首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 573 毫秒
1.
Tidal propagation in estuaries is affected by friction and fresh water discharge, besides changes in the depth and morphology of the channel. Main distortions imply variations in the mean water level and asymmetry. Tidal asymmetry can be important as a mechanism for sediment accumulation and turbidity maximum formation in estuaries, while mean water level changes can affect navigation depths. Data from several gauges stations from the Amazon estuary and the adjacent coast were analyzed and a 2DH hydrodynamic model was configured in a domain covering the continental shelf up to the last section of the river where the tidal signature is observed. Based on data, theoretical and numerical results, the various influences in the generation of estuarine harmonics are presented, including that of fresh water discharge. It is shown that the main overtide, M4, derived from the most important astronomic component in the Amazon estuary, M2, is responsible for the tidal wave asymmetry. This harmonic has its maximum amplitude at the mouth, where minimum depths are found, and then decreases while tide propagates inside the estuary. Also, the numerical results show that the discharge does not affect water level asymmetry; however, the Amazon river discharge plays an important role in the behavior of the horizontal tide. The main compound tide in Amazon estuary, Msf, generated from the combination of the M2 and S2, can be strong enough to provoke neap low waters lower than spring ones. The results show this component increasing while going upstream in the estuary, reaching a maximum and then slightly decaying.  相似文献   

2.
This study investigates the hydrodynamic characteristics of the lower, middle, and upper sectors of a highly stratified estuary, the Itajaí-Açu river estuary (south of Brazil ∼27° S/48.5° W). The study is based on a 25-h field campaign with three sampling stations positioned at 2, 17, and 38 km inward from the river mouth, during low river discharge condition and spring tide. The experimental data gathered was reduced and analyzed in terms of distribution of variables in time and space tide average vertical profiles and decomposition of the advective transport of salt and suspended particulate matter (SPM). Tidal range was nearly constant along the estuary, presenting time lag of about 2 h between lower and upper estuary. The ebb discharge peaks were about twice the discharge flood peaks and occurred simultaneously. The tide was the main determining agent in the lower estuary, where currents, salt stratification, and SPM distributions presented a repetitive behavior. In the middle estuary, the tide effects were also observed, but the presence of saline waters decreased along the time due to increasing river discharge during the campaign. The distribution of SPM in the mid- and upper estuary presented patched pattern not associated with tides and may be attributed to short-term flood contributions of tributaries. Currents presented ebb dominance in all three sectors; in the middle and upper estuary, they presented also a time asymmetry, with ebb currents longer than flood. The advective transport of salt in the lower estuary was upstream, with dominance of gravitational circulation term. In the mid-estuary, there was practically no transport, with balance between fluvial discharge (downstream) and tidal correlation (upstream). The advective transport of SPM was upstream in the lower estuary and downstream in the mid- and upper estuary, being dominated by gravitational circulation in the former and fluvial discharge in the others.  相似文献   

3.
In tidal estuaries, quantifying freshwater discharge is still a difficult problem that has not yet been overcome due to the inherent difficulty in measuring and analysing the tidal discharge, especially during periods of low river flow. Because observations are often made in the stations further upstream, where the ratio of river to tidal discharge is large, it remains difficult to determine the discharge rate in the saline region. Freshwater discharge estimation is even more difficult in a branched estuary system having multiple diversion channels that connect with each other at a junction. To date, several methods have been developed for estimating freshwater discharge in estuaries. The most widely used are analytical and conceptual models that employ salinity as the principal trace and numerical simulations. However, these methods are very time consuming and costly as they require large sets of observations before the computations can take place. This paper presents a simple approach to investigating the discharge distribution over branched channels by considering the energy loss due to friction. We develop an analytical model that can obtain the discharge rate quantitatively at a junction where the main flow bifurcates into two branches. The model uses the bed roughness, tidal water level, and cross‐sectional profile under tidally averaged conditions as input data. Two selected estuarine systems in the Hiroshima delta in Japan and the Mekong delta in Vietnam have been investigated. Computations of the newly developed model show good agreement with earlier published results computed by sophisticated analytical and numerical models.  相似文献   

4.
Previous studies on tidal dynamics of coastal aquifers have focussed on the inland propagation of oceanic tides in the cross-shore direction, a configuration that is essentially one-dimensional. Aquifers at natural coasts can also be influenced by tidal waves in nearby estuaries, resulting in a more complex behaviour of head fluctuations in the aquifers. We present an analytical solution to the two-dimensional depth-averaged groundwater flow equation for a semi-infinite aquifer subject to oscillating head conditions at the boundaries. The solution describes the tidal dynamics of a coastal aquifer that is adjacent to a cross-shore estuary. Both the effects of oceanic and estuarine tides on the aquifer are included in the solution. The analytical prediction of the head fluctuations is verified by comparison with numerical solutions computed using a standard finite-difference method. An essential feature of the present analytical solution is the interaction between the cross- and along-shore tidal waves in the aquifer area near the estuary’s entry. As the distance from the estuary or coastline increases, the wave interaction is weakened and the aquifer response is reduced, respectively, to the one-dimensional solution for oceanic tides or the solution of Sun (Sun H. A two-dimensional analytical solution of groundwater response to tidal loading in an estuary, Water Resour Res 1997;33:1429–35) for two-dimensional non-interacting tidal waves.  相似文献   

5.
1INTRODUCTIONTheYellowRivercarries1.6billiontonsofsedanmentload,rankedthefirstintheworld.Sedimentationinthelowerreachesresultedinfrequentlyshiftoftherivercourses.ThroughoutthehistoryofChina,theYellowRiverhasbeenassociatedwithfloodsandfamine,earningtherivername"China'ssorrow"(Hu,l996).Instabilityoftheriverchannel,especiallythedeltachannel,restraintstheeconomicdevelopmentofthearea.TheDongyingmunicipalgovernment,theShenliOilCorporationandtheYellowRiverMouthManagementBureauofYRCC(Yel…  相似文献   

6.
Estuaries, commonly, are densely populated areas serving the needs of the inhabitants in multiple ways. Often the interests are conflicting and decisions need to be made by the local managers. Intake of fresh water for consumption, agricultural purposes or use by industries may take place within a region not far landward of the limit of salt intrusion. Human interventions (e.g. deepening of the navigation channels) or climate changes (sea level rise, reduction of the river discharge) can bring these intake locations within the reach of saline or brackish water and consequently endanger their function. To support policy and managerial decisions, a profound knowledge of processes associated with the salinity structure in estuaries is required. Although nowadays advanced numerical three-dimensional models are available that are able to cope with the complexity of the physics there is still a need for relatively simple tools for quick-scan actions in a pre-phase of a project or for instructive purposes. The analytical model described in this paper may serve these needs. It computes the maximum salinity distribution using the dispersion coefficient in the mouth as the only model parameter. The model has been calibrated using observational data in a large number of estuaries and experimental data in a tidal flume. The dispersion coefficient was successfully related to geometric and hydrodynamic parameters resulting in an expression that can be used for convergent estuaries as well as prismatic channels, see Eqs. 25a and 25b. Application of the model in a predictive mode showed its promising capabilities. Comparison with three-dimensional numerical models indicates that the channel geometry in the estuary mouth largely influences dispersive processes. The analytical model for salt intrusion may be used in combination with the analytical model for tidal propagation in convergent estuaries and tidal channels by Van Rijn (part I). In this way, input is obtained on the tidal velocity amplitude and the Chézy roughness following calibration of this model on tidal amplitudes along the estuary.  相似文献   

7.
To investigate how salinity changes with abrupt increases and decreases in river discharge, three surveys were conducted along six sections around the Yellow River mouth before, during and after a water regulation event during which the river discharge was increased from ∼200 to >3000 m3 s−1 for the first 3 days, was maintained at >3000 m3 s−1 for the next 9 days and was decreased to <1000 m3 s−1 for the final 4 days. The mean salinity in the Yellow River estuary area during the event varied ∼1.21, which is much larger than its seasonal variation (∼0.50) and interannual variation (∼0.05). Before the event, a small plume was observed near the river mouth. During the event, the plume extended over 24 km offshore in the surface layer in the direction of river water outflow. After the event, the plume diminished in size but remained larger than before the event. The downstream propagation of the plume (as in a Kelvin wave sense) was apparent in the bottom layer during the second survey and in both the surface and bottom layers during the third survey. The plume sizes predicted by the formulas from theoretical studies are larger than those we observed, indicating that factors neglected by theoretical studies such as the temporal variation in river discharge and vertical mixing in the sea could be very important for plume evolution. In addition to the horizontal variation of the plume, we also observed the penetration of freshwater from the surface layer into the bottom layer. A comparison of two vertical processes, wind mixing and tidal mixing, suggests that the impact of wind mixing may be comparable with that of tidal mixing in the area close to the river mouth and may be dominant over offshore areas. The change in Kelvin number indicates an alteration of plume dynamics due to the abrupt change in river discharge during the water regulation event.  相似文献   

8.
Abstract

Researchers have used various physical, chemical, or topographic features to define estuaries, based on the needs of their particular subject. The principal features of estuaries are the tides that influence their water stages; thus, the boundaries of an estuary can be determined based on whether the water stage is subject to tidal influence. However, the water stage is also influenced by the upstream river discharge. A hydrograph of water stage will therefore include both non-stationary and nonlinear features. Here, we use the Hilbert-Huang Transform (HHT), which allows us to process such non-stationary and nonlinear signals, to decompose the water-stage hydrographs recorded at different gauging stations in an estuary into their intrinsic mode function (IMF) components and residuals. We then analyse the relationships between the frequencies of IMFs and known tidal components. A frequency correlation indicates that the water stage of the station is subject to tidal influences and is located within the estuary. The spatial distribution of the stations that are subject to tidal influences can then be used to define the estuary boundaries. We used data from gauging stations in the estuary region of Taiwan's Tanshui River to assess the feasibility of using the HHT to define an estuary. The results show that the HHT is a dependable and easy method for determining the boundaries of an estuary.

Citation Chen, Y.-C., Kao, S.-P., and Chiang, H.-W., 2013. Defining an estuary using the Hilbert-Huang transform. Hydrological Sciences Journal, 58 (4), 841–853.  相似文献   

9.
Water level records at two stations in the Guadalquivir Estuary (Spain), one near the estuary mouth (Bonanza) and one about 77 km upstream (Sevilla), have been analysed to study the amplification of the tide in the estuary. The tidal amplification factor shows interesting temporal variation, including a spring-neap variation, some extreme low values, and especially the anomalous behaviour that the amplification factor is larger during a number of periods. These variations are explained by data analysis combined with numerical and analytical modelling. The spring-neap variation is due to the quadratic relation between the bottom friction and the tidal flow velocity. The river flood events are the direct causes of the extreme low values of the amplification factor, and they trigger the non-linear interaction between the tidal flow and suspended sediment transport. The fluvial sediment input during a river flood causes high sediment concentration in the estuary, up to more than 10 g/l. This causes a reduction of the effective hydraulic drag, resulting in stronger tidal amplification in the estuary for a period after a river flood. After such an event the tidal amplification in the estuary does not always fall back to the same level as before the event, indicating that river flood events have significant influence on the long-term development of this estuary.  相似文献   

10.
In the dune area of the Westhoek Nature Reserve, situated in the western Belgian coastal plain, two artificial tidal inlets were made aiming to enhance biodiversity. The infiltration of salt water in these tidal inlets was carefully monitored because a fresh water lens is present in the phreatic dune aquifer. This forms an important source of fresh water which is for instance exploited by a water company. The infiltration was monitored over a period of two years by means of electromagnetic borehole measurements (EM39) and by measurements of fresh water heads and temperature using a large number of observation wells. EM39 observations point to aquifer heterogeneity as a determining factor in the movement of the salt infiltration water. It is shown that part of the infiltration water moves further in the dunes instead of towards the sea. On the long term run, possibility exists that salt water enters the extraction’s capture zone. This issue needs further monitoring and study. Fresh water head and temperature data illustrate that the main period of infiltration is confined to spring tide when large amounts of salt water enter the tidal inlets.  相似文献   

11.
The factors that govern the distribution and transformation of tidal waves in the macrotidal estuary of the Mezen River have been considered, including tide range in the mouth section, water discharge in the river’s lower reaches, estuary shape, and bed resistance coefficient. Data on variations of water discharge over period 1920–2008 are given. The parameters of estuary channel narrowing in horizontal and vertical sections have been considered. The effect of narrowing and bed hydraulic friction on tide wave amplitude has been evaluated. Froude number values for the tidal estuary suggest that tidal bore can form at the Mezen mouth. The conditions of the propagation of tidal waves to the mouths of different rivers and tidal bore formation in them are considered.  相似文献   

12.
Analyses of independent laboratory- and field-scale measurements from two sites on Sapelo Island, Georgia reveal heterogeneity in hydraulic parameters across the upland–estuary interface. Regardless of the method used (short-duration pumping tests, amplitude attenuation of tidal pumping data, sediment grain size distributions, and falling head permeameter tests), we obtain hydraulic conductivity of 10−4 m s−1 for the fine-grained, well-sorted, clean sands that make up the upland areas. Proximal to the upland–estuary boundary, the tidal pumping analyses and permeameter tests suggest that hydraulic conductivities decrease by more than two orders of magnitude, a result consistent with the presence of a clogging layer. Such a clogging layer may arise due to a variety of physical, chemical, or biological processes. The extent and orientation of the layers of reduced hydraulic conductivity near the upland–estuary boundary influence the nature of the aquifer's response to tidal forcing. Where the lower conductivity layer forms a relatively flat creek bank, tidal pumping produces a primarily mechanical response in the adjacent aquifer. Where the creek bank is nearly vertical, there is a more direct hydraulic connection between the tidal creek and the adjacent aquifer. The clogging layer likely contributes to the development of complicated flow pathways across the upland–estuary boundary. Effective flow paths calculated from tidal pumping data terminate within the marsh, beyond the boundary of the upland aquifer, suggesting a diffuse regime of groundwater discharge in the marsh. We postulate that, in many settings, submarsh flow may be as important as seepage faces for groundwater discharge into the marsh–estuary complex.  相似文献   

13.
This study presents the groundwater flow and salinity dynamics along a river estuary, the Werribee River in Victoria, Australia, at local and regional scales. Along a single reach, salinity across a transverse section of the channel (~80 m long) with a point bar was monitored using time-lapse electrical resistivity (ER) through a tidal cycle. Groundwater fluxes were concurrently estimated by monitoring groundwater levels and temperature profiles. Regional porewater salinity distribution was mapped using 6-km long longitudinal ER surveys during summer and winter. The time-lapse ER across the channel revealed a static electrically resistive zone on the side of the channel with a pronounced cut bank. Upward groundwater flux and steep vertical temperature gradients with colder temperatures deeper within the sediment suggested a stable zone of fresh groundwater discharge along this cut bank area. Generally, less resistive zones were observed at the shallow portion of the inner meander bank and at the channel center. Subsurface temperatures close to surface water values, vertical head gradients indicating both upward and downward groundwater flux, and higher porewater salinity closer to that of estuary water suggest strong hyporheic circulation in these zones. The longitudinal surveys revealed higher ER values along deep and sinuous segments and low ER values in shallow and straighter reaches in both summer and winter; these patterns are consistent with the local channel-scale observations. This study highlights the interacting effects of channel morphology, broad groundwater–surface water interaction, and hyporheic exchange on porewater salinity dynamics underneath and adjacent to a river estuary.  相似文献   

14.
1INTRODUCTIONTheHaiheRiverBasinislocatedinNorthChinawithareaof262.6km2.Itisaquicklydevelopedareawithmanyimportantcitiesandindustrialhubs,includingBeding,Tianjin,Tangshan,Cangzhou,DezhouandHuanghua.Theareawatchedfastprogressesinurbanizationinthepastdecades,andhumanactivitieshaveresultedingreatinfluencesontheenvironment,riverhydrologyandsedimentbudget.Theareaisprojectedtobemoreprosperouswithmoreoilandgasfields,chemicalindustrybases,anddenserrailwaysandexpresshighwaysinthenextcent'Ury.T…  相似文献   

15.
Tidal circulation and energy dissipation in a shallow, sinuous estuary   总被引:2,自引:0,他引:2  
The tidal dynamics in a pristine, mesotidal (>2 m range), marsh-dominated estuary are examined using moored and moving vessel field observations. Analysis focuses on the structure of the M 2 tide that accounts for approximately 80% of the observed tidal energy, and indicates a transition in character from a near standing wave on the continental shelf to a more progressive wave within the estuary. A slight maximum in water level (WL) occurs in the estuary 10–20 km from the mouth. M 2 WL amplitude decreases at 0.015 m/km landward of this point, implying head of tide approximately 75 km from the mouth. In contrast, tidal currents in the main channel 25 km inland are twice those at the estuary mouth. Analysis suggests the tidal character is consistent with a strongly convergent estuarine geometry controlling the tidal response in the estuary. First harmonic (M 4) current amplitude follows the M 2 WL distribution, peaking at mid-estuary, whereas M 4 WL is greatest farther inland. The major axis current amplitude is strongly influenced by local bathymetry and topography. On most bends a momentum core shifts from the inside to outside of the bend moving seaward, similar to that seen in unidirectional river flow but with point bars shifted seaward of the bends. Dissipation rate estimates, based on changes in energy flux, are 0.18–1.65 W m−2 or 40–175 μW kg–1. A strong (0.1 m/s), depth-averaged residual flow is produced at the bends, which resembles flow around headlands, forming counter-rotating eddies that meet at the apex of the bends. A large sub-basin in the estuary exhibits remarkably different tidal characteristics and may be resonant at a harmonic of the M 2 tide.  相似文献   

16.
Man-induced regime shifts in small estuaries—I: theory   总被引:3,自引:2,他引:1  
This is Part I of two papers on man-induced regime shifts in small, narrow, and converging estuaries, with focus on the interaction between effective hydraulic drag, fine sediment import, and tidal amplification, induced by river engineering works, e.g., narrowing and deepening. In this part, a simple linear analytical model is derived, solving the linearized shallow water equations in exponentially converging tidal rivers. Distinguishing reflecting and non-reflecting conditions, a non-dimensional dispersion equation is derived which yields the real and imaginary wave numbers as a function of the estuarine convergence number and effective hydraulic drag. The estuarine convergence number describes the major geometrical features of a tidal river, e.g., intertidal area, convergence length, and water depth. This model is used in Part II analyzing the historical development of the tide in four rivers. Part I also presents a conceptual model on the response of tidal rivers to narrowing and deepening. It is argued that, upon the loss of intertidal area, flood-dominant conditions prevail, upon which fine sediments are pumped into the river, reducing its effective hydraulic drag. Then a snowball effect may be initiated, bringing the river into a hyper-turbid state. This state is self-maintaining because of entrainment processes, and favorable from an energetic point of view, and therefore highly stable. We may refer to an alternative steady state.  相似文献   

17.
Winterwerp  Johan C.  Wang  Zheng Bing 《Ocean Dynamics》2013,63(11):1279-1292

This is Part I of two papers on man-induced regime shifts in small, narrow, and converging estuaries, with focus on the interaction between effective hydraulic drag, fine sediment import, and tidal amplification, induced by river engineering works, e.g., narrowing and deepening. In this part, a simple linear analytical model is derived, solving the linearized shallow water equations in exponentially converging tidal rivers. Distinguishing reflecting and non-reflecting conditions, a non-dimensional dispersion equation is derived which yields the real and imaginary wave numbers as a function of the estuarine convergence number and effective hydraulic drag. The estuarine convergence number describes the major geometrical features of a tidal river, e.g., intertidal area, convergence length, and water depth. This model is used in Part II analyzing the historical development of the tide in four rivers. Part I also presents a conceptual model on the response of tidal rivers to narrowing and deepening. It is argued that, upon the loss of intertidal area, flood-dominant conditions prevail, upon which fine sediments are pumped into the river, reducing its effective hydraulic drag. Then a snowball effect may be initiated, bringing the river into a hyper-turbid state. This state is self-maintaining because of entrainment processes, and favorable from an energetic point of view, and therefore highly stable. We may refer to an alternative steady state.

  相似文献   

18.
A simple approach to the estimate of long-term sediment discharge through an entrance to a tidal basin is described. Using the method, cross-sectional mean current speeds are derived, on the basis of the definition of an ‘apparent tidal basin area’, from records of water level data from a single tide gauge. The obtained time-series of current speeds are then used to define ‘local’ current speeds, through the use of a sectional distribution function for the currents. Sediment transport formulae are then applied, using the obtained speed data and other relevant parameters contained within the formulae and frequency distribution functions with regard to wave and tidal current characteristics, to estimate sediment discharge through the entrance. Analytical procedures of the method are described in detail, in an example from Christchurch Harbour (southern England).  相似文献   

19.
In many large estuaries there are significant variations in flow conditions due to the interaction between tide (with spring–neap changes) and river discharge (with wet–dry seasons), which is key to understanding the evolution of the morphology and the resultant equilibrium state. To explore whether there exists an equilibrium state, and what might control such a state in such a dynamic environment, both numerical and analytical methods have been used to investigate the relative importance of tide and river contributions to the work done locally and globally over a wide range of discharge conditions in the Yangtze estuary. In particular, we have quantified the contributions from the tidal flow, the river flow and the tide–river interaction in terms of energy and its dissipation under different river discharge conditions. Model results suggest that there is a state of minimum tidal work for the case representing the wet season, when river and tide are doing uniform work locally and minimum work globally, within the bi‐directional tidal reach for tide and along the whole estuary for river. We also observe that the system is not optimized for other conditions (peak discharge and low flows during the dry season), but the system would tend to do the minimum work possible given the constraints on the system (e.g. imposed forcing conditions and available sediment supply). Results, therefore, are consistent with the use of these two energetic optimization principles, and the proposed method could be applicable to other alluvial estuaries. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
The response of the Chesapeake Bay to river discharge under the influence and absence of tide is simulated with a numerical model. Four numerical experiments are examined: (1) response to river discharge only; (2) response to river discharge plus an ambient coastal current along the shelf outside the bay; (3) response to river discharge and tidal forcing; and (4) response to river discharge, tidal forcing, and ambient coastal current. The general salinity distribution in the four cases is similar to observations inside the bay. Observed features, such as low salinity in the western side of the bay, are consistent in model results. Also, a typical estuarine circulation with seaward current in the upper layer and landward current in the lower layer is obtained in the four cases. The two cases without tide produce stronger subtidal currents than the cases with tide owing to greater frictional effects in the cases with tide. Differences in salinity distributions among the four cases appear mostly outside the bay in terms of the outflow plume structure. The two cases without tide produce an upstream (as in a Kelvin wave sense) or northward branch of the outflow plume, while the cases with tide produce an expected downstream or southward plume. Increased friction in the cases with tide changes the vertical structure of outflow at the entrance to the bay and induces large horizontal variations in the exchange flow. Consequently, the outflow from the bay is more influenced by the bottom than in the cases without tide. Therefore, a tendency for a bottom-advected plume appears in the cases with tide, rather than a surface-advected plume, which develops in the cases without tide. Further analysis shows that the tidal current favors a salt balance between the horizontal and vertical advection of salinity around the plume and hinders the upstream expansion of the plume outside the bay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号