首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The thermal effects of magmatic intrusion on the conductivity and dielectric constant of magnetic rocks from Hammamat sediments, NE desert, Cairo, Egypt (latitude ∼27° and longitude ∼33°) were investigated experimentally in the laboratory using nonpolarizing electrodes. Granitic magma was intruded into the Hammamat sediments, which are a mixture of mainly magnetite with sandstone and due to the thermal effect the area around was extensively heated and altered to different degrees. Due to this magma intrusion, magnetite was transformed (by heating) to hematite to different degrees according to its location from the intrusion. Complex impedance measurements were performed in the frequency range of 10 Hz to 100 KHz at normal temperature (∼20°C) and at a relative humidity of ∼50% RH. Samples were collected at different locations perpendicular to the core of the magma intrusion. Experimental data indicate that the electrical properties vary strongly as we move away (with distance) from the magma intrusion. The conductivity of hematite is ∼10−2 S/m and that of magnetite is ∼104 S/m. As we move from magnetite to hematite (to the core of the magma intrusion) it is supposed that the conductivity will decrease but it was found that the conductivity increases (which is supposed to be abnormal). The conductivity increases with increasing frequency from ∼10−8 S/m to ∼10−5 S/m with almost power‐law dependence on frequency. The conductivity increases in the order of one decade due to the variation from magnetite to hematite. The increase of conductivity, as we move from magnetite to hematite, was argued to be due to the heating that partially or completely melts the samples, thus the porosity of the samples was decreased and accordingly the conductivity and dielectric constant increased. It was also supposed that the grains of the conductor in the samples are coated or isolated with insulator material. A percolation behaviour for the conductivity and dielectric constant, characteristic of random conductor‐insulator mixtures, was found with distance, where continuous paths of the conductive material occur accompanied by peaking of the dielectric constant. Complex impedance plots show that as we move in the direction of altered samples (towards hematite) the relation between real and imaginary impedance changes from a linear form to an arc of a depressed semicircle and increases in depression as we move in the direction of the altered samples, which is consistent with the above interpretation.  相似文献   

2.
This paper is devoted to study the effect of saturation, with distilled water, on AC electrical conductivity and dielectric constant of a fully and partially saturated hematitic sandstone sample (Aswan area, Egypt). The saturation of the sample was changed from full saturation to partial saturation by air drying. Complex resistivity measurements at room temperature (∼16° C) were performed in the frequency range from 10 Hz to 100 kHz. We used non-polarizing Cu/CuSO4 gel electrodes. Experimental electrical spectra indicate, generally, that the electrical conductivity and dielectric constant vary strongly with water saturation and frequency. The low-frequency electrical conductivity and dielectric constant are supposed to be mainly controlled by surface conduction and polarization of the electrical double layer. Power law behaviours with frequency were noticed. The change in electrical conductivity and dielectric constant with increasing water content is fast at low saturations and slow at high saturations. The behaviour of the electrical conductivity and dielectric constant, with increasing water content, was argued to be the orientational polarization of bound water for very low saturations, displacement of the excess surface charges for relatively low saturations and free exchange of excess ions in double layer with the bulk electrolyte and generation of transient diffusional potentials, which lag behind the applied field for high saturations in addition to membrane polarization on clay and at inter-grain and grain surface water throats having selective charge transport properties. Also, from the data a semi-percolation behaviour was found that has a peak of dielectric constant at a certain concentration and an abrupt change in conductivity at another saturation.  相似文献   

3.
Electrical measurements are an important and integrated component of geophysical investigations connected with environmental problems. As a result of an analysis of the electrical conductivity, basic experiments on sandstones at frequencies below 10 kHz show that the complex behaviour of conductivity is caused exclusively by a complex interface conductivity. Its value is determined mainly by the internal rock interface to porosity ratio, the composition of the pore fluid and connected matrix-water interactions resulting in a specific microstructure of the interface. Therefore, it can be expected that the interface region of a soil or rock material is very sensitive to changes in composition caused by contamination. Contaminated sandstone and clay samples were investigated using a low-frequency measurement system. The investigations are directed at the influence of different contaminants and their concentration. Results show that the complex electrical conductivity (real and imaginary parts) is influenced by properties of the pore-filling contaminant. This influence results in a change of the level of both parts and the shape of their frequency dependence. The imaginary part in particular seems to provide important secondary information; in some cases this part alone allows a differentiation of the various contaminants. The different behaviour of various rock types shows that the effects observed are the result of interactions between pore fluid properties and the internal pore surface structure.  相似文献   

4.
We present the measured dielectric constant and conductivity of soil samples contaminated by diesel oil. Measurements of the electrical properties of contaminated soil were carried out using a guarded-electrode sample holder and a parallel-plate sample holder in the frequency range 2–250 MHz. Two different soil samples were measured. Both the dielectric constant and the conductivity of the contaminated soils and uncontaminated soils are compared. The measurement results show that the change in the dielectric constant of soils before and after diesel oil contamination is small but significant. These results provide a basis for using ground-penetrating radar or other high-frequency electromagnetic sensors in the detection of soil contamination.  相似文献   

5.
Electrical conductivity of alluvial sediments depends on litho‐textural properties, fluid saturation and porewater conductivity. Therefore, for hydrostratigraphic applications of direct current resistivity methods in porous sedimentary aquifers, it can be useful to characterize the prevailing mechanisms of electrical conduction (electrolytic or shale conduction) according to the litho‐textural properties and to the porewater characteristics. An experimental device and a measurement protocol were developed and applied to collect data on eight samples of alluvial sediments from the Po plain (Northern Italy), characterized by different grain‐size distribution, and fully saturated with porewater of variable conductivity. The bulk electrical conductivities obtained with the laboratory tests were interpreted with a classical two‐component model, which requires the identification of the intrinsic conductivity of clay particles and the effective porosity for each sample, and with a three‐component model. The latter is based on the two endmember mechanisms, surface and electrolytic conduction, but takes into account also the interaction between dissolved ions in the pores and the fluid‐grain interface. The experimental data and their interpretation with the phenomenological models show that the volumetric ratio between coarse and fine grains is a simple but effective parameter to determine the electrical behaviour of clastic hydrofacies at the scale of the representative elementary volume.  相似文献   

6.
The combination of magnetotelluric survey and laboratory measurements of electrical conductivity is a powerful approach for exploring the conditions of Earth’s deep interior. Electrical conductivity of hydrous silicate melts and aqueous fluids is sensitive to composition, temperature, and pressure, making it useful for understanding partial melting and fluid activity at great depths. This study presents a review on the experimental studies of electrical conductivity of silicate melts and aqueous fluids, and introduces some important applications of experimental results. For silicate melts, electrical conductivity increases with increasing temperature but decreases with pressure. With a similar Na+ concentration, along the calc-alkaline series electrical conductivity generally increases from basaltic to rhyolitic melt, accompanied by a decreasing activation enthalpy. Electrical conductivity of silicate melts is strongly enhanced with the incorporation of water due to promoted cation mobility. For aqueous fluids, research is focused on dilute electrolyte solutions. Electrical conductivity typically first increases and then decreases with increasing temperature, and increases with pressure before approaching a plateau value. The dissociation constant of electrolyte can be derived from conductivity data. To develop generally applicable quantitative models of electrical conductivity of melt/fluid addressing the dependences on temperature, pressure, and composition, it requires more electrical conductivity measurements of representative systems to be implemented in an extensive P-T range using up-to-date methods.  相似文献   

7.
电导率是表征岩石电学性质的重要物理参数,在地质资源勘查和测井解释等领域发挥着巨大作用.快速、准确地确定岩石电导率具有重要的理论和实践意义.作为近年来发展的一种岩石物理数值模拟工具,数字岩心技术在定量计算电导率等物性参数方面应用广泛.三维微观结构的准确获取是数字岩心技术计算岩石电导率的关键,但传统获取岩石三维微观结构的方法较为复杂费时.为了方便快速地通过数字岩心技术计算岩石的电导率,本文研究了岩石二维与三维数字岩心的电导率联系.我们基于微米级X射线CT扫描得到的三个砂岩样品的微观结构信息建立了三维数字岩心,并通过有限元法计算的三维数字岩心电导率与实验数据的对比验证数值计算方法的有效性.随后我们数字地扩展了岩石的孔隙,产生了较大孔隙度的三维数字岩心样本,在此基础上,计算了三维数字岩心和相应二维数字岩心的电导率,并通过Archie公式分别拟合了电导率与孔隙度之间的关系,得到了相应的胶结系数.结果表明,三维数字岩心的胶结系数小于二维数字岩心的胶结系数,且二者的比值与岩石实测孔隙度呈线性负相关关系.以该联系为纽带,通过二维图像快速计算得到的电导率与孔隙度关系,确定了三维数字岩心的电导率与孔隙度关系,并进一步通过三维数字岩心的孔隙度计算其电导率.该方法计算得到的人工砂岩样品的电导率与其三维数字岩心电导率相关系数高于96%,验证了基于二维图像的数字岩心电导率计算方法的有效性.本文的研究结果为快速、准确地计算岩石电导率提供了新的思路,在油气勘探开发中有广阔的应用前景.  相似文献   

8.
Electrical properties of rocks depend on composition (i.e. bulk properties of the constituents), micro structure (i.e. geometrical arrangement of the constituents) and interfacial effects. We consider here a rock as a three component system — grains, pores, and interfaces — in order to account for the observed behaviour. We review first the main results relative to DC. conductivity. Surface conductivity effects show up clearly in the case of shaly formations or at low salinities. Although Archies' law (1942) and Waxman and Smits model (1968) are widely used, a more physically based model is that of Johnson and Sen (1988). We review also the variable frequency conductivity (complex conductivity) data and models. The important effect in that case is the enhancement of the dielectric constant at low frequencies (Knight and Nur, 1987) which can be interpreted as a geometrical effect although electrochemical interactions may also play an important role at low frequencies, depending on the rock type.  相似文献   

9.
Electrical conductivity σ of two ultramafic rocks (a spinel lherzolite and a garnet peridotite) has been investigated to melting temperature at 1 bar under known oxygen fugacity environment. The electrical conductivity of the two rocks is found to increase with degree of partial melting and an ~ 15% melt fraction is necessary for the electrical conductivity to increase by ~ 1 order of magnitude. For a given melt fraction electrical conductivity of a spinel lherzolite is lower than that of a garnet peridotite and may be attributed to the differences in the composition of the melts formed.  相似文献   

10.
We explore the link between channel‐bed texture and river basin concavity in equilibrium catchments using a numerical landscape evolution model. Theory from homogeneous sediment transport predicts that river basin concavity directly increases with bed sediment size. If the effective grain size on a river bed governs its concavity, then natural phenomena such as grain‐size sorting and channel armouring should be linked to concavity. We examine this hypothesis by allowing the bed sediment texture to evolve in a transport‐limited regime using a two grain‐size mixture of sand and gravel. Downstream ?ning through selective particle erosion is produced in equilibrium. As the channel‐bed texture adjusts downstream so does the local slope. Our model predicts that it is not the texture of the original sediment mixture that governs basin concavity. Rather, concavity is linked to the texture of the sorted surface layer. Two different textural regimes are produced in the experiments: a transitional regime where the mobility of sand and gravel changes with channel‐bed texture, and a sand‐dominated region where the mobility of sand and gravel is constant. The concavity of these regions varies depending on the median gravel‐ or sand‐grain size, erosion rate, and precipitation rate. The results highlight the importance of adjustments in both surface texture and slope in natural rivers in response to changes in ?uvial and sediment inputs throughout a drainage network. This adjustment can only be captured numerically using multiple grain sizes or empirical downstream ?ning rules. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
Electrical, seismic, and electromagnetic methods can be used for noninvasive determination of subsurface physical and chemical properties. In particular, we consider the evaluation of water salinity and the detection of surface contaminants. Most of the relevant properties are represented by electric conductivity, P-wave velocity, and dielectric permittivity. Hence, it is important to obtain relationships between these measurable physical quantities and soil composition, saturation, and frequency. Conductivity in the geoelectric frequency range is obtained with Pride's model for a porous rock. (The model considers salinity and permeability.) White's model of patchy saturation is used to calculate the P-wave velocity and attenuation. Four cases are considered: light nonaqueous phase liquid (LNAPL) pockets in water, dense nonaqueous phase liquid (DNAPL) pockets in water, LNAPL pockets in air, and DNAPL pockets in air. The size of the pockets (or pools), with respect to the signal wavelength, is modeled by the theory. The electromagnetic properties in the GPR frequency range are obtained by using the Hanai–Bruggeman equation for two solids (sand and clay grains) and two fluids (LNAPL or DNAPL in water or air). The Hanai–Bruggeman exponent (1/3 for spherical particles) is used as a fitting parameter and evaluated for a sand/clay mixture saturated with water.Pride's model predicts increasing conductivity for increasing salinity and decreasing permeability. The best-fit exponent of the Hanai–Bruggeman equation for a sand/clay mixture saturated with water is 0.61, indicating that the shape of the grains has a significant influence on the electromagnetic properties. At radar frequencies, it is possible to distinguish between a water-saturated medium and a NAPL-saturated medium, but LNAPL- and DNAPL-saturated media have very similar electromagnetic properties. The type of contaminant can be better distinguished from the acoustic properties. P-wave velocity increases with frequency, and has dissimilar behaviour for wet and dry soils.  相似文献   

12.
As mineral exploration seeks deeper targets, there will be a greater reliance on geophysical data and a better understanding of the geological meaning of the responses will be required, and this must be achieved with less geological control from drilling. Also, exploring based on the mineral system concept requires particular understanding of geophysical responses associated with altered rocks. Where petrophysical datasets of adequate sample size and measurement quality are available, physical properties show complex variations, reflecting the combined effects of various geological processes. Large datasets, analysed as populations, are required to understand the variations. We recommend the display of petrophysical data as frequency histograms because the nature of the data distribution is easily seen with this form of display. A petrophysical dataset commonly contains a combination of overlapping sub-populations, influenced by different geological factors. To understand the geological controls on physical properties in hard rock environments, it is necessary to analyse the petrophysical data not only in terms of the properties of different rock types. It is also necessary to consider the effects of processes such as alteration, weathering, metamorphism and strain, and variables such as porosity and stratigraphy. To address this complexity requires that much more supporting geological information be acquired than in current practice. The widespread availability of field portable instruments means quantitative geochemical and mineralogical data can now be readily acquired, making it unnecessary to rely primarily on categorical rock classification schemes. The petrophysical data can be combined with geochemical, petrological and mineralogical data to derive explanations for observed physical property variations based not only on rigorous rock classification methods, but also in combination with quantitative estimates of alteration and weathering. To understand how geological processes will affect different physical properties, it is useful to define three end-member forms of behaviour. Bulk behaviour depends on the physical properties of the dominant mineral components. Density and, to a lesser extent, seismic velocity show such behaviour. Grain and texture behaviour occur when minor components of the rock are the dominate controls on its physical properties. Grain size and shape control grain properties, and for texture properties the relative positions of these grains are also important. Magnetic and electrical properties behave in this fashion. Thinking in terms of how geological processes change the key characteristics of the major and minor mineralogical components allows the resulting changes in physical properties to be understood and anticipated.  相似文献   

13.
We conducted a laboratory study of the joint elastic‐electrical properties of sixty‐three brine‐saturated sandstone samples to assess the likely impact of differential pressure (confining minus pore fluid pressures) in the range 8–60 MPa on the joint interpretation of marine seismic and controlled‐source electromagnetic survey data. The samples showed a wide range of petrophysical properties representative of most sandstone reservoirs. We found that a regression equation comprising both a constant and an exponential part gave a good fit to the pressure dependence of all five measured geophysical parameters (ultrasonic P‐ and S‐wave velocity, attenuation and electrical resistivity). Electrical resistivity was more pressure‐sensitive in clay‐rich sandstones with higher concentrations of low aspect ratio pores and micropores than in clean sandstones. Attenuation was more pressure‐sensitive in clean sandstones with large open pores (macropores) than in clay‐rich sandstones. Pore shape did not show any influence on the pressure sensitivity of elastic velocity. As differential pressure increases, the effect of the low aspect ratio pores and micropores on electrical resistivity becomes stronger than the effect of the macropores on attenuation. Further analysis of correlations among the five parameters as a function of pressure revealed potentially diagnostic relationships for geopressure prediction in reservoir sandstones.  相似文献   

14.
Biostimulation is increasingly used to accelerate microbial remediation of recalcitrant groundwater contaminants. Effective application of biostimulation requires successful emplacement of amendment in the contaminant target zone. Verification of remediation performance requires postemplacement assessment and contaminant monitoring. Sampling‐based approaches are expensive and provide low‐density spatial and temporal information. Time‐lapse electrical resistivity tomography (ERT) is an effective geophysical method for determining temporal changes in subsurface electrical conductivity. Because remedial amendments and biostimulation‐related biogeochemical processes often change subsurface electrical conductivity, ERT can complement and enhance sampling‐based approaches for assessing emplacement and monitoring biostimulation‐based remediation. Field studies demonstrating the ability of time‐lapse ERT to monitor amendment emplacement and behavior were performed during a biostimulation remediation effort conducted at the Department of Defense Reutilization and Marketing Office (DRMO) Yard, in Brandywine, Maryland, United States. Geochemical fluid sampling was used to calibrate a petrophysical relation in order to predict groundwater indicators of amendment distribution. The petrophysical relations were field validated by comparing predictions to sequestered fluid sample results, thus demonstrating the potential of electrical geophysics for quantitative assessment of amendment‐related geochemical properties. Crosshole radar zero‐offset profile and borehole geophysical logging were also performed to augment the data set and validate interpretation. In addition to delineating amendment transport in the first 10 months after emplacement, the time‐lapse ERT results show later changes in bulk electrical properties interpreted as mineral precipitation. Results support the use of more cost‐effective surface‐based ERT in conjunction with limited field sampling to improve spatial and temporal monitoring of amendment emplacement and remediation performance.  相似文献   

15.
Responses of a multifrequency, multicoil airborne electromagnetic (AEM) system were modelled numerically for 3D electrical conductors embedded in a resistive bedrock and overlain by an overburden of low to moderate conductivity. The results cover a horizontal coplanar coil configuration and two frequencies, 7837 Hz and 51 250 Hz. The models studied are single or multiple, poor conductors (conductance lower than 0.1 S) embedded in a host rock of high but finite resistivity (5000 Ωm) and overlain by a layer of overburden with finite thickness and low to moderate conductivity (conductance up to 2 S). On the basis of the modelling results, limits of detectability for poor conductors have been studied for the various model structures. The results indicate that the anomaly from a steeply dipping, plate-like conductor will decrease significantly when the conductor is embedded in a weakly conductive host rock and is overlain by a conductive overburden. However, an anomaly is obtained, and its magnitude can even increase with increasing overburden conductivity or frequency. The plate anomaly remains practically constant when only the overburden thickness is varied. Changes in overburden conductivity will cause the plate-anomaly values to change markedly. If the plate conductance is less than that of the overburden, a local anomaly opposite in sign to the normal type of anomaly will be recorded. Another major consequence is that conductors interpreted with free-space models will be heavily overestimated in depth or underestimated in conductance, if in reality induction and current channelling in the host rock and overburden make even a slight contribution to the anomalous EM field. The lateral resolution for the horizontal coplanar coil system was found to be about 1.7 times the sensor altitude. Similarly, the lateral extension of a horizontal conductive ribbon, required to reach the semi-infinite (half-space) behaviour, is more than three times the sensor altitude. Finally, screening of a steeply dipping plate, caused by a small, conductive horizontal ribbon, is much more severe than screening of the same plate by an extensive horizontal layer.  相似文献   

16.
Summary Some errors of method occurring in A. C. measurements of the electrical conductivity of rocks are discussed. It is demonstrated that the difference between A.C. and D.C. conductivities, at given frequency, depends mostly on the magnitude of the D.C. conductivity and magnitude of the dielectric constant.  相似文献   

17.
The studies on the physical properties of minerals and rocks in combination with the work in petrology, mineralogy and geochemistry are not only a useful mean to look into the composition and structure of the earth抯 interior, but also can provide extreme…  相似文献   

18.
含碳结构对龙门山断层带电导率影响的实验探索   总被引:1,自引:1,他引:0       下载免费PDF全文
碳是影响岩石电导率大小的一个重要因素,可能是造成龙门山断层带电导率异常的重要原因之一.为了研究不同的碳含量、矿物颗粒粒径与碳晶体结构对断层带电导率的影响,在干燥、常温、0.2~300 MPa的压力条件下实验研究了人工模拟断层泥样品(石英粉末与含碳粉末混合的样品,简称模拟样品)和采自映秀-北川断层八角庙剖面的天然断层岩样品(简称天然样品)的电导率.实验结果显示,当模拟样品中的含碳粉末连通时,电导率与碳体积率的关系符合逾渗理论模型;而含碳粉末未连通时,电导率随总孔隙度降低而指数性升高.同时模拟样品的电导率也随石英颗粒粒径的变化而发生改变.相比于模拟样品中的含碳粉末主要分布于石英颗粒支撑的孔隙中,天然样品中的碳则主要以碳膜的形式赋存在颗粒边缘,导致碳体积率相同的条件下,模拟样品的电导率小于天然样品.此外,天然样品的电导率(9×10~(-4)S·m~(-1))也要小于野外大地电磁探测的结果(0.03~0.1 S·m~(-1)).在今后的实验中还需要考虑在动态摩擦条件下对含有完整含碳结构的天然样品进行电导率的实验研究.  相似文献   

19.
This paper develops the generalised effective‐medium theory of induced polarisation for rock models with elliptical grains and applies this theory to studying the complex resistivity of typical mineral rocks. We first demonstrate that the developed generalised effective‐medium theory of induced polarisation model can correctly represent the induced polarisation phenomenon in multiphase artificial rock samples manufactured using pyrite and magnetite particles. We have also collected representative rock samples from the Cu–Au deposit in Mongolia and subjected them to mineralogical analysis using Quantitative Evaluation of Minerals by Scanning Electron Microscopy technology. The electrical properties of the same samples were determined using laboratory complex resistivity measurements. As a result, we have established relationships between the mineral composition of the rocks, determined using Quantitative Evaluation of Minerals by Scanning Electron Microscopy analysis, and the parameters of the generalised effective‐medium theory of induced polarisation model defined from the laboratory measurements of the electrical properties of the rocks. These relationships open the possibility for remote estimation of types of mineralisation and for mineral discrimination using spectral induced polarization data.  相似文献   

20.
Time domain reflectometry (TDR) is a highly accurate and automatable method for determination of porous media water content and electrical conductivity. Water content is inferred from the dielectric permittivity of the medium, whereas electrical conductivity is inferred from TDR signal attenuation. Empirical and dielectric mixing models are used to relate water content to measured dielectric permittivity. Clay and organic matter bind substantial amounts of water, such that measured bulk dielectric constant is reduced and the relationship with total water content requires individual calibration. A variety of TDR probe configurations provide users with site‐ and media‐specific options. Advances in TDR technology and in other dielectric methods offer the promise not only for less expensive and more accurate tools for electrical determination of water and solute contents, but also a host of other properties such as specific surface area, and retention properties of porous media. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号