首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Energy loss in porous media containing fluids is typically caused by a variety of dynamic mechanisms.In the Biot theory,energy loss only includes the frictional dissipation between the solid phase and the fluid phase,resulting in underestimation of the dispersion and attenuation of the waves in the low frequency range.To develop a dynamic model that can predict the high dispersion and strong attenuation of waves at the seismic band,we introduce viscoelasticity into the Biot model and use fractional derivatives to describe the viscoelastic mechanism,and finally propose a new wave propagation model.Unlike the Biot model,the proposed model includes the intrinsic dissipation of the solid frame.We investigate the effects of the fractional order parameters on the dispersion and attenuation of the P-and S-waves using several numerical experiments.Furthermore,we use several groups of experimental data from different fluid-saturated rocks to testify the validity of the new model.The results demonstrate that the new model provides more accurate predictions of high dispersion and strong attenuation of different waves in the low frequency range.  相似文献   

2.
Biot theory was based on two ideas: the coupling factor to quantify the kinetic energy of fluid and Darcy permeability to quantify the dissipation function. As Biot theory did not well predict attenuation of ultrasonic S wave, we modify the theory to better characterize the S wave attenuation. The range of the coupling factor is at first estimated in view of fluid mechanics. Application of the original theory to water-saturated Boise sandstone and brine-saturated Berea sandstone shows that the model prediction significantly underestimates the S wave attenuation ultrasonically measured. For this reason, we replace Darcy permeability with variable permeability to improve the fluid momentum equation. The new model yields predictions of phase velocity and the quality factor both close to the ultrasonic measurements. The reason why the improved model is superior to Biot theory is that variable permeability is based on the Stokes boundary layer at the fluid–solid interface, thus accurately quantifying the viscous stress between the two phases. Finally, the length scale of the viscous stress is calculated in the mesoscopic sense.  相似文献   

3.
Wave‐induced oscillatory fluid flow in the vicinity of inclusions embedded in porous rocks is one of the main causes for P‐wave dispersion and attenuation at seismic frequencies. Hence, the P‐wave velocity depends on wave frequency, porosity, saturation, and other rock parameters. Several analytical models quantify this wave‐induced flow attenuation and result in characteristic velocity–saturation relations. Here, we compare some of these models by analyzing their low‐ and high‐frequency asymptotic behaviours and by applying them to measured velocity–saturation relations. Specifically, the Biot–Rayleigh model considering spherical inclusions embedded in an isotropic rock matrix is compared with White's and Johnson's models of patchy saturation. The modeling of laboratory data for tight sandstone and limestone indicates that, by selecting appropriate inclusion size, the Biot‐Rayleigh predictions are close to the measured values, particularly for intermediate and high water saturations.  相似文献   

4.
P‐ and S‐wave velocity and attenuation coefficients (accurate to ±0.3% and ±0.2 dB/cm, respectively) were measured in synthetic porous rocks with aligned, penny‐shaped fractures using the laboratory ultrasonic pulse‐echo method. Shear‐wave splitting was observed by rotating the S‐wave transducer and noting the maximum and minimum velocities relative to the fracture direction. A block of synthetic porous rock of fracture density 0.0201 ± 0.0068 and fracture size 3.6 ± 0.38 mm (measured from image analysis of X‐ray CT scans) was sub‐sampled into three 20–30 mm long, 50 mm diameter core plugs oriented at 0°, 45° and 90° to the fracture normal (transversely isotropic symmetry axis). Full waveform data were collected over the frequency range 500–1000 kHz for both water and glycerin saturated cores to observe the effect of pore fluid viscosity at 1 cP and 100 cP, respectively. The shear‐wave splitting observed in the 90° core was 2.15 ± 0.02% for water saturated and 2.39 ± 0.02% for glycerin saturated, in agreement with the theory that suggests that the percentage splitting should be 100 times the fracture density and independent of the saturating fluid. In the 45° core, by contrast, splitting was 0.00 ± 0.02% for water saturation and ?0.77 ± 0.02% for glycerin saturation. This dependence on fracture orientation and pore fluid viscosity is consistent with the poro‐visco‐elastic theory for aligned, meso‐scale fractures in porous rocks. The results suggest the possible use of shear‐ or converted‐wave data to discriminate between fluids on the basis of viscosity variations.  相似文献   

5.
介观尺度孔隙流体流动是地震频段岩石表现出较强速度频散与衰减的主要作用.利用周期性层状孔隙介质模型,基于准静态孔弹性理论给出了模型中孔隙压力、孔隙流体相对运动速度以及固体骨架位移等物理量的数学解析表达式,同时利用Biot理论将其扩展至全频段条件下,克服了传统White模型中介质分界面处流体压力不连续的假设. 在此基础上对准静态与全频段下模型介质中孔隙压力、孔隙流体相对运动速度变化形式及其对弹性波传播特征的影响进行了讨论,为更有效理解介观尺度下流体流动耗散和频散机制提供物理依据.研究结果表明,低频条件下快纵波孔压在介质层内近于定值,慢纵波通过流体扩散改变总孔隙压力, 随频率的增加慢波所形成的流体扩散作用逐渐减弱致使介质中总孔压逐渐接近于快纵波孔压,在较高频率下孔压与应力的二次耦合作用使总孔压超过快纵波孔压.介质中孔隙流体相对运动速度与慢纵波形成的流体相对运动速度变化形式一致;随频率的增加孔隙流体逐渐从排水的弛豫状态过渡到非弛豫状态,其纵波速度-含水饱和度变化形式也从符合孔隙流体均匀分布模式过渡到斑块分布模式,同时介质在不同含水饱和度下的衰减峰值与慢纵波所形成的孔隙流体相对流动速度具有明显的相关性.  相似文献   

6.
A model of wave propagation in fluid-saturated porous media is developed where the principal fluid/solid interaction mode affecting the propagation of the acoustic wave results from the conjunction of the Biot and the Squirt flow mechanism. The difference between the original Biot/Squirt (BISQ) flow theory and the new theory, which we call the reformulated BISQ, is that the average fluid pressure term appearing in the dynamic equation for a two component solid/fluid continuum is independent of squirt flow length. P-velocity and attenuation relate to measurable rock physical parameters: the Biot's poroelastic constants, porosity, permeability, pore fluid compressibility and viscosity. Modelling shows that velocity and attenuation dispersion obtained using the reformulated BISQ theory are of the same order of magnitude as those obtained using the original BISQ theory. Investigation on permeability effect on velocity and attenuation dispersion indicate that the transition zone in velocity and attenuation peak, occurring both at the relaxation frequency, shifts toward high frequency when permeability decreases. This behaviour agrees with Biot's theory prediction.  相似文献   

7.
Ultrasonic (500 kHz) P‐ and S‐wave velocity and attenuation anisotropy were measured in the laboratory on synthetic, octagonal‐shaped, silica‐cemented sandstone samples with aligned penny‐shaped voids as a function of pore fluid viscosity. One control (blank) sample was manufactured without fractures, another sample with a known fracture density (measured from X‐ray CT images). Velocity and attenuation were measured in four directions relative to the bedding fabric (introduced during packing of successive layers of sand grains during sample construction) and the coincident penny‐shaped voids (fractures). Both samples were measured when saturated with air, water (viscosity 1 cP) and glycerin (100 cP) to reveal poro‐visco‐elastic effects on velocity and attenuation, and their anisotropy. The blank sample was used to estimate the background anisotropy of the host rock in the fractured sample; the bedding fabric was found to show transverse isotropy with shear wave splitting (SWS) of 1.45 ± 1.18% (i.e. for S‐wave propagation along the bedding planes). In the fractured rock, maximum velocity and minimum attenuation of P‐waves was seen at 90° to the fracture normal. After correction for the background anisotropy, the fractured sample velocity anisotropy was expressed in terms of Thomsen's weak anisotropy parameters ε, γ & δ. A theory of frequency‐dependent seismic anisotropy in porous, fractured, media was able to predict the observed effect of viscosity and bulk modulus on ε and δ in water‐ and glycerin‐saturated samples, and the higher ε and δ values in air‐saturated samples. Theoretical predictions of fluid independent γ are also in agreement with the laboratory observations. We also observed the predicted polarisation cross‐over in shear‐wave splitting for wave propagation at 45° to the fracture normal as fluid viscosity and bulk modulus increases.  相似文献   

8.
The simplified macro‐equations of porous elastic media are presented based on Hickey's theory upon ignoring effects of thermomechanical coupling and fluctuations of porosity and density induced by passing waves. The macro‐equations with definite physical parameters predict two types of compressional waves (P wave) and two types of shear waves (S wave). The first types of P and S waves, similar to the fast P wave and S wave in Biot's theory, propagate with fast velocity and have relatively weak dispersion and attenuation, while the second types of waves behave as diffusive modes due to their distinct dispersion and strong attenuation. The second S wave resulting from the bulk and shear viscous loss within pore fluid is slower than the second P wave but with strong attenuation at lower frequencies. Based on the simplified porous elastic equations, the effects of petrophysical parameters (permeability, porosity, coupling density and fluid viscosity) on the velocity dispersion and attenuation of P and S waves are studied in brine‐saturated sandstone compared with the results of Biot's theory. The results show that the dispersion and attenuation of P waves in simplified theory are stronger than those of Biot's theory and appear at slightly lower frequencies because of the existence of bulk and shear viscous loss within pore fluid. The properties of the first S wave are almost consistent with the S wave in Biot's theory, while the second S wave not included in Biot's theory even dies off around its source due to its extremely strong attenuation. The permeability and porosity have an obvious impact on the velocity dispersion and attenuation of both P and S waves. Higher permeabilities make the peaks of attenuation shift towards lower frequencies. Higher porosities correspond to higher dispersion and attenuation. Moreover, the inertial coupling between fluid and solid induces weak velocity dispersion and attenuation of both P and S waves at higher frequencies, whereas the fluid viscosity dominates the dispersion and attenuation in a macroscopic porous medium. Besides, the heavy oil sand is used to investigate the influence of high viscous fluid on the dispersion and attenuation of both P and S waves. The dispersion and attenuation in heavy oil sand are stronger than those in brine‐saturated sandstone due to the considerable shear viscosity of heavy oil. Seismic properties are strongly influenced by the fluid viscosity; thus, viscosity should be included in fluid properties to explain solid–fluid combination behaviour properly.  相似文献   

9.
给出基于Biot多孔介质理论分析饱和土体在动载荷作用下瞬态响应的有限元公式,数值计算部分采用本文有限元法分别计算一维饱和土柱在两种不同类型动载荷作用下的瞬态响应,并将数值计算结果与文献中的解析解进行比较,二者结果十分吻合,从而验证本文方法的可行性。  相似文献   

10.
Different theoretical and laboratory studies on the propagation of elastic waves in layered hydrocarbon reservoir have shown characteristic velocity dispersion and attenuation of seismic waves. The wave‐induced fluid flow between mesoscopic‐scale heterogeneities (larger than the pore size but smaller than the predominant wavelengths) is the most important cause of attenuation for frequencies below 1 kHz. Most studies on mesoscopic wave‐induced fluid flow in the seismic frequency band are based on the representative elementary volume, which does not consider interaction of fluid flow due to the symmetrical structure of representative elementary volume. However, in strongly heterogeneous media with unsymmetrical structures, different courses of wave‐induced fluid flow may lead to the interaction of the fluid flux in the seismic band; this has not yet been explored. This paper analyses the interaction of different courses of wave‐induced fluid flow in layered porous media. We apply a one‐dimensional finite‐element numerical creep test based on Biot's theory of consolidation to obtain the fluid flux in the frequency domain. The characteristic frequency of the fluid flux and the strain rate tensor are introduced to characterise the interaction of different courses of fluid flux. We also compare the behaviours of characteristic frequencies and the strain rate tensor on two scales: the local scale and the global scale. It is shown that, at the local scale, the interaction between different courses of fluid flux is a dynamic process, and the weak fluid flux and corresponding characteristic frequencies contain detailed information about the interaction of the fluid flux. At the global scale, the averaged strain rate tensor can facilitate the identification of the interaction degree of the fluid flux for the porous medium with a random distribution of mesoscopic heterogeneities, and the characteristic frequency of the fluid flux is potentially related to that of the peak attenuation. The results are helpful for the prediction of the distribution of oil–gas patches based on the statistical properties of phase velocities and attenuation in layered porous media with random disorder.  相似文献   

11.
Predicting the shear‐wave (S‐wave) velocity is important in seismic modelling, amplitude analysis with offset, and other exploration and engineering applications. Under the low‐frequency approximation, the classical Biot–Gassmann theory relates the Biot coefficient to the bulk modulus of water‐saturated sediments. If the Biot coefficient under in situ conditions can be estimated, the shear modulus or the S‐wave velocity can be calculated. The Biot coefficient derived from the compressional‐wave (P‐wave) velocity of water‐saturated sediments often differs from and is less than that estimated from the S‐wave velocity, owing to the interactions between the pore fluid and the grain contacts. By correcting the Biot coefficients derived from P‐wave velocities of water‐saturated sediments measured at various differential pressures, an accurate method of predicting S‐wave velocities is proposed. Numerical results indicate that the predicted S‐wave velocities for consolidated and unconsolidated sediments agree well with measured velocities.  相似文献   

12.
Ultrasonic compressional‐ and shear‐wave velocities have been measured on 34 samples of sandstones from hydrocarbon reservoirs. The sandstones are all of low clay content, high porosity, and cover a wide range of permeabilities. They were measured dry and brine‐saturated under hydrostatic effective stresses of 10, 20 and 40 MPa. For eight of the sandstones, ultrasonic velocity measurements were made at different partial water saturations in the range from dry to fully saturated. The Gassmann–Biot theory is found to account for most of the changes in velocities at high effective stress levels when the dry sandstones are fully saturated with brine, provided the lower velocities resulting when the dry sandstone initially adsorbs small amounts of moisture are used to determine the elastic properties of the ‘dry’ sandstone. At lower effective stress levels, local flow phenomena due to the presence of open microcracks are assumed to be responsible for measured velocities higher than those predicted by the theory. The partial saturation results are modelled fairly closely by the Gassmann–Biot theory, assuming heterogeneous saturation for P‐waves.  相似文献   

13.
《Advances in water resources》2002,25(8-12):1105-1117
Macroscopic differential equations of mass and momentum balance for two immiscible fluids in a deformable porous medium are derived in an Eulerian framework using the continuum theory of mixtures. After inclusion of constitutive relationships, the resulting momentum balance equations feature terms characterizing the coupling among the fluid phases and the solid matrix caused by their relative accelerations. These terms, which imply a number of interesting phenomena, do not appear in current hydrologic models of subsurface multiphase flow. Our equations of momentum balance are shown to reduce to the Berryman–Thigpen–Chen model of bulk elastic wave propagation through unsaturated porous media after simplification (e.g., isothermal conditions, neglect of gravity, etc.) and under the assumption of constant volume fractions and material densities. When specialized to the case of a porous medium containing a single fluid and an elastic solid, our momentum balance equations reduce to the well-known Biot model of poroelasticity. We also show that mass balance alone is sufficient to derive the Biot model stress–strain relations, provided that a closure condition for porosity change suggested by de la Cruz and Spanos is invoked. Finally, a relation between elastic parameters and inertial coupling coefficients is derived that permits the partial differential equations of the Biot model to be decoupled into a telegraph equation and a wave equation whose respective dependent variables are two different linear combinations of the dilatations of the solid and the fluid.  相似文献   

14.
In sedimentary rocks attenuation/dispersion is dominated by fluid-rock interactions. Wave-induced fluid flow in the pores causes energy loss through several mechanisms, and as a result attenuation is strongly frequency dependent. However, the fluid motion process governing the frequency dependent attenuation and velocity remains unclear. We propose a new approach to obtain the analytical expressions of pore pressure, relative fluxes distribution and frame displacement within the double-layer porous media based on quasi-static poroelastic theory. The dispersion equation for a P-wave propagating in a porous medium permeated by aligned fractures is given by considering fractures as thin and highly compliant layers. The influence of mesoscopic fluid flow on phase velocity dispersion and attenuation is discussed under the condition of varying fracture weakness. In this model conversion of the compression wave energy into Biot slow wave diffusion at the facture surface can result in apparent attenuation and dispersion within the usual seismic frequency band. The magnitude of velocity dispersion and attenuation of P-wave increases with increasing fracture weakness, and the relaxation peak and maximum attenuation shift towards lower frequency. Because of its periodic structure, the fractured porous media can be considered as a phononic crystal with several pass and stop bands in the high frequency band. Therefore, the velocity and attenuation of the P-wave show an oscillatory behavior with increasing frequency when resonance occurs. The evolutions of the pore pressure and the relative fluxes as a function of frequency are presented, giving more physical insight into the behavior of P-wave velocity dispersion and the attenuation of fractured porous medium due to the wave-induced mesoscopic flow. We show that the specific behavior of attenuation as function of frequency is mainly controlled by the energy dissipated per wave cycle in the background layer.  相似文献   

15.
将饱和土体视为由弹性骨架和不可压缩流体组成的两相孔隙介质,取固相位移,液相位移,孔隙水压力为场变量。从两相孔介质的动力耦合微分方程出发,利用伽辽金原理和Wilson-θ法导出了三场有限元积分方法,该方法可进行二维非均匀饱和土体的地震反应分析,文中通过算例讨论了非均匀饱和土体地震反应的一些特征。  相似文献   

16.
It is evident from the laboratory experiments that shear moduli of different porous isotropic rocks may show softening behaviour upon saturation. The shear softening means that the shear modulus of dry samples is higher than of saturated samples. Shear softening was observed both at low (seismic) frequencies and high (ultrasonic) frequencies. Shear softening is stronger at seismic frequencies than at ultrasonic frequencies, where the softening is compensated by hardening due to unrelaxed squirt flow. It contradicts to Gassmann's theory suggesting that the relaxed shear modulus of isotropic rock should not depend upon fluid saturation, provided that no chemical reaction between the solid frame and the pore fluid. Several researchers demonstrated that the shear softening effect is reversible during re-saturation of rock samples, suggesting no permanent chemical reaction between the solid frame and the pore fluid. Therefore, it is extremely difficult to explain this fluid–rock interaction mechanism theoretically, because it does not contradict to the assumptions of Gassmann's theory, but contradicts to its conclusions. We argue that the observed shear softening of partially saturated rocks by different pore fluids is related to pore-scale interfacial phenomena effects, typically neglected by the rock physics models. These interface phenomena effects are dependent on surface tension between immiscible fluids, rock wettability, aperture distribution of microcracks, compressibility of microcracks, porosity of microcracks, elastic properties of rock mineral, fluid saturation, effective stress and wave amplitude. Derived equations allow to estimate effects of pore fluids and saturation on the shear modulus and mechanical strength of rocks.  相似文献   

17.
Local fluid flow (LFF) at the mesoscopic scale is the main dissipation mechanism of seismic waves in heterogeneous porous media within the seismic frequency band. LFF is easily influenced by the structure and boundary conditions of the porous media, which leads to different behaviors of the peak frequency of attenuation. The associated transition frequency can provide detailed information about the trend of LFF; therefore, research on the transition frequency of LFF and its relationship with the peak frequency of the corresponding attenuation (i.e., inverse of quality factor) facilitates the detailed understanding of the effect of inner structures and boundary conditions in porous media. In this study, we firstly obtain the transition frequency of fluid flux based on Biot’s theory of poroelasticity and the fast Fourier transform algorithm in a sample containing one repeating unit cell (RUC). We then analyze changes of these two frequencies in porous media with different porous properties. Finally, we extend our analysis to the influence of the undrained boundary condition on the transition frequency and peak frequency in porous media with multiple RUCs. This setup can facilitate the understanding of the effect from the undrained boundary condition. Results demonstrate that these two frequencies have the same trend at low water saturation, but amplitude variations differ between the frequencies as the amount of saturation increases. However, for cases of high water saturation, both the trend and the amplitude variation of these two frequencies fit well with each other.  相似文献   

18.
Elastic behaviour of North Sea chalk: A well-log study   总被引:1,自引:1,他引:0  
We present two different elastic models for, respectively, cemented and uncemented North Sea chalk well‐log data. We find that low Biot coefficients correlate with anomalously low cementation factors from resistivity measurements at low porosity and we interpret this as an indication of cementation. In contrast, higher Biot coefficients and correspondingly higher cementation factors characterize uncemented chalk for the same (low) porosity. Accordingly, the Poisson's ratio–porosity relationship for cemented chalk is different from that of uncemented chalk. We have tested the application of the self‐consistent approximation, which here represents the unrelaxed scenario where the pore spaces of the rock are assumed to be isolated, and the Gassmann theory, which assumes that pore spaces are connected, as tools for predicting the effect of hydrocarbons from the elastic properties of brine‐saturated North Sea reservoir chalk. In the acoustic impedance–Poisson's ratio plane, we forecast variations in porosity and hydrocarbon saturation from their influence on the elastic behaviour of the chalk. The Gassmann model and the self‐consistent approximation give roughly similar predictions of the effect of fluid on acoustic impedance and Poisson's ratio, but we find that the high‐frequency self‐consistent approach gives a somewhat smaller predicted fluid‐saturation effect on Poisson's ratio than the low‐frequency Gassmann model. The Gassmann prediction for the near and potentially invaded zone corresponds more closely to logging data than the Gassmann prediction for the far, virgin zone. We thus conclude that the Gassmann approach predicts hydrocarbons accurately in chalk in the sonic‐frequency domain, but the fluid effects as recorded by the acoustic tool are significantly affected by invasion of mud filtrate. The amplitude‐versus‐angle (AVA) response for the general North Sea sequence of shale overlying chalk is predicted as a function of porosity and pore‐fill. The AVA response of both cemented and uncemented chalk generally shows a declining reflectivity coefficient versus offset and a decreasing normal‐incidence reflectivity with increasing porosity. However, for the uncemented model, a phase reversal will appear at a relatively lower porosity compared to the cemented model.  相似文献   

19.
由于介观尺度的孔隙流体流动,弹性波传播过孔隙岩层时在地震频段表现出较强的频散和衰减。Johnson理论给出了在任意孔隙形状的条件下,部分气水饱和孔隙介质的理论相速度和品质因子的解析解。本文在Johnson模型的基础上,通过对Q值曲线的低频和高频近似,推导了Q值曲线的近似公式,以及基于孔隙介质基本地球物理参数和孔隙斑块几何形态参数T和比表面积S/V的最大衰减Qmin近似公式。通过与理论值的对比,对Qmin近似公式存在的线性误差进行改正,进一步提高了精度。复杂的斑块形态对最大衰减Qmin和过渡频率ftr的都产生一定影响,且对ftr影响更大。因为数值模拟直接求解介观尺度的Biot孔隙介质方程需要极大的计算量,我们使用Zener模型建立了等效粘弹模型,有效地模拟了地震频带内的衰减和频散现象。  相似文献   

20.
In this paper two causal models that approximate the nearly frequency‐independent cyclic behaviour of soils are analysed in detail. The study was motivated by the need to conduct time‐domain viscoelastic analysis on soil structures without adopting the ad hoc assumption of Rayleigh damping. First, the causal hysteretic model is introduced in which its imaginary part is frequency independent the same way that is the imaginary part of the popular non‐causal constant hysteretic model. The adoption of an imaginary part that is frequency independent even at the zero‐frequency limit, in conjunction with the condition that the proposed model should be causal, yields a real part that is frequency dependent and singular at zero frequency. The paper shows that the causal hysteretic model, although pathological at the static limit, is the mathematical connection between the non‐causal constant hysteretic model and the physically realizable Biot model. The mathematical structure of the two causal models is examined and it is shown that the causal hysteretic model is precisely the high‐frequency limit of the Biot model. Although both models have a closed‐form time‐domain representation, only the Biot model is suitable for a time‐domain viscoelastic analysis with commercially available computer software. The paper demonstrates that the simplest, causal and physically realizable linear hysteretic model that can approximate the cyclic behaviour of soil is the Biot model. The proposed study elucidates how the dynamic analysis of soil structures can be conducted rigorously in terms of the viscoelastic properties of the soil material and not with the ad hoc Rayleigh damping approach which occasionally has been criticized that tends to overdamp the higher vibration modes. The study concludes that under pulse‐type motions the Rayleigh damping approximation tends to overestimate displacements because of the inappropriate viscous type of dissipation that is imposed. Under longer motions that induce several cycles, the concept of equivalent viscous damping is more appropriate and the Rayleigh damping approximation results to a response that is comparable to the response computed with a rigorous time‐domain viscoelastic finite element analysis. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号