首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
简述了卫星重力梯度测量技术的基本原理和GOCE数据特点;基于三个不同的重力场模型,采用不同阶次,联合卫星测高平均海面高模型分别推算出全球海面地形,并对结果作了比较分析;探讨了卫星重力梯度测量技术在海洋科学各相关领域的具体应用前景,指出卫星重力梯度测量技术的发展将为海洋科学发展带来巨大的变化。  相似文献   

2.
利用卫星测高、GRACE和GOCE资料估计全球海洋表面地转流   总被引:1,自引:1,他引:0  
重力恢复和气候试验GRACE(gravity recovery and climate experiment)卫星极大地提高了地球重力场的精度和分辨率,特别是中长波分量,联合卫星测高数据可获得全球海洋表面大尺度洋流循环。另外,新一代地球重力和海洋环流探测卫星GOCE(gravity field and steady-state ocean circulation explorer)于2009年3月成功发射,采用卫星重力梯度测量原理,对重力场的高频部分非常敏感,使其高分辨率监测全球海洋循环成为可能。本文利用1~7年GRACE观测数据确定的重力场模型和18个月GOCE观测数据确定的地球重力场模型GO_CONS_GCF_2_TIM_R3,联合卫星测高确定的平均海面高模型MSS_CNES_CLS_11,分别估计全球海洋表面地转流,并且与实测浮标数据结果进行比较。分析表明GOCE重力卫星确定的重力场模型具有更高的空间分辨率,能够确定高精度和高空间分辨率的全球海洋地转流,如墨西哥湾暖流的细节和特征,并且与实测浮标结果基本一致。而基于1~4年GRACE观测资料的模型不能很好估计全球地转流特征,基于7年GRACE观测资料的重力场模型ITG-Grace2010s确定的全球地转流的精度仍低于18个月GOCE观测数据确定的地球重力场模型GO_CONS_GCF_2_TIM_R3的结果,估计的全球地转流仍含有较大的噪声,不能很好地反应中小尺度地转流细节特征。并计算ITG_Grace2010s和GOCE_TIM3的稳态海面地形和全球平均地转流的内符合精度,结果显示,在全球范围内,GOCE_TIM3的稳态海面地形和全球平均地转流的精度都比ITG_Grace2010s结果的精度有着很大的改善,其中ITG_Grace2010s的稳态海面地形的精度为21.6cm,而GOCE_TIM3的结果则为7.45cm,ITG_Grace2010s的全球平均地转流的精度为40.7cm/s,而GOCE_TIM3的结果则为19.6cm/s。  相似文献   

3.
重力垂直梯度在解决和解释地球表层地质和地球物理问题中的作用日益明显,因而获得其模型和分布是非常必要的。利用测高卫星可以得到空间大范围高精度、高分辨率的垂线偏差、重力异常以及大地水准面数据,利用测高重力资料和地球重力场模型,采用不同方法分别计算了南海海域重力垂直梯度,并对它们进行了比较。  相似文献   

4.
The new gravity field models of gravity field and steady-state ocean circulation explorer(GOCE), TIM_R6 and DIR_R6, were released by the European Space Agency(ESA) in June 2019. The sixth generation of gravity models have the highest possible signal and lowest error levels compared with other GOCE-only gravity models, and the accuracy is significantly improved. This is an opportunity to build high precision geostrophic currents. The mean dynamic topography and geostrophic currents have been calculated by the 5 th(TIM_R5 and DIR_R5), 6 th(TIM_R6 and DIR_R6) release of GOCE gravity field models and ITSG-Grace2018 of GRACE gravity field model in this study. By comparison with the drifter results, the optimal filtering lengths of them have been obtained(for DIR_R5, DIR_R6, TIM_R5 and TIM_R6 models are 1° and for ITSG-Grace2018 model is 1.1°). The filtered results show that the geostrophic currents obtained by the GOCE gravity field models can better reflect detailed characteristics of ocean currents. The total geostrophic speed based on the TIM_R6 model is similar to the result of the DIR_R6 model with standard deviation(STD) of 0.320 m/s and 0.321 m/s, respectively. The STD of the total velocities are 0.333 m/s and 0.325 m/s for DIR_R5 and TIM_R5. When compared with ITSG-Grace2018 results, the STD(0.344 m/s) of total geostrophic speeds is larger than GOCE results, and the accuracy of geostrophic currents obtained by ITSG-Grace2018 is lower. And the absolute errors are mainly distributed in the areas with faster speeds, such as the Antarctic circumpolar circulation, equatorial region, Kuroshio and Gulf Stream areas. After the remove-restore technique was applied to TIM_R6 MDT, the STD of total geostrophic speeds dropped to 0.162 m/s.  相似文献   

5.
With the implementation of the Jason-1 satellite altimeter mission, the goal of reaching the 1-cm level in orbit accuracy was set. To support the Precision Orbit Determination (POD) requirements, the Jason-1 spacecraft carries receivers for DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite) and GPS (Global Positioning System), as well as a retroreflector for SLR (Satellite Laser Ranging). The overall orbit accuracy for Jason will depend on the quality and the relative weighting of the available tracking data. In this study, the relative importance of the SLR, DORIS, and GPS tracking data is assessed along with the most effective parameterization for accounting for the unmodeled accelerations through the application of empirical accelerations. The optimal relative weighting for each type of tracking data was examined. It is demonstrated that GPS tracking alone is capable of supporting a radial orbit accuracy for Jason-1 at the 1-cm level, and that including SLR tracking provides additional benefits. It is also shown that the GRACE (Gravity Recovery and Climate Experiment) gravity model GGM01S provides a significant improvement in the orbit accuracy and reduction in the level of geographically correlated orbit errors.  相似文献   

6.
With the implementation of the Jason-1 satellite altimeter mission, the goal of reaching the 1-cm level in orbit accuracy was set. To support the Precision Orbit Determination (POD) requirements, the Jason-1 spacecraft carries receivers for DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite) and GPS (Global Positioning System), as well as a retroreflector for SLR (Satellite Laser Ranging). The overall orbit accuracy for Jason will depend on the quality and the relative weighting of the available tracking data. In this study, the relative importance of the SLR, DORIS, and GPS tracking data is assessed along with the most effective parameterization for accounting for the unmodeled accelerations through the application of empirical accelerations. The optimal relative weighting for each type of tracking data was examined. It is demonstrated that GPS tracking alone is capable of supporting a radial orbit accuracy for Jason-1 at the 1-cm level, and that including SLR tracking provides additional benefits. It is also shown that the GRACE (Gravity Recovery and Climate Experiment) gravity model GGM01S provides a significant improvement in the orbit accuracy and reduction in the level of geographically correlated orbit errors.  相似文献   

7.
《Marine Geodesy》2012,35(1):63-85
Abstract

We introduce an iterative inversion method to address the problems in high-order seafloor topography inversion using gravity data (gravity anomaly and vertical gravity gradient anomaly), such as the difficulty in computing the equation and the uniqueness of the calculation results. A part of the South China Sea is selected as the experimental area. Considering the coherence and admittance function of gravity topography and vertical gravity gradient topography, the inversion band of the gravity anomaly and vertical gravity gradient anomaly in the study area is 30?km–120?km. Seafloor topography models of different orders are constructed using an iterative method, and the performance of each seafloor topography model is analyzed against ETOPO1 and other seafloor topography models. The experimental results show that as the inversion order increases, the clarity and richness of seafloor topographic expression continuously improve. However, the accuracy of seafloor topography inversion does not improve significantly when the inversion order exceeds a certain value, which is related to the contribution of high-order seafloor topography to gravity information. The results show that the accuracy of BGT4 (inversion model constructed by the gravity anomaly) is slightly poorer than that of BVGGT4 (inversion model constructed by the vertical gravity gradient anomaly) in areas with complex topography, such as multi-seamounts and trenches, and the results are generally better in areas with flat seafloor topography.  相似文献   

8.
利用谱分析方法,通过对月球外空间扰动引力频谱特性的分析研究,估计了其谱分量信息随高度的衰减特点及在不同频段的谱敏感度,得到了敏感各频段位系数与所需探测器轨道高度的关系,同时为联合不同数据求解月球重力场模型在改进解算方法和跟踪数据定权上提供了参考依据。  相似文献   

9.
Short wave gravity anomaly is correlated to sea floor topography in the gravity field of Taiwan and its adjacent seas. Gravity values of 200 × 10-5ms-2 at Yushang and -160 × 10-5ms-2 at Liuqiu sea trench are respectively the maximum and minimum gravity values in this area.Bouguer gravity anomaly reflects not only Moho interface undulation, but also fault distribution.The inflexion of gradient belt of Bouguer gravity anomaly is a spot liable to earthquakes. Middlelong wave geoid is the best data to invert crustal thickness. We calculate crustal thickness by using geoid data, and the maximum value is 38km; the minimum value is 12km in Taiwan and its adjacent seas.  相似文献   

10.
A new one-minute global seafloor topography model was derived from vertical gravity gradient anomalies (VGG), altimetric gravity anomalies, and ship soundings. Ship soundings are used to constrain seafloor topography at wavelengths longer than 200 km and to calibrate the topography to VGG (or gravity) ratios at short wavelengths area by area. VGG ratios are used to predict seafloor topography for wavelength bands of 100–200 km and to suppress the effect of crust isostasy. Gravity anomalies are used to recover seafloor topography at wavelengths shorter than 100 km. The data processing procedure is described in detail in this paper. The accuracy of the model is evaluated using ship soundings and existing models, including General Bathymetric Charts of the Oceans (GEBCO), DTU10, ETOPO1, and SIO V15.1. The results show that, in the discussed regions, the accuracy of the model is better than ETOPO1, GEBCO, and DTU10. Additionally, the model is comparable with V15.1, which is generally believed to have the highest accuracy. In the north-central Pacific Ocean, the accuracy of the model increased by approximately 29.5% compared with the V15.1 model. This indicates that a more accurate seafloor topography model can be formed by combining gravity anomalies, VGG, and ship soundings.  相似文献   

11.
Geoid and gravity anomalies derived from satellite altimetry are gradually gaining importance in marine geoscientific investigations. Keeping this in mind, we have validated ERS-1 (168 day repeat) altimeter data and very high-resolution free-air gravity data sets generated from Seasat, Geosat GM, ERS-1 and TOPEX/POSEIDON altimeters data with in-situ shipborne gravity data of both the Bay of Bengal and the Arabian Sea regions for the purpose of determining the consistencies and deviations. The RMS errors between high resolution satellite and ship gravity data vary from 2.7 to 6.0 mGal, while with ERS-1 data base the errors are as high as 16.5 mGal. We also have generated high resolution satellite gravity maps of different regions over the Indian offshore, which eventually have become much more accurate in extracting finer geological structures like 85° E Ridge, Swatch of no ground, Bombay High in comparison with ERS-1satellite-derived gravity maps. Results from the signal processing related studies over two specific profiles in the eastern and western offshore also clearly show the advantage of high resolution satellite gravity compared to the ERS-1 derived gravity with reference to ship gravity data.  相似文献   

12.
程芦颖 《海洋测绘》2012,32(6):63-67
从地球重力场测量要素出发,按照局部重力场模型、区域重力场模型、全球重力场模型求解的发展思路,分析了对地球重力场测量技术手段的要求。根据高-低卫星跟踪卫星的距离和距离变率开展定轨研究的概念,梳理了卫星跟踪卫星重力测量系统的发展。针对卫星跟踪卫星重力测量技术的内涵,分析了高-低卫星跟踪卫星测量模式(SST-hl)和高-低低卫星跟踪卫星测量模式(SST—hll)的地球重力场测量本质。  相似文献   

13.
考虑观测仪器系统参数以及异常观测数据对参数估值的影响,讨论了平差中系统参数、重力基准的选择,并采用抗差剔除或削弱异常观测数据的影响,采用实际观测数据进行了试算。  相似文献   

14.
重力梯度由低频、中频和高频信息构成,其高频信息主要受地形质量的影响,为了更好地利用地形数据获取重力梯度高频信息,提出一种全新的方法——高斯-勒让德积分法,根据模型算例和实测DEM数据验证了该方法的有效性。结果表明,高斯-勒让德积分法作为一种全新的解算方法,与传统的棱柱法和直接积分法相比,在一定的精度条件下解算效率更高,在重力梯度测量相对落后和重力资料欠缺的情况下,利用该方法由DEM数据来解算重力梯度的高频部分是可行的,相较于传统解算方法而言,其具有一定的优势。  相似文献   

15.
The knowledge of the bedrock topography (instead of the ocean-floor relief) is required in various geoscience studies investigating the evolution and structure of the oceanic lithosphere. The gross density structure and thickness of marine sediments were obtained from ocean drilling data or seismic surveys. Alternatively, marine gravity data corrected for the ocean and sediment density contrasts can be used for a detailed mapping of the bedrock topography. In this study, we compute and apply the sediment stripping correction to marine gravity data. The sediment density distribution is approximated by a 3-D density model derived based on the analysis of density samples from the Deep Sea Drilling Project. Methods for a spherical harmonic analysis and synthesis are utilized in computing the sediment stripping correction. Results show that this correction varies between 0 and 32 mGal. We also demonstrate that the approximation of heterogeneous sediment structures by a uniform density model yields large errors. The spectral analysis reveals a high correlation (>0.75) between the sediment-stripped marine gravity data and the bedrock topography. The application of the sediment stripping correction to marine gravity data enhanced the gravitational signature of the sediment-bedrock interface.  相似文献   

16.
基于球谐展开和两分量模型,推导了基于Poisson积分方程的重力异常延拓的远区效应截断误差的函数表达;研究了近区半径、移去重力场阶次、延拓高度与远区效应截断误差之间的相互关系.数值分析表明,当延拓高度为1 000m时,移去360阶的重力场模型,积分半径大于0.5°能保证远区效应截断误差可以忽略;当移去2160阶的重力场...  相似文献   

17.
Gravity measurements in the South Atlantic Ocean over Burdwood Bank show a large negative gravity anomaly extending along its northern edge. An interpretation of the gravity data has been made based on the seismic refraction measurements of Ludwig et al. (1968) and shows that the negative gravity anomaly can be largely attributed to a basin containing low density sediments about 8 km thick. The crustal sections constructed also indicate that the crust increases in thickness from about 20 km under Burdwood Bank to about 30 km under the Falkland Islands platform.  相似文献   

18.
简述了SGG数据恢复局部重力场的理论本质以及卫星重力梯度边值问题;详细介绍了当前国内外利用SGG进行局部重力场求解的研究进展,并将已有的求解方法总结归纳为三类:模型法、计算法和组合法,同时对各种方法的概念和研究现状作了详细介绍;最后总结了SGG数据求解局部重力场的发展前景和思考建议。  相似文献   

19.
EGM96与EGM2008地球重力场模型精度比较   总被引:5,自引:0,他引:5       下载免费PDF全文
给出了由地球重力场模型计算重力异常和垂线偏差的公式,利用36阶、360阶EGM96、EGM2008地球重力场模型计算了国内某地区格网点重力异常和地面垂线偏差,并将其与实测数据进行比较,从而对这两种模型的精度进行了分析和比较。结果表明,在表示国内某地区格网点重力异常时,EGM2008模型精度较高;在表示地面垂线偏差时,两种模型的精度相当。  相似文献   

20.
研究了重力梯度仪辅助惯导的导航误差方程,计算某区域重力异常、垂线偏差和二阶的扰动重力张量,并在此基础上对扰动重力补偿惯导系统误差进行了仿真计算,与无重力梯度仪辅助惯导的误差进行数值比较,结果表明采用重力梯度仪辅助导航之后,扰动重力引起的惯导误差有了明显的改善。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号