首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new one-minute global seafloor topography model was derived from vertical gravity gradient anomalies (VGG), altimetric gravity anomalies, and ship soundings. Ship soundings are used to constrain seafloor topography at wavelengths longer than 200 km and to calibrate the topography to VGG (or gravity) ratios at short wavelengths area by area. VGG ratios are used to predict seafloor topography for wavelength bands of 100–200 km and to suppress the effect of crust isostasy. Gravity anomalies are used to recover seafloor topography at wavelengths shorter than 100 km. The data processing procedure is described in detail in this paper. The accuracy of the model is evaluated using ship soundings and existing models, including General Bathymetric Charts of the Oceans (GEBCO), DTU10, ETOPO1, and SIO V15.1. The results show that, in the discussed regions, the accuracy of the model is better than ETOPO1, GEBCO, and DTU10. Additionally, the model is comparable with V15.1, which is generally believed to have the highest accuracy. In the north-central Pacific Ocean, the accuracy of the model increased by approximately 29.5% compared with the V15.1 model. This indicates that a more accurate seafloor topography model can be formed by combining gravity anomalies, VGG, and ship soundings.  相似文献   

2.
基于Paker理论导纳函数模型,研究分析了频率域海底地形非线性项对重力异常与重力异常垂直梯度贡献的量级。通过对日本某海域数值实验结果表明,频率域海底地形非线性项对重力异常的影响需要考虑到三次项,对重力异常垂直梯度量级的影响需要考虑到四次项。研究结果对于提高利用重力异常和重力异常垂直梯度反演高精度海底地形具有应用价值。  相似文献   

3.
为提高利用重力异常计算重力异常垂直梯度中央区效应的精度,视中央区为矩形域,将重力异常表示成双三次多项式插值形式,引入非奇异变换,推导出了重力异常垂直梯度中央区效应的精密计算公式。以低纬度区域分辨率为2'×2'的重力异常数据为背景场进行了仿真分析,结果表明在解算计算点所在的1个网格的中央区效应时,传统公式与本文导出公式计算结果差值的最大值达数E。该导出公式可为重力异常垂直梯度中央区效应的精密计算提供理论依据。  相似文献   

4.
海底地形对开展海洋科学调查和研究十分重要。以多波束为主的回声测深技术测量成本高且效率低,几十年来仅实现了全球约20%的海床测绘。对于空白区(特别是深海区域),可以借助重力异常和重力垂直梯度异常进行回归分析反演得到,但该方法得到的比例因子鲁棒性不强。为了解决这一问题,同时考虑到两种重力数据在表征海底地形长短波长的不同优势,本文结合滑动窗口赋权和稳健回归分析来反演海底地形。在太平洋皇帝山海域(35°~45°N,165°~175°E)的实验结果表明:在船测检核点处,本文构建模型的标准差为61.02 m,相比于单一重力数据反演模型,精度分别提高了14.92%(重力异常)和2.08%(重力垂直梯度异常),能较好地反映皇帝海山链的地形走势。  相似文献   

5.
海底地形是全球地形的重要组成部分,对地球物理科学研究、经济活动等具有重要作用。基于Parker公式,利用卫星测高重力异常和船测水深数据,采用频域的方法反演了疑似马航MH370失事区域的留尼汪海域的10°×10°的海底地形。最后将反演的水深和船测水深、国际通用的海深模型ETOPO1作比较进行精度评估,结果表明:本文反演结果与船测水深相比误差平均值为-26.038 m,标准差为176.588 m;与ETOPO1相比,差异平均值为-33.541 m,标准差为160.769 m。这表明采用重力异常数据,结合船测数据能较高精度地反演海底地形。  相似文献   

6.
Short wave gravity anomaly is correlated to sea floor topography in the gravity field of Taiwan and its adjacent seas. Gravity values of 200 × 10-5ms-2 at Yushang and -160 × 10-5ms-2 at Liuqiu sea trench are respectively the maximum and minimum gravity values in this area.Bouguer gravity anomaly reflects not only Moho interface undulation, but also fault distribution.The inflexion of gradient belt of Bouguer gravity anomaly is a spot liable to earthquakes. Middlelong wave geoid is the best data to invert crustal thickness. We calculate crustal thickness by using geoid data, and the maximum value is 38km; the minimum value is 12km in Taiwan and its adjacent seas.  相似文献   

7.
台湾及其邻海的重力特征与构造、地震的关系   总被引:1,自引:0,他引:1  
张赤军  方剑 《台湾海峡》2001,20(1):101-109
分析认为,在台湾及其邻海的重力场中,具有短波长特征的空间重力异常受地形与海深所制约.玉山的200×10  相似文献   

8.
综合对比4种波形重跟踪算法,选择改进阈值法处理Jason-1GM数据,联合波形重跟踪后的Geosat和ERS-1GM数据,沿轨2Hz重采样以提高数据空间分辨率。通过数据质量控制剔除粗差数据,考虑海表面地形的影响,基于移去-恢复法和维宁-曼齐兹公式反演了中国近海及邻近海域(0°~45°N,100°~140°E)1′×1′的精细重力场。船测数据检核表明反演结果在开阔海域精度约4mGal,近岸浅水区约10mGal,均优于DTU10和V21.1模型。  相似文献   

9.
10.
The seafloor spreading evolution in the Southern Indian Ocean is key to understanding the initial breakup of Gondwana. We summarize the structural lineaments deduced from the GEOSAT 10 Hz sampled raw altimetry data as well as satellite derived gravity anomaly map and the magnetic anomaly lineation trends from vector magnetic anomalies in the West Enderby Basin, the Southern Indian Ocean. The gravity anomaly maps by both Sandwell and Smith 1997, J. Geophys. Res. 102, 10039–10054 and 10 Hz raw altimeter data show almost the same general trends. However, curved structural trends, which turn from NNW–SSE in the south to NNE–SSW in the north, are detected only from gravity anomaly maps by 10 Hz raw altimeter data just to the east of Gunnerus Ridge. NNE–SSW structural trends and magnetic anomaly lineation trends that are perpendicular to them are observed between the Gunnerus Ridge and the Conrad Rise. To the west of Gunnerus Ridge, structural elements trend NNE–SSW and magnetic polarity changes are normal to them. In contrast, almost NNW–SSE structural trends and ENE–WSW magnetic polarity reversal strikes are dominant to the east of Gunnerus Ridge. Curved structural trends, which turn from WNW–ESE direction in the south to NNE–SSW direction in the west, and magnetic polarity reversal strikes that are almost perpendicular to them are observed just south of Conrad Rise. The magnetic polarity reversals may be parts of the Mesozoic magnetic anomaly sequence that formed along side of the structural lineaments before the long Cretaceous normal polarity superchron. Curved structural trends, detected only from gravity anomaly maps by 10 Hz raw altimeter data, most likely indicate slight changes in spreading direction from an initial NNW–SSE direction to NNE–SSW. Our results also suggest that these curved structural trends are fracture zones that formed during initial breakup of Gondwana.  相似文献   

11.
尹君 《海洋学研究》2017,35(4):87-93
利用中国-尼日利亚国际合作航次获得的船载重力数据,分析了尼日利亚南部大陆边缘的自由空间重力异常和布格重力异常特征,并通过两条从陆架—陆坡—陆隆一直延伸到深海盆地的重力剖面拟合出地壳密度结构。研究结果表明,地壳厚度总体上从陆架、陆坡至深海平原呈现阶梯状减薄的趋势,东侧的减薄幅度大于西侧,东侧从24 km减小到10 km,西侧从21 km减小到14 km。  相似文献   

12.
为充分挖掘海洋重力数据在反演海底地形中的应用潜力,尝试探索利用大地水准面高反演海底地形的技术途径,并以夏威夷—皇帝海山链拐点所在海区作为反演试验区进行验证。首先采用Belikov列推法计算伴随(缔和)勒让德函数,利用EIGEN-6C4地球重力场模型解算获取了分辨率为1'的大地水准面高格网数值模型;然后通过综合分析反演比例函数和转换函数特点、研究海区大地水准面高与海底地形的相干特性以及大地水准面高本身尺度特征,获得了利用大地水准面高反演海底地形的频段范围;最终以试验海区大地水准面高为数据输入,构建了相应的海底地形模型(BNT模型),并与ETOPO1等海深模型进行比对分析。试验结果表明:BNT模型检核差值在一倍均方差范围检核点数量占比70.60%,相比正态分布更加集中;BNT模型检核精度低于ETOPO1等海深模型;海深模型检核精度随着水深增加不断提升,水深小于1 000 m时,海深模型相对误差出现较大发散现象;计算海域ETOPO1模型精度最高,GEBCO模型和DTU10模型检核精度相当。  相似文献   

13.
EGM96与EGM2008地球重力场模型精度比较   总被引:5,自引:0,他引:5  
给出了由地球重力场模型计算重力异常和垂线偏差的公式,利用36阶、360阶EGM96、EGM2008地球重力场模型计算了国内某地区格网点重力异常和地面垂线偏差,并将其与实测数据进行比较,从而对这两种模型的精度进行了分析和比较。结果表明,在表示国内某地区格网点重力异常时,EGM2008模型精度较高;在表示地面垂线偏差时,两种模型的精度相当。  相似文献   

14.
The impact of GOCE Satellite Gravity Gradiometer data on gravity field models was tested. All models were constructed with the same Laser Geodynamics Satellite (LAGEOS) and Gravity Recovery and Climate Experiment (GRACE) data, which were combined with one or two of the diagonal gravity gradient components for the entire GOCE mission (November 2009 to October 2013). The Stokes coefficients were estimated by solving large normal equation (NE) systems (i.e., the direct numerical approach). The models were evaluated through comparisons with the European Space Agency's (ESA) gravity field model DIR-R5, by GPS/Leveling, GOCE orbit determination, and geostrophic current evaluations. Among the single gradient models, only the model constructed with the vertical ZZ gradients gave good results that were in agreement with the formal errors. The model based only on XX gradients is the least accurate. The orbit results for all models are very close and confirm this finding. All models constructed with two diagonal gradient components are more accurate than the ZZ-only model due to doubling the amount of data and having two complementary observation directions. This translates also to a slower increase of model errors with spatial resolution. The different evaluation methods cannot unambiguously identify the most accurate two-component model. They do not always agree, emphasizing the importance of evaluating models using many different methods. The XZ gravity gradient gives a small positive contribution to model accuracy.  相似文献   

15.
刘光夏 《台湾海峡》1993,12(4):402-406
经过三维重力正演计算,我们从台湾的布格重力异常中求得了深部重力异常,其深度相当于地壳下层。分析对比之后发现,深部重力异常等植线的形态,较好地反映了台湾的现代构造地貌特征。如东部等值线的同步弯曲,犹如错断水系,反映现代板块运动的方向;中部大面积零值和负值线圈闭,反映中央山脉的整体上升;在一些等值线聚合成梯度的地带,又往往是某些深断裂的反映。是否可以这样认为,深部重力异常是地壳深处介质密度沿某一方向的  相似文献   

16.
根据体谐函数一阶、二阶水平导数(广义球函数)也是球面正交函数系的性质,详细推导了水平重力梯度边值问题的级数解.根据扰动位与重力场元的微分关系,导出了由水平重力梯度计算重力异常、垂线偏差的公式.完善了全张量重力梯度的有关应用.  相似文献   

17.
As one of the main controlling factors of oil and gas accumulation, faults are closely related to the distribution of oil and gas reservoirs. Studying how faults control petroliferous basins is particularly important. In this work, we investigated the plane positions of major faults in the China seas and its adjacent areas using the normalized vertical derivative of the total horizontal derivative (NVDR-THDR) of the Bouguer gravity anomaly, the fusion results of gravity and magnetic anomalies, and the residual Bouguer gravity anomaly. The apparent depths of major faults in the China seas and its adjacent areas were inverted using the Tilt-Euler method based on the Bouguer gravity anomaly. The results show that the strikes of the faults in the China seas and its adjacent areas are mainly NE and NW, followed by EW, and near-SN. Among them, the lengths of most ultra-crustal faults are in the range of 1 000–3 000 km, and their apparent depths lie between 10 km and 40 km. The lengths of crustal faults lie between 300 km and 1 000 km, and their apparent depths are between 0 km and 20 km. According to the plane positions and apparent depths of the faults, we put forward the concept of fault influence factor for the first time. Based on this factor, the key areas for oil and gas exploration were found as follows: the east of South North China Basin in the intracontinental rift basins; the southeast region of East China Sea Shelf Basin, the Taixinan and Qiongdongnan basins in the continental margin rift basins; Zhongjiannan Basin in the strike-slip pull-apart basins; the Liyue, Beikang, and the Nanweixi basins in the rifted continental basins. This work provides valuable insights into oil and gas exploration, mineral resource exploration, and deep geological structure research in the China seas and its adjacent areas.  相似文献   

18.
The Military Survey Department (MSD) of the United Arab Emirates (UAE) undertook an airborne gravity survey project for the marine area of the country in 2009, especially to strengthen the marine and coastal geoid in the near-shore regions. For the airborne gravity survey, 5 km spacing coast-parallel flight lines were planned and surveyed. These lines were supplemented by cross-lines in order to assess the quality of the airborne gravity surveys. The flight lines were extended 10 km, spacing lines further offshore. A Beech King Air 350 aircraft was used for the surveys, collecting data at a typical flight speed of 170 knots and a typical flight elevation of 900–1500 m, depending on weather conditions and topography. Gravity was measured with a ZLS-modified LaCoste and Romberg gravimeter (S-99), augmented with a Honeywell strap-down inertial navigation system unit. The estimated accuracy for the airborne gravity data is better than 2.0 mGal r.m.s., as judged from the airborne track crossovers. The new airborne gravimetry data changed the UAE coastal geoid by up to 30 cm in some regions, highlighting the importance of airborne gravity coastal surveys.  相似文献   

19.
Polymetalic sulfide is the main product of sea-floor hydrothermal venting, and has become an important sea-floor mineral resources for its rich in many kinds of precious metal elements. Since 2007, a number of investigations have been carried out by the China Ocean Mineral Resources Research and Development Association(COMRA)cruises(CCCs) along the Southwest Indian Ridge(SWIR). In 2011, the COMRA signed an exploration contract of sea-floor polymetallic sulfides of 10 000 km2 on the SWIR with the International Seabed Authority. Based on the multibeam data and shipborne gravity data obtained in 2010 by the R/V Dayang Yihao during the leg 6 of CCCs21, together with the global satellite surveys, the characteristics of gravity anomalies are analyzed in the Duanqiao hydrothermal field(37°39′S, 50°24′E). The "subarea calibration" terrain-correcting method is employed to calculate the Bouguer gravity anomaly, and the ocean bottom seismometer(OBS) profile is used to constrain the two-dimensional gravity anomaly simulation. The absent Moho in a previous seismic model is also calculated.The results show that the crustal thickness varies between 3 and 10 km along the profile, and the maximum crustal thickness reaches up to 10 km in the Duanqiao hydrothermal field with an average of 7.5 km. It is by far the most thicker crust discovered along the SWIR. The calculated crust thickness at the Longqi hydrothermal field is approximately 3 km, 1 km less than that indicated by seismic models, possibly due to the outcome of an oceanic core complex(OCC).  相似文献   

20.
Inversion modelling of marine gravity anomalies to derive predicted seafloor topography has provided significant advance in delineating deep-ocean bathymetry where the seafloor both conforms to the half-space cooling model of seafloor spreading, and largely sediment-free. Similar modelling for elevated ridges and seamounts, that are formed by processes other than seafloor spreading and/or have proximal sediment sources (e.g., continental margins and volcanic arcs), have significantly higher errors when validated against modern shipborne echo-sounding data. A three-dimensional, five-layer gravity model is emulated for the cases of both synthetic and real seamounts, with varying degrees of sediment burial, to establish the sensitivity of variable sediment cover as a source of error. A simple `Gaussian' seamount with base radius of 30 km, 2000 m of relief, has a maximum 140–160 mGal anomaly, that decreases to 50 mGal with the addition of 1 km of sediment cover with simple `flood' geometry. Complete burial, with a typical sediment density of 2300 kg m–3, results in a 120 mGal difference from a sediment-free seamount model. Increasing sediment density results in an exponential decay of the seamount anomaly. More complex synthetic geometries of varying basement relief and sediment thickness show that the anomaly amplitude remains significant, especially where the latter is >700–800 m thick. For the real case, seamounts of the Three Kings Ridge (northern New Zealand) imaged with seismic reflection data, with varying degrees of sediment cover of up to 1 km, when modelled both with and with-out the inclusion of a sediment layer, typically have rms differences of 30 mGal between observed and modelled gravity anomalies. Significantly, the rms errors are reduced by 50% with the inclusion of a sediment layer that corresponds to a reduction of predicted seafloor topography rms errors of 192–684 m to 78–360 m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号