grain yield of the wheat-maize system. Increased use of farming machines and minimum tillage technology also shortened the time for field preparation from harvest time of summer maize to sowing time of winter wheat, which facilitated the later harvest of summer maize.  相似文献   

5.
周涛  周青  张勇  吴昱树  孙健 《气象》2023,49(11):1359-1370
PM2.5和O3已经成为汾渭平原城市最主要的污染物,两者之间相互影响,在暖季经常同时出现构成污染,其污染程度与气象条件密切相关。利用2015—2021年汾渭平原12个城市逐日PM2.5和O3浓度、地面气象观测数据以及ERA5高空再分析数据等资料,分析了汾渭平原PM2.5和O3的时空变化特征以及复合污染发生时PM2.5和O3的关系,并研究了局地气象条件和天气形势对复合污染的影响。结果显示,该地区年均PM2.5和日最大8小时O3浓度分别在2017年和2018年开始持续下降,复合污染日数也在2019年后开始持续下降;复合污染主要发生在3—9月,在汾渭平原东部城市出现次数较多,多出现在高温、低湿的环境下;最后利用T-PCA算法(正交主成分分析)将复合污染的天气环流形势分为4种类型,主要呈现出以高空西北气流或偏西气流、低层为暖区偏南风或微风为主的天气特征。研究结果对汾渭平原的大气...  相似文献   

6.
华北平原3次持续性大雾过程的特征及成因分析   总被引:7,自引:5,他引:2  
赵玉广  李江波  李青春 《气象》2015,41(4):427-437
应用常规气象观测资料、区域自动站资料、NCEP/NCAR(1°×1°)再分析资料和L波段加密探空资料,对近年华北平原3次持续10 d以上的大雾天气过程的高空及地面气象要素条件、大尺度环流背景、边界层特征、温湿场特征以及形成原因和维持机理进行了天气学诊断分析。结果表明:3次大雾过程都发生在纬向环流背景下,其平均高度场、湿度场、温度场和海平面气压场极其相似,其高空和地面气象要素如相对湿度、风速、温度露点差、逆温层厚度等的统计值也比较近似;高空纬向环流长时间维持导致的冷空气活动偏弱,加上太行山、燕山对冷空气的阻挡和消弱造成的华北平原长期静稳天气形势,是华北平原大雾长时间维持的根本原因;纬向环流背景下多个“干性短波槽”活动、大尺度下沉运动、太行山地形造成的地形辐合线及偏西气流越过太行山下沉增温导致的层结更加稳定也是华北平原大雾加强和维持的重要原因。  相似文献   

7.
Extreme climate index is one of the useful tools to monitor and detect climate change. The primary objective of this study is to provide a more comprehensively the changes in extreme precipitation between the periods of 1954–1983 and 1984–2013 in Shaanxi province under climate change, which will hopefully provide a scientific understanding of the precipitation-related natural hazards such as flood and drought. Daily precipitation from 34 surface meteorological stations were used to calculated 13 extreme precipitation indices (EPIs) generated by the joint World Meteorological Organization Commission for Climatology (CCI)/World Climate Research Programme (WCRP) project on Climate Variability and Predictability (CLIVAR) expect Team on climate change Detection, Monitoring and Indices (ETCCDMI). Two periods including 1954–1983 and 1984–2013 were selected and five types of precipitation days (R10mm-R100mm) were defined, to provide more evidences of climate change impacts on the extreme precipitation events, and specially, to investigate the changes in different types of precipitation days. The EPIs were generated using RClimRex software, and the trends were analyzed using Mann-Kendall nonparametric test and Sen’s slope estimator. The relationships between the EPIs and the impacts of climate anomalies on typical EPIs were investigated using correlation and composite analysis. The mainly results include: 1) Thirteen EPIs, except consecutive dry day (CDD), were positive trends dominated for the period of 1984–2013, but the trends were not obvious for the period of 1954–1983. Most of the trends were not statistically significant at 5 % significance level. 2) The spatial distributions of stations that exhibited positive and negative trends were scattered. However, the stations that had negative trends mainly distributed in the north of Shaanxi province, and the stations that had positive trends mainly located in the south. 3) The percentage of stations that had positive trends had increased from the period of 1954–1983 to 1984–2013 for all the 13 EPIs except CDD, indicating the possible climate change impacts on extreme precipitation events. 4) The correlations between annual total wet-day precipitation (PRCPTOT) and other 12 EPIs varied for different indices and stations. The composite analysis found that El Niño Southern Oscillation (ENSO) exerted greater impacts on PRCPTOT than other EPIs and greater in the Guanzhong Plain (GZP) than Qinling-Dabashan Mountains (QDM) and Shanbei Plateau (SBP) of Shaanxi province.  相似文献   

8.
利用1982—2020年三江平原19个国家气象观测站土壤湿度及同期降水、气温数据, 基于相关系数和自相关系数统计方法, 分析了黑龙江省三江平原土壤湿度记忆性及与降水、气温之间的关系。结果表明: 春、夏季三江平原土壤湿度记忆时间均在10—40 d, 各层土壤湿度记忆性的空间分布以中间层(10—20 cm)土壤湿度平均记忆时间最长, 呈上下层递减的趋势; 春季三江平原10—20 cm土层土壤湿度的记忆时长平均20 d, 夏季平均17 d; 夏季土壤湿度记忆性强度大于春季, 空间分布以三江平原西部的记忆性较强, 随着土层的增加土壤湿度记忆性有增大的趋势。降水是三江平原土壤湿度主要来源, 受降水和气温协同作用的影响, 夏、秋季土壤湿度与同期降水量、温湿指数均存在显著的正相关关系; 春季土壤湿度与前期秋冬季降水亦呈显著正相关, 与前期温湿指数呈负相关, 前期秋冬季气温的升高会促进土壤的融冻, 从而使当年春季土壤水分增加。  相似文献   

9.
Summary The paper describes some characteristics of the precipitation patterns in the plain of Friuli-Venezia Giulia. Even if small, this Region shows a complex rainfall pattern so that, by previous studies, it was divided into four distinct areas with peculiar pluviometric regimes, namely the Coastal Area, the Plain and Hills Area, the Prealpine Area and the Inner Alpine Area. Nowadays a new data set, collected by the ERSA/CSA automatic stations, allows to propose a new sub-classification of the Coastal Area and Plain and Hills Area, under the point of view of the hourly rate of precipitation. This new sub-classification is composed by five zones: the Coast, the Carso, the Low Plain, the Middle Plain and the Piedmont. Each one of these zones presents a peculiar seasonal behaviour of the hourly rain-rate. Received May 31, 1999 Revised September 27, 1999  相似文献   

10.
黑龙江省玉米低温冷害风险评估及预估   总被引:1,自引:0,他引:1  
利用气候资料、地理信息数据及社会经济数据,根据自然灾害风险理论和低温冷害形成机制,采用GIS技术,分析了黑龙江省玉米低温冷害的危险性和易损性,实现了玉米低温冷害的风险评估与区划,并利用CMIP5中的MRI-CGCM3模式模拟结果对黑龙江省2015-2044年玉米低温冷害风险进行预估。结果表明:1961年以来共有24年是低温冷害年,其中12年是严重低温冷害年。松嫩平原大部、三江平原大部及黑河南部是玉米一般低温冷害的多发区,同时该区暴露性较高,如有重度灾害发生,则对全省粮食产量产生严重影响。未来30年,黑龙江省低温冷害发生的概率有所减少,松嫩平原东部和南部是一般低温冷害的高风险区,三江平原西部是严重低温冷害的高风险区。  相似文献   

11.
“6·18”江汉平原特大暴雨中尺度特征   总被引:2,自引:1,他引:1  
利用NCEP GFS再分析资料(分辨率0.5°×0.5°)以及地面、新一代天气雷达等观测资料,针对2011年6月18日江汉平原特大暴雨过程进行中尺度特征分析。结果表明,江汉平原附近深厚的中尺度低涡是造成此次强降水的主要天气系统,对流层中层和边界层的干线以及地面中尺度低压是其主要触发机制,强大的西南急流发展为暴雨区提供了充足的水汽。雷达回波特征分析表明,0℃层以下大于45dBz回波垂直伸展厚度、垂直液态含水量大小与10min降水量有非常好的一致性。  相似文献   

12.
In this study, the multifractal detrended fluctuation analysis method is employed to determine the thresholds of extreme events. Subsequently, the characteristics of extreme temperatures have been analyzed over Northeast China during 1961–2009. Approximately 58 % of stations have negative interdecadal trends of ?2.2 days/10 years to 0 days/10 years in extreme low minimum temperature (ELMT) frequency. Notable positive trend of 0–2.5 days/10 years in extreme high maximum temperature (EHMT) frequency of about 94 % stations are found. Approximately 58 % of stations have decreasing trend in ELMT intensity, whereas 69 % of stations have increasing trend of EHMT intensity. The trends are the range of ?0.72 °C/10 years to 0 °C/10 years and 0–0.7 °C/10 years, respectively. We propose the extreme temperatures indices, ELMT index (ELMTI) and EHMT index (EHMTI), which combined the frequency and intensity of extreme temperatures to represent the order of severity of extreme temperatures. According to this approach, serious ELMT mainly occur in the Songliao Plain and the Sanjiang Plain, especially in the Songliao Plain. Serious EHMT distinctly occur in the Sanjing Plain, and the southwestern and northwestern regions of Northeast China in recent five decades.  相似文献   

13.
Summary  The objective of this study is to assess whether changes in the surface pressure field over Europe are reflected in the statistical structure of the wind field over the Great Hungarian Plain. The data basis consists of hourly wind speed data from 1968–72 and 1991–95, from three meteorological stations (Debrecen, Békéscsaba and Szeged) located in the Great Hungarian Plain. A new statistical test and its application for determining the statistical significance of differences between expected values of non-independent wind speed time series is presented in the paper. The summer wind field over the Great Hungarian Plain shows evidence of change: wind speeds have been decreasing and a tertiary maximum, in July, has become less pronounced. Received August 31, 2000 Revised January 2, 2001  相似文献   

14.
在冬小麦抽穗—灌浆期进行了水分胁迫实验,利用美国Licor公司生产的Licor-188B辐射量子照度仪及Licor-6400便携式光合作用测定仪,对水分胁迫引起的冬小麦光合生理生态变化进行了系统观测,系统地给出了冬小麦多种农业气象指标对水分胁迫的响应状况。在大量实测数据基础上,给出了包含辐射强度、温度及土壤水分因子的冬小麦叶片光合作用模式。该模式具有严格的理论推导过程和大量实验数据的支持,改进了传统水分胁迫对叶片光合速率影响的简单阶乘方法,从而为进一步准确推算水分胁迫对大田冬小麦光合作用的可能影响,以及水分胁迫对区域农业干旱的可能影响奠定了前提条件。该研究是冬小麦干旱预测模型的叶片子模型,为冬小麦农业干旱预测模型提供了丰富的基本参数,同时也为建立冬小麦干旱预测模型奠定了基本条件。  相似文献   

15.
As one of the key grain-producing regions in China, the agricultural system in the North China Plain (NCP) is vulnerable to climate change due to its limited water resources and strong dependence on irrigation for crop production. Exploring the impacts of climate change on crop evapotranspiration (ET) is of importance for water management and agricultural sustainability. The VIP (Vegetation Interface Processes) process-based ecosystem model and WRF (Weather Research and Forecasting) modeling system are applied to quantify ET responses of a wheat-maize cropping system to climate change. The ensemble projections of six General Circulation Models (GCMs) under the B2 and A2 scenarios in the 2050s over the NCP are used to account for the uncertainty of the projections. The thermal time requirements (TTR) of crops are assumed to remain constant under air warming conditions. It is found that in this case the length of the crop growth period will be shortened, which will result in the reduction of crop water consumption and possible crop productivity loss. Spatially, the changes of ET during the growth periods (ETg) for wheat range from ?7 to 0 % with the average being ?1.5?±?1.2 % under the B2 scenario, and from ?8 to 2 % with the average being ?2.7?±?1.3 % under the A2 scenario/consistently, changes of ETg for maize are from ?10 to 8 %, with the average being ?0.4?±?4.9 %, under the B2 scenario and from ?8 to 8 %, with the average being ?1.2?±?4.1 %, under the A2 scenario. Numerical analysis is also done on the condition that the length of the crop growth periods remains stable under the warming condition via breeding new crop varieties. In this case, TTR will be higher and the crop water requirements will increase, with the enhancement of the productivity. It is suggested that the options for adaptation to climate change include no action and accepting crop loss associated with the reduction in ETg, or breeding new cultivars that would maintain or increase crop productivity and result in an increase in ETg. In the latter case, attention should be paid to developing improved water conservation techniques to help compensate for the increased ETg.  相似文献   

16.
Framing the way to relate climate extremes to climate change   总被引:3,自引:1,他引:2  
The atmospheric and ocean environment has changed from human activities in ways that affect storms and extreme climate events. The main way climate change is perceived is through changes in extremes because those are outside the bounds of previous weather. The average anthropogenic climate change effect is not negligible, but nor is it large, although a small shift in the mean can lead to very large percentage changes in extremes. Anthropogenic global warming inherently has decadal time scales and can be readily masked by natural variability on short time scales. To the extent that interactions are linear, even places that feature below normal temperatures are still warmer than they otherwise would be. It is when natural variability and climate change develop in the same direction that records get broken. For instance, the rapid transition from El Ni?o prior to May 2010 to La Ni?a by July 2010 along with global warming contributed to the record high sea surface temperatures in the tropical Indian and Atlantic Oceans and in close proximity to places where record flooding subsequently occurred. A commentary is provided on recent climate extremes. The answer to the oft-asked question of whether an event is caused by climate change is that it is the wrong question. All weather events are affected by climate change because the environment in which they occur is warmer and moister than it used to be.  相似文献   

17.
TSI3563型积分式浊度计是一种性能出色的气溶胶散射系数观测仪器,然而由于仪器设计所固有的限制,TSI3563型浊度计观测结果包含有角度截断和非朗伯体光源两项系统性误差,会使观测结果较真值偏小10%左右。因此,需要对TSI3563型浊度计的观测结果进行校正才能得到较为精确的散射系数观测值。该研究利用2009年华北平原HaChi气溶胶外场观测数据测试了现有校正方法,结果显示,传统的校正方法在我国华北平原这样的高气溶胶污染地区并不适用。为此,提出一种改进的校正方法,利用同时观测的PM1和PM10数据,在校正方案中加入超微米粒子体积比这一参量,对于不同体积比采用不同的校正函数。利用实际观测数据检验后发现,改进方法的校正效果相对于传统方法有很大改善。  相似文献   

18.
关中东部连续性冰雹特征分析   总被引:12,自引:7,他引:5  
利用关中东部各气象站和各县防雹站(点)建站以来的连续性降雹资料,统计分析了连续性降雹的时空分布、环流形势、物理量场以及强回波移动規律,总结出影响关中东部连续性降雹的重要天气特征及渭北多雹和多连续性降雹的重要原因是特殊地形与秦岭背风波相叠加的结果。  相似文献   

19.
There is little doubt that between now and 2050 Earth faces global warming and other changes in climate unprecedented in magnitude since the end of the last glaciation some 10 000 years ago. Predicting the exact nature of that change is, however, difficult. Arguments from palaeoclimatic analogues, comparisons of recent warm versus cool years, physical reasoning and computer simulations are all subject to error and uncertainty. This is more so in the relatively less well understood climate system of the Southern Hemisphere, and at the local and regional scale, than in the Northern Hemisphere and at a zonally averaged scale. Nevertheless some broad features can be described with some confidence, and we can at least identify some of the major uncertainties and processes which we need to understand better.Increased poleward penetration of the subtropical monsoonal regimes is likely, and tropical cyclones may also occur at higher latitudes than at present. The role of the oceans, especially at high southern latitudes and in the tropics, and effects which may change with time as greenhouse gas concentrations gradually increase (transient effects) are particularly important and uncertain in the Southern Hemisphere.We know enough to declare the urgency of slowing down and eventually limiting the greenhouse effect. However, more research is needed to guide decision makers and planners at the local and regional level as they try to cope with those climatic changes which are unavoidable. Regional cooperation is essential to make the best use of the research and planning facilities available.  相似文献   

20.
基于1981~2018年成都平原经济区44个气象站点霾日观测资料,分析了该地区霾日的时空演变特征,并利用城市群霾日综合评估模型范式对区域空气质量进行了量化分析。结果表明:(1)成都平原经济区高霾日多集中在德阳、成都和乐山等城市地区,冬季霾日最多,春秋季次之,夏季最少;(2)1991~2000年为成都平原经济区霾日数的高发阶段,2011~2018年霾日数呈明显下降趋势;(3)EOF(Empirical Orthogonal Function)和小波分析均揭示出成都平原经济区霾日数呈明显下降的趋势,其中资阳、成都、遂宁下降最快,仅绵阳北部呈小幅上升趋势。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号