首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
This paper deals with the estimation of peak inelastic displacements of SDOF systems, representative of typical steel structures, under constant relative strength scenarios. Mean inelastic deformation demands on bilinear systems (simulating moment resisting frames) are considered as the basis for comparative purposes. Additional SDOF models representing partially‐restrained and concentrically‐braced (CB) frames are introduced and employed to assess the influence of different force‐displacement relationships on peak inelastic displacement ratios. The studies presented in this paper illustrate that the ratio between the overall yield strength and the strength during pinching intervals is the main factor governing the inelastic deformations of partially‐restrained models and leading to significant differences when compared with predictions based on bilinear structures, especially in the short‐period range. It is also shown that the response of CB systems can differ significantly from other pinching models when subjected to low or moderate levels of seismic demand, highlighting the necessity of employing dedicated models for studying the response of CB structures. Particular attention is also given to the influence of a number of scalar parameters that characterise the frequency content of the ground motion on the estimated peak displacement ratios. The relative merits of using the average spectral period Taver, mean period Tm, predominant period Tg, characteristic period Tc and smoothed spectral predominant period To of the earthquake ground motion, are assessed. This paper demonstrates that the predominant period, defined as the period at which the input energy is maximum throughout the period range, is the most suitable frequency content scalar parameter for reducing the variability in displacement estimations. Finally, noniterative equivalent linearisation expressions based on the secant period and equivalent damping ratios are presented and verified for the prediction of peak deformation demands in steel structures. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
In displacement-based seismic design, inelastic displacement ratio spectra (IDRS) are particularly useful for estimating the maximum lateral inelastic displacement demand of a nonlinear SDOF system from the maximum elastic displacement demand of its counterpart linear elastic SDOF system. In this study, the characteristics of IDRS for near-fault pulse-type ground motions are investigated based on a great number of earthquake ground motions. The in? uence of site conditions, ratio of peak ground velocity (PGV) to peak ground acceleration (PGA), the PGV, and the maximum incremental velocity (MIV) on IDRS are also evaluated. The results indicate that the effect of near-fault ground motions on IDRS are signifi cant only at periods between 0.2 s - 1.5 s, where the amplifi cation can approach 20%. The PGV/PGA ratio has the most signifi cant in? uence on IDRS among the parameters considered. It is also found that site conditions only slightly affect the IDRS.  相似文献   

3.
The effect of peak ground velocity (PGV) on single‐degree‐of‐freedom (SDOF) deformation demands and for certain ground‐motion features is described by using a total of 60 soil site records with source‐to‐site distances less than 23 km and moment magnitudes between 5.5 and 7.6. The observations based on these records indicate that PGV correlates well with the earthquake magnitude and provides useful information about the ground‐motion frequency content and strong‐motion duration that can play a role on the seismic demand of structures. The statistical results computed from non‐linear response history analyses of different hysteretic models highlight that PGV correlates better with the deformation demands with respect to other ground motion intensity measures. The choice of PGV as ground motion intensity decreases the dispersion due to record‐to‐record variability of SDOF deformation demands, particularly in the short period range. The central tendencies of deformation demands are sensitive to PGV and they may vary considerably as a function of the hysteretic model and structural period. The results provided in this study suggest a consideration of PGV as a stable candidate for ground motion intensity measure in simplified seismic assessment methods that are used to estimate structural performance for earthquake hazard analysis. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
SPO2IDA is introduced, a software tool that is capable of recreating the seismic behaviour of oscillators with complex quadrilinear backbones. It provides a direct connection between the static pushover (SPO) curve and the results of incremental dynamic analysis (IDA), a computer‐intensive procedure that offers thorough demand and capacity prediction capability by using a series of nonlinear dynamic analyses under a suitably scaled suite of ground motion records. To achieve this, the seismic behaviour of numerous single‐degree‐of‐freedom (SDOF) systems is investigated through IDA. The oscillators have a wide range of periods and feature pinching hysteresis with backbones ranging from simple bilinear to complex quadrilinear with an elastic, a hardening and a negative‐stiffness segment plus a final residual plateau that terminates with a drop to zero strength. An efficient method is introduced to treat the backbone shape by summarizing the analysis results into the 16, 50 and 84% fractile IDA curves, reducing them to a few shape parameters and finding simpler backbones that reproduce the IDA curves of complex ones. Thus, vast economies are realized while important intuition is gained on the role of the backbone shape to the seismic performance. The final product is SPO2IDA, an accurate, spreadsheet‐level tool for performance‐based earthquake engineering that can rapidly estimate demands and limit‐state capacities, strength reduction R‐factors and inelastic displacement ratios for any SDOF system with such a quadrilinear SPO curve. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
In order to investigate the response of structures to near‐fault seismic excitations, the ground motion input should be properly characterized and parameterized in terms of simple, yet accurate and reliable, mathematical models whose input parameters have a clear physical interpretation and scale, to the extent possible, with earthquake magnitude. Such a mathematical model for the representation of the coherent (long‐period) ground motion components has been proposed by the authors in a previous study and is being exploited in this article for the investigation of the elastic and inelastic response of the single‐degree‐of‐freedom (SDOF) system to near‐fault seismic excitations. A parametric analysis of the dynamic response of the SDOF system as a function of the input parameters of the mathematical model is performed to gain insight regarding the near‐fault ground motion characteristics that significantly affect the elastic and inelastic structural performance. A parameter of the mathematical representation of near‐fault motions, referred to as ‘pulse duration’ (TP), emerges as a key parameter of the problem under investigation. Specifically, TP is employed to normalize the elastic and inelastic response spectra of actual near‐fault strong ground motion records. Such normalization makes feasible the specification of design spectra and reduction factors appropriate for near‐fault ground motions. The ‘pulse duration’ (TP) is related to an important parameter of the rupture process referred to as ‘rise time’ (τ) which is controlled by the dimension of the sub‐events that compose the mainshock. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
Nonlinear static procedures, which relate the seismic demand of a structure to that of an equivalent single‐degree‐of‐freedom oscillator, are well‐established tools in the performance‐based earthquake engineering paradigm. Initially, such procedures made recourse to inelastic spectra derived for simple elastic–plastic bilinear oscillators, but the request for demand estimates that delve deeper into the inelastic range, motivated investigating the seismic demand of oscillators with more complex backbone curves. Meanwhile, near‐source (NS) pulse‐like ground motions have been receiving increased attention, because they can induce a distinctive type of inelastic demand. Pulse‐like NS ground motions are usually the result of rupture directivity, where seismic waves generated at different points along the rupture front arrive at a site at the same time, leading to a double‐sided velocity pulse, which delivers most of the seismic energy. Recent research has led to a methodology for incorporating this NS effect in the implementation of nonlinear static procedures. Both of the previously mentioned lines of research motivate the present study on the ductility demands imposed by pulse‐like NS ground motions on oscillators that feature pinching hysteretic behaviour with trilinear backbone curves. Incremental dynamic analysis is used considering 130 pulse‐like‐identified ground motions. Median, 16% and 84% fractile incremental dynamic analysis curves are calculated and fitted by an analytical model. Least‐squares estimates are obtained for the model parameters, which importantly include pulse period Tp. The resulting equations effectively constitute an R ? μ ? T ? Tp relation for pulse‐like NS motions. Potential applications of this result towards estimation of NS seismic demand are also briefly discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
This paper investigates the seismic response of multi‐storey cross‐laminated timber (CLT) buildings and its relationship with salient ground‐motion and building characteristics. Attention is given to the effects of earthquake frequency content on the inelastic deformation demands of platform CLT walled structures. The response of a set of 60 CLT buildings of varying number of storeys and panel fragmentation levels representative of a wide range of structural configurations subjected to 1656 real earthquake records is examined. It is shown that, besides salient structural parameters like panel aspect ratio, design behaviour factor, and density of joints, the frequency content of the earthquake action as characterized by its mean period has a paramount importance on the level of nonlinear deformations attained by CLT structures. Moreover, the evolution of drifts as a function of building to ground‐motion periods ratio is different for low‐ and high‐rise buildings. Accordingly, nonlinear regression models are developed for estimating the global and interstorey drifts demands on multi‐storey CLT buildings. Finally, the significance of the results is highlighted with reference to European seismic design procedures and recent assessment proposals.  相似文献   

8.
The purpose of this paper is to investigate the ground motion characteristics of the Chi‐Chi earthquake (21 September 1999) as well as the interpretation of structural damage due to this earthquake. Over 300 strong motion records were collected from the strong motion network of Taiwan for this earthquake. A lot of near‐field ground motion data were collected. They provide valuable information on the study of ground motion characteristics of pulse‐like near‐field ground motions as well as fault displacement. This study includes: attenuation of ground motion both in PGA and spectral amplitude, principal direction, elastic and inelastic response analysis of a SDOF system subjected to near‐field ground motion collected from this event. The distribution of spectral acceleration and spectral velocity along the Chelungpu fault is discussed. Based on the mode decomposition method the intrinsic mode function of ground acceleration of this earthquake is examined. A long‐period wave with large amplitude was observed in most of the near‐source ground acceleration. The seismic demand from the recorded near‐field ground motion is also investigated with an evaluation of seismic design criteria of Taiwan Building Code. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
Earthquake ground motion records are nonstationary in both amplitude and frequency content. However, the latter nonstationarity is typically neglected mainly for the sake of mathematical simplicity. To study the stochastic effects of the time‐varying frequency content of earthquake ground motions on the seismic response of structural systems, a pair of closely related stochastic ground motion models is adopted here. The first model (referred to as ground motion model I) corresponds to a fully nonstationary stochastic earthquake ground motion model previously developed by the authors. The second model (referred to as ground motion model II) is nonstationary in amplitude only and is derived from the first model. Ground motion models I and II have the same mean‐square function and global frequency content but different features of time variation in the frequency content, in that no time variation of the frequency content exists in ground motion model II. New explicit closed‐form solutions are derived for the response of linear elastic SDOF and MDOF systems subjected to stochastic ground motion model II. New analytical solutions for the evolutionary cross‐correlation and cross‐PSD functions between the ground motion input and the structural response are also derived for linear systems subjected to ground motion model I. Comparative analytical results are presented to quantify the effects of the time‐varying frequency content of earthquake ground motions on the structural response of linear elastic systems. It is found that the time‐varying frequency content in the seismic input can have significant effects on the stochastic properties of system response. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
The objective of this paper is to present ground-motion prediction equations for ductility demand and inelastic spectral displacement of constant-strength perfectly elasto-plastic single-degree-of-freedom (SDOF) oscillators. Empirical equations have been developed to compute the ductility demand as a function of two earthquake parameters; moment magnitude, and source-to-site distance; one site parameter, the ground type; and three oscillator parameters, an undamped natural period, critical damping ratio, and the mass-normalized yield strength. In addition, a comparative study of the proposed model with selected previous studies and recommendations of Eurocode 8 is presented. Proposed equations can easily be incorporated in existing probabilistic seismic hazard analysis (PSHA) software packages with the introduction of an additional parameter. This leads to hazard curves for inelastic spectral displacement, which can provide better estimates of target displacement for nonlinear static procedures and an efficient intensity measure for probabilistic seismic demand analysis (PSDA). Proposed equations will be useful in performance evaluation of existing structures.  相似文献   

11.
In many parts of the world, the repetition of medium–strong intensity earthquake ground motions at brief intervals of time has been observed. The new design philosophies for buildings in seismic areas are based on multi‐level design approaches, which take into account more than a single damageability limit state. According to these approaches, a sequence of seismic actions may produce important consequences on the structural safety. In this paper, the effects of repeated earthquake ground motions on the response of single‐degree‐of‐freedom systems (SDOF) with non‐linear behaviour are analysed. A comparison is performed with the effect of a single seismic event on the originally non‐damaged system for different hysteretic models in terms of pseudo‐acceleration response spectra, behaviour factor q and damage parameters. The elastic–perfect plastic system is the most vulnerable one under repeated earthquake ground motions and is characterized by a strong reduction of the q‐factor. A moment resisting steel frame is analysed as well, showing a reduction of the q‐factor under repeated earthquake ground motions even larger than that of an equivalent SDOF system. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
Predictors of seismic structural demands (such as inter‐storey drift angles) that are less time‐consuming than nonlinear dynamic analysis have proven useful for structural performance assessment and for design. Luco and Cornell previously proposed a simple predictor that extends the idea of modal superposition (of the first two modes) with the square‐root‐of‐sum‐of‐squares (SRSS) rule by taking a first‐mode inelastic spectral displacement into account. This predictor achieved a significant improvement over simply using the response of an elastic oscillator; however, it cannot capture well large displacements caused by local yielding. A possible improvement of Luco's predictor is discussed in this paper, where it is proposed to consider three enhancements: (i) a post‐elastic first‐mode shape approximated by the deflected shape from a nonlinear static pushover analysis (NSPA) at the step corresponding to the maximum drift of an equivalent inelastic single‐degree‐of‐freedom (SDOF) system, (ii) a trilinear backbone curve for the SDOF system, and (iii) the elastic third‐mode response for long‐period buildings. Numerical examples demonstrate that the proposed predictor is less biased and results in less dispersion than Luco's original predictor. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
捏拢效应与P-Δ效应对地震延性需求和损伤指标的影响   总被引:1,自引:0,他引:1  
文中定量地分析了捏拢效应和P-Δ效应对非弹性单自由度体系的地震延性需求和Park-Ang地震损伤指标的概率统计特征的影响。采用Bouc-W en模型描述具有P-Δ效应、捏拢效应、强度退化、刚度退化等典型特性的恢复力-位移滞回曲线;根据非弹性单自由度体系在69条强震记录作用下的动力响应,定量地分析了捏拢效应和P-Δ效应对地震延性需求和Park-Ang地震损伤指标的均值和变异系数的影响,并建立了地震延性需求的概率预测模型。计算结果表明,捏拢效应和由重力引起的P-Δ效应对地震延性需求的影响较大,而由竖向地震激励引起的P-Δ效应对地震延性需求的影响很小;对于短周期体系,建议采用对数正态或Frechet分布来描述地震延性需求的概率分布;对于长周期体系,采用Frechet分布则更为合理。  相似文献   

14.
The paper investigates the degree of accuracy achievable when some non‐linear static procedures based on a pushover analysis are used to evaluate the seismic performance. In order to assess the significance of different sources of errors, three types of structural systems are analysed: (i) single‐degree‐of‐freedom (SDOF) systems with different hysteretic behaviour; (ii) shear‐type multi‐degree‐of‐freedom (MDOF) systems with elastic–perfect plastic (EPP) shear force–interstorey drift relationships; (iii) a steel moment‐resisting frame with rigid joints and EPP moment–curvature relationship. In SDOF systems, the source of approximation comes only from the calibration of the demand spectrum, while in MDOF systems some further errors are introduced by the schematization with an equivalent SDOF system. The non‐linear static procedures are compared with rigorous time‐history analyses carried out by considering ten generated earthquake ground motions compatible with the Eurocode 8 elastic spectra. It was found that SDOF systems with longer periods satisfy the equal displacement approximation regardless of the hysteretic model, while hysteresis loops with smaller energy dissipated indicate lower response for shorter periods. This is the opposite of what predicted by the ATC‐40 capacity spectrum method, which underestimates and overestimates, respectively, the actual response of low‐ and high‐ductility systems. Conversely, the inelastic spectrum method proposed by Vidic, Fajfar and Fischinger leads to the most accurate results for all types of structural systems. The analyses carried out on EPP shear‐type frames point out a large concentration of the ductility demand on some storeys. However, such a concentration markedly reduces when some hardening is accounted for. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
Complex seismic behaviour of soil–foundation–structure (SFS) systems together with uncertainties in system parameters and variability in earthquake ground motions result in a significant debate over the effects of soil–foundation–structure interaction (SFSI) on structural response. The aim of this study is to evaluate the influence of foundation flexibility on the structural seismic response by considering the variability in the system and uncertainties in the ground motion characteristics through comprehensive numerical simulations. An established rheological soil‐shallow foundation–structure model with equivalent linear soil behaviour and nonlinear behaviour of the superstructure has been used. A large number of models incorporating wide range of soil, foundation and structural parameters were generated using a robust Monte‐Carlo simulation. In total, 4.08 million time‐history analyses were performed over the adopted models using an ensemble of 40 earthquake ground motions as seismic input. The results of the analyses are used to rigorously quantify the effects of foundation flexibility on the structural distortion and total displacement of the superstructure through comparisons between the responses of SFS models and corresponding fixed‐base (FB) models. The effects of predominant period of the FB system, linear vs nonlinear modelling of the superstructure, type of nonlinear model used and key system parameters are quantified in terms of different probability levels for SFSI effects to cause an increase in the structural response and the level of amplification of the response in such cases. The results clearly illustrate the risk of underestimating the structural response associated with simplified approaches in which SFSI and nonlinear effects are ignored. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
考虑设计地震分组的强度折减系数的研究   总被引:3,自引:0,他引:3       下载免费PDF全文
翟长海  谢礼立 《地震学报》2006,28(3):284-294
强度折减系数既是基于强度的抗震设计中确定设计地震力的关键因素,又是基于性态的抗震设计理论中确定非弹性反应谱的主要依据. 本文结合我国抗震设计反应谱的形式和特点,应用823条国内外水平向地震动记录(充分利用了我国取得的强震记录),给出了一种考虑设计地震分组和场地类别的强度折减系数模型,研究了结构周期、延性、场地类别、设计地震分组、震级、震中距等因素对强度折减系数的影响. 结果表明:场地条件对强度折减系数的影响是不可忽略的,特别是对延性较大的短周期结构更应注意场地条件的影响;设计地震分组是影响强度折减系数的一个重要因素,在应用我国规范设计反应谱构造非弹性反应谱所用的强度折减系数必须考虑设计分组的影响;震级对强度折减系数的影响较小;如不考虑近场大脉冲地震动记录的影响,震中距对强度折减系数的影响是可以忽略的.   相似文献   

17.
Predictors (or estimates) of seismic structural demands that are less computationally time‐consuming than non‐linear dynamic analysis can be useful for structural performance assessment and for design. In this paper, we evaluate the bias and precision of predictors that make use of, at most, (i) elastic modal vibration properties of the given structure, (ii) the results of a non‐linear static pushover analysis of the structure, and (iii) elastic and inelastic single‐degree‐of‐freedom time‐history analyses for the specified ground motion record. The main predictor of interest is an extension of first‐mode elastic spectral acceleration that additionally takes into account both the second‐mode contribution to (elastic) structural response and the effects of inelasticity. This predictor is evaluated with respect to non‐linear dynamic analysis results for ‘fishbone’ models of steel moment‐resisting frame (SMRF) buildings. The relatively small number of degrees of freedom for each fishbone model allows us to consider several short‐to‐long period buildings and numerous near‐ and far‐field earthquake ground motions of interest in both Japan and the U.S. Before doing so, though, we verify that estimates of the bias and precision of the predictor obtained using fishbone models are effectively equivalent to those based on typical ‘full‐frame’ models of the same buildings. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
A recently developed earthquake ground motion model non-stationary in both intensity and frequency content is validated at the inelastic Single-Degree-Of-Freedom (SDOF) structural response level. For the purpose of this study, the earthquake model is calibrated for two actual earthquake records. The objective of a constant (or target) displacement ductility used in conventional earthquake-resistant design is examined from the statistical viewpoint using this non-stationary earthquake model. The non-linear hysteretic structural behaviour is modelled using several idealized hysteretic SDOF structural models. Ensemble-average inelastic response spectra corresponding to various inelastic SDOF response (or damage) parameters and conditioned on a constant displacement ductility response are derived from the two identified stochastic ground motion models. The effects of the type of hysteretic behaviour, the structural parameters, the target displacement ductility factor, and the ground motion model on the statistics of the inelastic response parameters are thoroughly investigated. The results of this parametric study shed further light on the proper interpretation and use of inelastic response or damage parameters in earthquake-resistant design in order to achieve the desirable objective of ‘constant-damage design’. © 1997 by John Wiley & Sons, Ltd.  相似文献   

19.
Introduction The strength reduction factor is defined as the lateral yielding strength required to avoid yielding in the system when subjected to a given ground motion, to the lateral yielding strength required to maintain the displacement ductility ratio demand equal to a pre-determined target duc-tility ratio under the same ground motion. The strength reduction factors are not only the key fac-tors in determining seismic action for force-based seismic design, but also one of the key parame-t…  相似文献   

20.
用有限强地震动记录校正等震线的估计研究   总被引:4,自引:1,他引:3       下载免费PDF全文
陈鲲  俞言祥  高孟潭  冯静 《地震学报》2012,34(5):633-645
选用获得了加速度记录的2011年4月10日四川炉霍MS5.3及2011年8月11日新疆维吾尔自治区克孜勒尔自治州阿图什市与伽师县交界MS5.8地震,研究其快速生成震动图的偏差校正方法;通过台站实际观测值与借助经验性衰减关系估计值之间的残差分析,提出了利用台站数据对缺少台站地区借助经验性衰减关系估计值的对数偏差校正方法; 并比较了圆和椭圆衰减关系模型的对数残差及震动图的分布形态.结果表明, 适合于当地地震动衰减关系plusmn;3倍标准差的标准能够识别一些台站异常数据, 如炉霍MS5.3地震中炉霍地办强震台近场峰值加速度的高频脉冲引起的异常数据;对数偏差校正方法适合于地震动强度速报中缺少台站数据地区借助经验性衰减关系地震动参数估计值的系统偏差校正;圆衰减关系模型只能控制震动的程度,不能控制其分布形态.明确的地震震源机制、震源破裂过程、当地的地质构造背景及余震分布等信息有助于修正震动图的分布形态.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号