首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This paper presents a theoretical nonstationary stochastic analysis scheme using pseudo-excitation method (PEM) for seismic analysis of long-span structures under tridirectional spatially varying ground motions, based on which the local site effects on structural seismic response are studied for a high-pier railway bridge. An absolute-response-oriented scheme of PEM in nonstationary stochastic analysis of structure under tridirectional spatial seismic motions, in conjunction with the derived mathematical scheme in modeling tridirectional nonstationary spatially correlated ground motions, is proposed to resolve the drawbacks of conventional indirect approach. To apply the proposed theoretical approach readily in stochastic seismic analysis of complex and significant structures, this scheme is implemented and verified in a general finite element platform, and is then applied to a high-pier railway bridge under spatially varying ground motions considering the local site effect and the effect of ground motion nonstationarity. Conclusions are drawn and can be applied in the actual seismic design and analysis of high-pier railway bridges under tridirectional nonstationary multiple excitations.  相似文献   

2.
A method for generating a suite of synthetic ground motion time‐histories for specified earthquake and site characteristics defining a design scenario is presented. The method employs a parameterized stochastic model that is based on a modulated, filtered white‐noise process. The model parameters characterize the evolving intensity, predominant frequency, and bandwidth of the acceleration time‐history, and can be identified by matching the statistics of the model to the statistics of a target‐recorded accelerogram. Sample ‘observations’ of the parameters are obtained by fitting the model to a subset of the NGA database for far‐field strong ground motion records on firm ground. Using this sample, predictive equations are developed for the model parameters in terms of the faulting mechanism, earthquake magnitude, source‐to‐site distance, and the site shear‐wave velocity. For any specified set of these earthquake and site characteristics, sets of the model parameters are generated, which are in turn used in the stochastic model to generate the ensemble of synthetic ground motions. The resulting synthetic acceleration as well as corresponding velocity and displacement time‐histories capture the main features of real earthquake ground motions, including the intensity, duration, spectral content, and peak values. Furthermore, the statistics of their resulting elastic response spectra closely agree with both the median and the variability of response spectra of recorded ground motions, as reflected in the existing prediction equations based on the NGA database. The proposed method can be used in seismic design and analysis in conjunction with or instead of recorded ground motions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, a comprehensive investigation of the effect of spatially varying earthquake ground motions on the stochastic response of bridges isolated with friction pendulum systems is performed. The spatially varying earthquake ground motions are considered with incoherence, wave-passage and site-response effects. The importance of the site-response effect, which arises from the difference in the local soil conditions at different support points of the isolated bridge, is investigated particularly. Mean of maximum and variance response values obtained from the spatially varying earthquake ground motions are compared with those of the specialised cases of the ground motion model. It is shown that site-response component of the spatially varying earthquake ground motion model has important effects on the stochastic response of the isolated bridges. Therefore, to be more realistic in calculating the isolated bridge responses, the spatially varying earthquake ground motions should be incorporated in the analysis.  相似文献   

4.
In order to investigate the response of structures to near‐fault seismic excitations, the ground motion input should be properly characterized and parameterized in terms of simple, yet accurate and reliable, mathematical models whose input parameters have a clear physical interpretation and scale, to the extent possible, with earthquake magnitude. Such a mathematical model for the representation of the coherent (long‐period) ground motion components has been proposed by the authors in a previous study and is being exploited in this article for the investigation of the elastic and inelastic response of the single‐degree‐of‐freedom (SDOF) system to near‐fault seismic excitations. A parametric analysis of the dynamic response of the SDOF system as a function of the input parameters of the mathematical model is performed to gain insight regarding the near‐fault ground motion characteristics that significantly affect the elastic and inelastic structural performance. A parameter of the mathematical representation of near‐fault motions, referred to as ‘pulse duration’ (TP), emerges as a key parameter of the problem under investigation. Specifically, TP is employed to normalize the elastic and inelastic response spectra of actual near‐fault strong ground motion records. Such normalization makes feasible the specification of design spectra and reduction factors appropriate for near‐fault ground motions. The ‘pulse duration’ (TP) is related to an important parameter of the rupture process referred to as ‘rise time’ (τ) which is controlled by the dimension of the sub‐events that compose the mainshock. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
With the recent emergence of wavelet‐based procedures for stochastic analyses of linear and non‐linear structural systems subjected to earthquake ground motions, it has become necessary that seismic ground motion processes are characterized through statistical functionals of wavelet coefficients. While direct characterization in terms of earthquake and site parameters may have to wait for a few more years due to the complexity of the problem, this study attempts such characterization through commonly available Fourier and response spectra for design earthquake motions. Two approaches have been proposed for obtaining the spectrum‐compatible wavelet functionals, one for input Fourier spectrum and another for input response spectrum, such that the total number of input data points are 30–35% of those required for a time‐history analysis. The proposed methods provide for simulating ‘desired non‐stationary characteristics’ consistent with those in a recorded accelerogram. Numerical studies have been performed to illustrate the proposed approaches. Further, the wavelet functionals compatible with a USNRC spectrum in the case of 35 recorded motions of similar strong motion durations have been used to obtain the strength reduction factor spectra for elasto‐plastic oscillators and to show that about ±20% variation may be assumed from mean to 5 and 95% confidence levels due to uncertainty in the non‐stationary characteristics of the ground motion process. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
A method for generating an ensemble of orthogonal horizontal ground motion components with correlated parameters for specified earthquake and site characteristics is presented. The method employs a parameterized stochastic model that is based on a time‐modulated filtered white‐noise process with the filter having time‐varying characteristics. Whereas the input white‐noise excitation describes the stochastic nature of the ground motion, the forms of the modulating function and the filter and their parameters characterize the evolutionary intensity and nonstationary frequency content of the ground motion. The stochastic model is fitted to a database of recorded horizontal ground motion component pairs that are rotated into their principal axes, a set of orthogonal axes along which the components are statistically uncorrelated. Model parameters are identified for each ground motion component in the database. Using these data, predictive equations are developed for the model parameters in terms of earthquake and site characteristics and correlation coefficients between parameters of the two components are estimated. Given a design scenario specified in terms of earthquake and site characteristics, the results of this study allow one to generate realizations of correlated model parameters and use them along with simulated white‐noise processes to generate synthetic pairs of horizontal ground motion components along the principal axes. The proposed simulation method does not require any seed recorded ground motion and is ideal for use in performance‐based earthquake engineering. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Nonlinear viscous dampers are supplemental devices widely used for enhancing the performance of structural systems exposed to seismic hazard. A rigorous evaluation of the effect of these damping devices on the seismic performance of a structural system should be based on a probabilistic approach and take into account the evolutionary characteristics of the earthquake input and of the corresponding system response. In this paper, an approximate analytical technique is proposed for studying the nonstationary stochastic response characteristics of hysteretic single degree of freedom systems equipped with viscous dampers subjected to a fully nonstationary random process representing the seismic input. In this regard, a stochastic averaging/linearization technique is utilized to cast the original nonlinear stochastic differential equation of motion into a simple first‐order nonlinear ordinary differential equation for the nonstationary system response variance. In comparison with standard linearization schemes, the herein proposed technique has the significant advantage that it allows to handle realistic seismic excitations with time‐varying frequency content. Further, it allows deriving a formula for determining the nonlinear system response evolutionary power spectrum. By this way, ‘moving resonance’ effects, related to both the evolutionary seismic excitation and the nonlinear system behavior, can be observed and quantified. Several applications involving various system and input properties are included. Furthermore, various response parameters of interest for the seismic performance assessment are considered as well. Comparisons with pertinent Monte Carlo simulations demonstrate the reliability of the proposed technique. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Predictors (or estimates) of seismic structural demands that are less computationally time‐consuming than non‐linear dynamic analysis can be useful for structural performance assessment and for design. In this paper, we evaluate the bias and precision of predictors that make use of, at most, (i) elastic modal vibration properties of the given structure, (ii) the results of a non‐linear static pushover analysis of the structure, and (iii) elastic and inelastic single‐degree‐of‐freedom time‐history analyses for the specified ground motion record. The main predictor of interest is an extension of first‐mode elastic spectral acceleration that additionally takes into account both the second‐mode contribution to (elastic) structural response and the effects of inelasticity. This predictor is evaluated with respect to non‐linear dynamic analysis results for ‘fishbone’ models of steel moment‐resisting frame (SMRF) buildings. The relatively small number of degrees of freedom for each fishbone model allows us to consider several short‐to‐long period buildings and numerous near‐ and far‐field earthquake ground motions of interest in both Japan and the U.S. Before doing so, though, we verify that estimates of the bias and precision of the predictor obtained using fishbone models are effectively equivalent to those based on typical ‘full‐frame’ models of the same buildings. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
新型随机地震动模型   总被引:2,自引:0,他引:2  
在研究结构的随机地震反应时,要用大量的符合场地条件的地震记录作为输入数据。但强震历史记录却不是每个地区都有的,因此根据符合场地条件的现有地震记录建立随机地震动模型具有重要意义。本文利用中国抗震规范2001版修正选取的样本波作为目标波,考虑了幅值和频率的双重非平稳性,建立了新型随机地震动模型——改进的时变ARMA模型随机地震动模型。通过使用残差的卡方检验法,对多种非平稳ARMA模型生成的模拟波进行检验;同时又比较丁模拟波与目标波的功率谱密度图和反应谱图。结果证明:此法能够更精确地反映不同场地条件地震动的频谱和幅值的真实内容,从而建立符合目标场地条件的更为有效的模拟地震动,为相关研究与工程设计架起一座桥梁。  相似文献   

10.
This paper carries out a parametrical study of the pounding phenomenon associated with the seismic response of multi‐span simply supported bridges with base isolation devices. In particular, the analyses focus on the causal relationship between pounding and the properties of a spatially varying earthquake ground motion. In order to include the effect of the torsional component of pounding forces on the seismic response of the whole structure, a three‐dimensional (3D) finite element model has been defined and 3D non‐linear time‐history analyses have been performed. A parametrical study on the size of the gaps between adjacent bridge decks has highlighted that the pounding effects are amplified when the spatially varying ground motion time histories at each support are considered. Because of a spatially varying input, the pounding forces can assume values 3–4 times larger than those derived by a conventional seismic analysis with uniform input or with spatial input but considering ground motion wave passage effect only. The numerical results show that in order to achieve an acceptably safe structural performance during seismic events, a correct design of the isolation devices should take into account the relative displacements calculated by means of a non‐linear time‐history analysis with multi‐support excitation. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, stochastic dynamic responses of dam–reservoir–foundation systems subjected to spatially varying earthquake ground motions are investigated using the displacement-based fluid finite elements. For this purpose, variable-number-node two-dimensional (2D) fluid finite elements based on the Lagrangian approach is programmed in FORTRAN language and incorporated into a computer program SVEM, which is used for stochastic dynamic analysis of solid systems subjected to spatially varying earthquake ground motion. The spatially varying earthquake ground motion model includes incoherence, wave-passage and site-response effects. The incoherence effect is examined by considering the Harichandran and Vanmarcke coherency model. The effect of the wave passage is investigated by using various wave velocities. Homogeneous medium and firm soil types are selected for considering the site-response effect where the foundation supports are constructed. The Sar?yar concrete gravity dam, constructed in Turkey is selected for numerical example. The ground motion is described by filtered white noise and applied to each support point of the 2D finite element model of the dam–reservoir–foundation system. The record of Kocaeli earthquake in 1999 is used in the analyses. Displacements, stresses and hydrodynamic pressures occurring on the upstream face of the dam are calculated for four cases. It is concluded that spatially varying earthquake ground motions have important effects on the stochastic dynamic response of dam–reservoir–foundation systems.  相似文献   

12.
考虑地震动的随机性和频率与强度非平稳性,通过理论分析,提出了一般随机地震动模型,并给出了确定模型参数的原则和方法。该模型以地震动强度、地震动能量以及地震动持时等宏观指标作为控制随机地震动模型参数的指标,而对其内在的频谱组成等指标只要求满足一般地震动的特征。该模型可以用于描述平稳随机过程、强度非平稳随机过程以及强度和频率完全非平稳随机过程。通过与常用功率谱模型的比较,验证了该模型的合理性。  相似文献   

13.
Complex seismic behaviour of soil–foundation–structure (SFS) systems together with uncertainties in system parameters and variability in earthquake ground motions result in a significant debate over the effects of soil–foundation–structure interaction (SFSI) on structural response. The aim of this study is to evaluate the influence of foundation flexibility on the structural seismic response by considering the variability in the system and uncertainties in the ground motion characteristics through comprehensive numerical simulations. An established rheological soil‐shallow foundation–structure model with equivalent linear soil behaviour and nonlinear behaviour of the superstructure has been used. A large number of models incorporating wide range of soil, foundation and structural parameters were generated using a robust Monte‐Carlo simulation. In total, 4.08 million time‐history analyses were performed over the adopted models using an ensemble of 40 earthquake ground motions as seismic input. The results of the analyses are used to rigorously quantify the effects of foundation flexibility on the structural distortion and total displacement of the superstructure through comparisons between the responses of SFS models and corresponding fixed‐base (FB) models. The effects of predominant period of the FB system, linear vs nonlinear modelling of the superstructure, type of nonlinear model used and key system parameters are quantified in terms of different probability levels for SFSI effects to cause an increase in the structural response and the level of amplification of the response in such cases. The results clearly illustrate the risk of underestimating the structural response associated with simplified approaches in which SFSI and nonlinear effects are ignored. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Best estimate seismic analysis are generally based on time‐domain simulations of structural responses. The seismic load is then modeled by a stochastic process representing ground motion. For this purpose, the analyst can use recorded accelerograms or work with synthetically generated ones. The number of ground motion time‐histories available for a given scenario and site condition is limited and generally not sufficient for carrying out more advanced probabilistic structural response analysis. It is then necessary to have at our disposal methods that allow for generating synthetic accelerograms that realistically characterize earthquake ground motions. However, most of the methods proposed in literature for generating synthetic accelerograms do not accurately reproduce the natural variability of ground motion parameters (such as PGA, cumulative absolute velocity, and Arias intensity) observed for recorded time histories. In this paper, we introduce a new method for generating synthetic ground motion, based on Karhunen‐Loève decomposition and a non‐Gaussian stochastic model. The proposed method enables the structural analyst to simulate ground motion time histories featuring the properties mentioned above. To demonstrate its capability, we study the influence of the simulation method on different ground motion parameters and on soil response spectra. We finally compute fragility curves to illustrate the practical application of the proposed method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Gaussian mixture–based equivalent linearization method (GM-ELM) is a recently developed stochastic dynamic analysis approach which approximates the random response of a nonlinear structure by collective responses of equivalent linear oscillators. The Gaussian mixture model is employed to achieve an equivalence in terms of the probability density function (PDF) through the superposition of the response PDFs of the equivalent linear system. This new concept of linearization helps achieve a high level of estimation accuracy for nonlinear responses, but has revealed some limitations: (1) dependency of the equivalent linear systems on ground motion intensity and (2) requirements for stationary condition. To overcome these technical challenges and promote applications of GM-ELM to earthquake engineering practice, an efficient GM-ELM-based fragility analysis method is proposed for nonstationary excitations. To this end, this paper develops the concept of universal equivalent linear system that can estimate the stochastic responses for a range of seismic intensities through an intensity-augmented version of GM-ELM. Moreover, the GM-ELM framework is extended to identify equivalent linear oscillators that could capture the temporal average behavior of nonstationary responses. The proposed extensions generalize expressions and philosophies of the existing response combination formulations of GM-ELM to facilitate efficient fragility analysis for nonstationary excitations. The proposed methods are demonstrated by numerical examples using realistic ground motions, including design code–conforming nonstationary ground motions.  相似文献   

16.
A fully nonstationary stochastic model for strong earthquake ground motion is developed. The model employs filtering of a discretized white‐noise process. Nonstationarity is achieved by modulating the intensity and varying the filter properties in time. The formulation has the important advantage of separating the temporal and spectral nonstationary characteristics of the process, thereby allowing flexibility and ease in modeling and parameter estimation. The model is fitted to target ground motions by matching a set of statistical characteristics, including the mean‐square intensity, the cumulative mean number of zero‐level up‐crossings and a measure of the bandwidth, all expressed as functions of time. Post‐processing by a second filter assures zero residual velocity and displacement, and improves the match to response spectral ordinates for long periods. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
A physics‐based numerical approach is used to characterize earthquake ground motion due to induced seismicity in the Groningen gas field and to improve empirical ground motion models for seismic hazard and risk assessment. To this end, a large‐scale (20 km × 20 km) heterogeneous 3D seismic wave propagation model for the Groningen area is constructed, based on the significant bulk of available geological, geophysical, geotechnical, and seismological data. Results of physics‐based numerical simulations are validated against the ground motion recordings of the January 8, 2018, ML 3.4 Zeerijp earthquake. Taking advantage of suitable models of slip time functions at the seismic source and of the detailed geophysical model, the numerical simulations are found to reproduce accurately the observed features of ground motions at epicentral distances less than 10 km, in a broad frequency range, up to about 8 Hz. A sensitivity analysis is also addressed to discuss the impact of 3D underground geological features, the stochastic variability of seismic velocities and the frequency dependence of the quality factor. Amongst others, results point out some key features related to 3D seismic wave propagation, such as the magnitude and distance dependence of site amplification functions, that may be relevant to the improvement of the empirical models for earthquake ground motion prediction.  相似文献   

18.
A parameterized stochastic model of near‐fault ground motion in two orthogonal horizontal directions is developed. The major characteristics of recorded near‐fault ground motions are represented. These include near‐fault effects of directivity and fling step; temporal and spectral non‐stationarity; intensity, duration, and frequency content characteristics; directionality of components; and the natural variability of ground motions. Not all near‐fault ground motions contain a forward directivity pulse, even when the conditions for such a pulse are favorable. The proposed model accounts for both pulse‐like and non‐pulse‐like cases. The model is fitted to recorded near‐fault ground motions by matching important characteristics, thus generating an ‘observed’ set of model parameters for different earthquake source and site characteristics. A method to generate and post‐process synthetic motions for specified model parameters is also presented. Synthetic ground motion time series are generated using fitted parameter values. They are compared with corresponding recorded motions to validate the proposed model and simulation procedure. The use of synthetic motions in addition to or in place of recorded motions is desirable in performance‐based earthquake engineering applications, particularly when recorded motions are scarce or when they are unavailable for a specified design scenario. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
In many parts of the world, the repetition of medium–strong intensity earthquake ground motions at brief intervals of time has been observed. The new design philosophies for buildings in seismic areas are based on multi‐level design approaches, which take into account more than a single damageability limit state. According to these approaches, a sequence of seismic actions may produce important consequences on the structural safety. In this paper, the effects of repeated earthquake ground motions on the response of single‐degree‐of‐freedom systems (SDOF) with non‐linear behaviour are analysed. A comparison is performed with the effect of a single seismic event on the originally non‐damaged system for different hysteretic models in terms of pseudo‐acceleration response spectra, behaviour factor q and damage parameters. The elastic–perfect plastic system is the most vulnerable one under repeated earthquake ground motions and is characterized by a strong reduction of the q‐factor. A moment resisting steel frame is analysed as well, showing a reduction of the q‐factor under repeated earthquake ground motions even larger than that of an equivalent SDOF system. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
This paper focuses on the effects of long‐period pulse of near‐fault ground motions on the structural damage potential. Two sets of near‐fault ground motion records from Chi‐Chi, Taiwan earthquake and Northridge earthquake with and without distinct pulse are selected as the input, and the correlation analysis between 30 non‐structure‐specific intensity measure parameters and maximum inelastic displacements and energy responses (input energy and hysteretic energy) of bilinear single degree of freedom systems are conducted. Based on the frequency characteristic of near‐fault ground motions with remarkable long‐period components, two intensity indices are proposed, namely, the improved effective peak acceleration (IEPA) and improved effective peak velocity (IEPV). In addition a new characteristic period of these ground motions is defined based on IEPA and IEPV. Numerical results illustrate that the intensity measure parameters related to ground acceleration present the best correlation with the seismic responses for rigid systems; the velocity‐related and displacement‐related parameters are better for medium‐frequency systems and flexible systems, respectively. The correlation curves of near‐fault ground motions with velocity pulse differ from those of ground motions without pulse. Moreover, the improved parameters IEPA and IEPV of near‐fault impulsive ground motions enhance the performance of intensity measure of corresponding conventional parameters, i.e. EPA and EPV. The new characteristic period based on IEPA and IEPV can better reflect the frequency content of near‐fault ground motions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号