首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 221 毫秒
1.
Estimation of erosion volumes for adequate dry beach buffer zones is commonly estimated on the basis of a single extreme event, such as the 1 in 100 year storm. However, the cumulative impact of several smaller, closely spaced storms can lead to equal, if not more, dry beach loss, but this is often not quantified. Here we use a calibrated model for dune erosion, XBeach, to hindcast the cumulative erosion impact of a series of historical storms that impacted the Gold Coast, Queensland region in 1967. Over a 6-month period, four named cyclones (Dinah, Barbara, Elaine, and Glenda) and three East Coast Lows caused a cumulative erosion volume greater than the predicted 1 in 100 year event. Results presented here show that XBeach was capable of reproducing the measured dry beach erosion volume to within 21% and shoreline retreat to within 10%. The storms were then run in 17 different sequences to determine if sequencing influenced final modeled erosion volumes. It is shown that storm sequencing did not significantly affect the total eroded volumes. However, individual storm volumes were influenced by the antecedent state of the beach (i.e. prior cumulative erosion). Power-law relationships between cumulative energy density (∑ E) and eroded volume (∆V) as well as cumulative wave power ((∑ P)) and eroded volume (∆V) both explained more than 94% of the modeled dry beach erosion for the 1967 storm sequences. When the relationship was compared with observed and modeled erosion volumes for similar beaches but different storm forcing, the inclusion of pre-storm beach swash slope (βswash) in the parameterization was found to increase the applicability of the power-law relationship over a broader range of conditions.  相似文献   

2.
The ∼8.15 ka Storegga submarine slide was a large (∼3000 km3), tsunamigenic slide off the coast of Norway. The resulting tsunami had run-up heights of around 10–20 m on the Norwegian coast, over 12 m in Shetland, 3–6 m on the Scottish mainland coast and reached as far as Greenland. Accurate numerical simulations of Storegga require high spatial resolution near the coasts, particularly near tsunami run-up observations, and also in the slide region. However, as the computational domain must span the whole of the Norwegian-Greenland sea, employing uniformly high spatial resolution is computationally prohibitive. To overcome this problem, we present a multiscale numerical model of the Storegga slide-generated tsunami where spatial resolution varies from 500 m to 50 km across the entire Norwegian-Greenland sea domain to optimally resolve the slide region, important coastlines and bathymetric changes. We compare results from our multiscale model to previous results using constant-resolution models and show that accounting for changes in bathymetry since 8.15 ka, neglected in previous numerical studies of the Storegga slide-tsunami, improves the agreement between the model and inferred run-up heights in specific locations, especially in the Shetlands, where maximum run-up height increased from 8 m (modern bathymetry) to 13 m (palaeobathymetry). By tracking the Storegga tsunami as far south as the southern North sea, we also found that wave heights were high enough to inundate Doggerland, an island in the southern North Sea prior to sea level rise over the last 8 ka.  相似文献   

3.
The formation time of alongshore morphological variability in surf zone sand bars has long been known to differ from one beach to the other and from one post-storm period to another. Here we investigate whether the type of sea state, i.e. distant swell waves or locally generated short period wind sea, affects the formation time of the emerging alongshore topographic variability.A numerical modeling approach is used to examine the emergence of alongshore variability under different shore-normal wave forcing. A research version of Delft3D, operating on the time-scale of wave groups, is applied to a schematised bathymetry with a single bar. The model is then used to investigate several wave scenarios, examining the impact of peak period, frequency spread and directional spread on the formation time of alongshore variability.Results show that an increase in wave period has a large effect, changing the formation time up to O (250%) in case the wave period is changed from a representative value for the Dutch coast (Tp ~ 5–6 s) to an Australian South East coast value (Tp ~ 10–12 s). In contrast, modifications in the directional and frequency spread of the wave field result only in a minor change in the formation time.Examination of hydrodynamics and potential sediment transport shows that the variations in formation time are primarily related to changes in the magnitude of the time-averaged flow conditions. Variations in the magnitude of very low frequency (f < 0.004 Hz) or infragravity (0.004 < f < 0.04 Hz) surf zone flow velocities do not affect the mean sediment transport capacity. Consequently the formation speed of patterns is primarily governed by positive feedback between mean flow and morphology, and low frequency flow fluctuations are of minor importance.These findings indicate that the development of alongshore topographic variability may be faster at swell dominated open coasts, primarily due to the occurrence of longer period swell. Also, at a given site, the arrival of a long wave period swell after a storm can accelerate the emergence of variability.  相似文献   

4.
This paper describes a unique new physical testing facility for studying ocean-structure–seabed interactions, and in particular pipeline on-bottom stability on erodible seabed under hydrodynamic loading. The facility, named the O-tube due to its shape, is a fully enclosed flume in which ambient and storm-induced near-seabed flows are generated by a computer-controlled flow pump. Combined steady and oscillatory flow can be generated by alternating pump flow directions in a controlled manner, and computer control also allows irregular flow to be generated. The design of the O-tube combines the capabilities of a conventional open channel flume (which provides steady current) with a U-tube (which provides oscillatory flow). The facility is designed to physically model severe storm conditions, as well as ambient or tidal flows. When studying pipeline stability on erodible seabed under severe hydrodynamic loading conditions, tests can be performed at a relatively large scale (typically 1/5) for large diameter pipelines (e.g. 40 in. gas trunklines) and at full scale for small diameter pipelines (< 8 in.) to minimize potential scaling effects associated with movable bed model tests. The specifications of the O-tube, a model pipe and an actuator system that supports the model pipe are given in detail. Preliminary model testing results show that the facility has met its design expectations.  相似文献   

5.
《Ocean Modelling》2011,36(4):314-331
Hurricane-induced storm surge, waves, and coastal inundation in the northeastern Gulf of Mexico region during Hurricane Ivan in 2004 are simulated using a fine grid coastal surge model CH3D (Curvilinear-grid Hydrodynamics in 3D) coupled to a coastal wave model SWAN, with open boundary conditions provided by a basin-scale surge model ADCIRC (Advanced CIRCulation) and a basin-scale wave model WW3 (WaveWatch-III). The H1wind, a reanalysis 10-m wind produced by the NOAA/AOML Hurricane Research Division (HRD), and a relatively simple analytical wind model are used, incorporating the effect of land dissipation on hurricane wind. Detailed comparison shows good agreement between the simulated and measured wind, waves, surge, and high water marks. Coastal storm surge along the coast is around 2–3 m, while peak surge on the order of 3.5 m is found near Pensacola, which is slightly to the east of the landfall location on Dauphin Island. Wind waves reach 20 m at the Mobile South station (National Data Buoy Center buoy 42040) on the shelf and 2 m inside the Pensacola/Escambia Bay. Model results show that wave-induced surge (total surge subtracted by the meteorologically-induced surge due to wind and pressure) accounts for 20–30% of the peak surge, while errors of the simulated surge and waves are generally within 10% of measured data. The extent of the simulated inundation region is increased when the effects of waves are included. Surge elevations simulated by the 3D model are generally up to 15% higher than that by the 2D model, and the effects of waves are more pronounced in the 3D results. The 3D model results inside the Pensacola/Escambia Bay show significant vertical variation in the horizontal currents. While the estuary has little impact on the surge elevation along the open coastal water, surge at the head of Escambia Bay is more than 50% higher than that at the open coast with 1.5 h delay.  相似文献   

6.
The possibility of using wave farms for coastal defence warrants investigation because wave energy is poised to become a major renewable in many countries over the next decades. The fundamental question in this regard is whether a wave farm can be used to reduce beach erosion under storm conditions. If the answer to this question is positive, then a wave farm can have coastal defence as a subsidiary function, in addition to its primary role of producing carbon-free energy. The objective of this work is to address this question by comparing the response of a beach in the face of a storm in two scenarios: with and without the wave farm. For this comparison a set of ad hoc impact indicators is developed: the bed level impact (BLI), beach face eroded area (FEA), non-dimensional erosion reduction (NER), and mean cumulative eroded area (CEA); and their values are determined by means of two coupled models: a high-resolution wave propagation model (SWAN) and a coastal processes model (XBeach). The study is conducted through a case study: Perranporth Beach (UK). Backed by a well-developed dune system, Perranporth has a bar between − 5 m and − 10 m. The results show that the wave farm reduces the eroded volume by as much as 50% and thus contributes effectively to coastal protection. This synergy between marine renewable energy and coastal defence may well contribute to improving the viability of wave farms through savings in conventional coastal protection.  相似文献   

7.
The geographical distribution of barotropic to baroclinic transfer of tidal energy by baroclinic wave drag in the abyssal ocean is estimated. Using tidal velocities from a state-of-the-art numerical tidal model, the total loss of barotropic tidal energy in the deep ocean (between 70°S and 70°N and at depths greater than 1000 m) is estimated to be about 0.7 TW (M2) corresponding to a mean value of the energy flux (e) of 2.4×10−3 W/m2. The distribution of e is however highly skewed with a median of about 10−6 W/m2. Only 10% of the area is responsible for more than 97% of the total energy transfer.To assess the possible influence of the relatively coarse bathymetry representation upon the present estimate, complementary calculations using better resolved sea floor topography are carried out over a control area around the Hawaiian Ridge. There are no major differences between the results achieved using the two different bathymetry databases. Fluxes of about 16 GW or 6×10−3 W/m2 are computed in both cases, and the main contributions to the total fluxes originate in the same range of e-values and cover equally large parts of the total area.It is not clear whether the present model is valid at flat or subcritical bottom slopes. However, for the Hawaiian region, only 2% of the total energy flux as calculated in the present study originates in areas of critical and subcritical slopes.  相似文献   

8.
We investigated the impact of sediment reworking fauna and hydrodynamics on mobilization and transport of organic matter and fine particles in marine sediments. Experiments were conducted in an annular flume using lugworms (Arenicola marina) as model organisms. The impact of lugworms on sediment characteristics and particle transport was followed through time in sediments experimentally enriched with fine particles (< 63 μm) and organic matter. Parallel experiments were run at low and high water current velocity (11 and 25 cm s 1) to evaluate the importance of sediment erosion at the sediment–water interface. There was no impact of fauna on sediment composition and particle transport at current velocity below the sediment erosion threshold. At current velocity above the erosion threshold, sediment reworking by lugworms resulted in dramatic particle transport (12 kg dry matter m 2) to an adjacent particle trap within 56 days. The transported matter was enriched 6–8 times in fine particles and organic matter when compared to the initial sediment. This study suggests that sediment reworking fauna is an important controlling factor for the particle composition of marine sediments. A. marina mediated sediment reworking greatly increases the sediment volume exposed to hydrodynamic forcing at the sediment–water interface, and through sediment resuspension control the content of fine particles and organic matter in the entire reworked sediment layer (> 20 cm depth).  相似文献   

9.
This study presents how Thailand applied an integrated approach to tackle erosion problems by using a case study in Nakorn Si Thammarat province. Communities along 36 km of coastline suffered from continual erosion. Community members believed the erosion was a natural phenomenon that was intensified by human actions. Historical erosion rate estimated by overlaying aerial photographs was about 5 m per year, while LITPROF simulations suggested that approximately 5 m of beach dune would be eroded by storm waves. Stakeholders were identified based on power and legitimacy criteria. Their past attempts to mitigate the erosion were analyzed. Conflicts arose from how they selected erosion protection methods. Lessons learnt from previous management failures taught that addressing needs of the stakeholders and consulting them throughout the design process were of importance. Finally, a combination of detached nearshore breakwaters and beach nourishment was the selected protection measure and was welcome by the communities.  相似文献   

10.
A coupled wave and hydrodynamic model was applied to the Kingston Basin of eastern Lake Ontario, a region with bathymetric variability due to channels and shoals, to assess the potential impacts on surface waves and wind-driven circulation of an offshore wind farm. The model was used to simulate a series of storm events with time-varying wind forcing and validated against wave, current and water level observations. The wind farm was simulated by adding semi-permeable structures in the surface wave model to represent the turbine monopiles, and by adding an energy loss term to the fluid momentum equations in the hydrodynamic model to represent the added drag of the monopiles on the flow. The results suggest that the wind farm would have a small influence on waves and circulation throughout the wind farm area, with spatial variability due to focussing of wave energy and re-direction of the flow. Overall, the results indicate that the wave height in coastal areas will be minimally affected with changes in significant wave height predicted to be < 3%. Larger changes to the strength of circulation occur inside the wind farm region with localized changes in current magnitude of up to 8 cm s 1. The results of this study may help to understand the impacts of future offshore wind farms and other offshore structures in the Great Lakes.  相似文献   

11.
《Marine Geology》2001,172(3-4):225-241
The Piedras Estuary is one of the most significative estuarine systems on the mesotidal Huelva Coast, in the Northwestern portion of the Cadix Gulf. The river mouth is presently an estuarine lagoon partially closed by a large spit constructed from an old barrier island system. This estuary is in an advanced state of infilling and its tidal prism has decreased during the Holocene causing instability and clogging of old inlets and transforming the barrier island chain into a spit. Sedimentation is controlled by the interaction of ebb tide currents and the prevailing SW waves. The main sediment supply is provided by an intensive West-to-East longshore current, transporting sand material from Portuguese cliffs and the Guadiana River. Tidal range is mesotidal (2.0 m) and the mean significant wave height is 0.6 m with an average period of 3.6 s.A boxcore study allowed five depositional facies to be distinguished in the Piedras Estuary mouth: (1) main ebb channels; (2) marginal flood channels; (3) ebb-tidal delta lobes; (4) marginal levees; and (5) curved spits. The recent evolution studied in this area suggests a cyclic evolutionary model for the ebb-tidal delta system. The architectural facies relations shown by the vibracore/boxcore study confirm that the apical growth of the spit occurred over the innermost of these ebb-tidal deltas. Consequently the preserved sequence shows the ebb-tidal delta facies under the spit facies.  相似文献   

12.
The influence of the asymmetric structure of hurricane wind field on storm surge is studied with five types of numerical experiments using a three-dimensional storm surge model. The results from the case of Hurricane Floyd (1999) show that Floyd-induced peak surge would have been much higher had the region of maximum wind rotated 30–90° counterclockwise. The idealized cases (the hypothetical hurricanes) with a wind speed asymmetry of 20 m s?1 show that the peak (negative) surge varied from 4.7 to 6.0 m (?5 to ?5.7 m) or equivalent to ?8.8% and 16.3% (2.8% and ?10.4%) differences as compared to the control experiment. The area of flooding varied from 3552 to 3660 km2. The results from two other idealized cases of varying degree of wind speed asymmetry further show that with decreasing (increasing) asymmetry of wind fields, the variations of peak surge and peak negative surge caused by the rotation of wind fields decrease (increase) accordingly. The results suggest that in storm surge simulations forced by winds derived from balanced models, considerable uncertainty in storm surge and inundation can result from wind asymmetries. This is true even if all other storm parameters, including maximum wind speed, the radius of maximum winds (storm size), minimum central pressure, storm translation speed, drag coefficient, and model settings (domain size and resolution) are identical. Thus, when constructing ensemble and probabilistic storm surge forecasts, uncertainty in wind asymmetry should be considered in conjunction with variations in storm track, storm intensity and size.  相似文献   

13.
In this study we investigated the impacts of potential changes of land cover due to sea-level rise (SLR) on storm surge (i.e., the rise of water above normal sea level, namely mean-sea level and the astronomical tide, caused by hurricane winds and pressure) response inside bays on the lower Texas coast. We applied a hydrodynamic and wave model (ADCIRC + SWAN) forced by hurricane wind and pressure fields to quantify the importance of SLR-induced land cover changes, considering its impacts by changing bottom friction and the transfer of wind momentum to the water column, on the peak surge inside coastal bays. The SLR increments considered, 0.5 m to 2.0 m, significantly impacted the surge response inside the bays. The contribution of land cover changes due to SLR to the surge response, on average, ranged from a mean surge increase of 2% (SLR of 0.5 m) to 15% (SLR of 2.0 m), in addition to the SLR increments. The increase in surge response strongly depended on storm condition, with larger increases for more intense storms, and geographical location. Although land cover changes had little impact on the surge increase for SLR increments lower than 1.0 m, intense storms resulted in surge increase of up to 10% even for SLR below 1.0 m, but in most cases, the geometry changes were the major factor impacting the surge response due to SLR. We also found a strong relationship between changes in bottom friction and the surge response intensification; demonstrating the importance of considering land cover changes in coastal regions that are highly susceptible to SLR when planning for climate change.  相似文献   

14.
The mid-domain effect was tested to evaluate the bathymetric patterns of the polychaete species richness in the Upper and Lower Gulf of California as a possible hypothesis to explain the species richness gradient, exploring the overlapping of species depth ranges towards the middle continental shelf. The bathymetric gradient of the number of species was estimated with the depth ranges of 554 polychaete species, and the mid-domain effect was tested using a Monte Carlo simulation program at bands of 10 m depth. The Upper (251 species) and Lower (491 species) Gulf regions showed clear differences in their faunal composition (Jaccard similarity index = 0.34); the species richness pattern was characterized by a highly significant presence of polychaetes with short depth ranges (< 10 m). The richness distribution could be described as a cubic polynomial curve, but the maximum values in both Gulf regions (141 and 317 species, respectively for Upper and Lower Gulf regions) are strongly biased to shallow waters (40 m). This is not consistent with the peak of diversity at 60–70 m predicted by the model. The observed patterns cannot be reproduced by the mid-domain effect, suggesting the existence of non-random factors affecting the species richness gradients in the Gulf.  相似文献   

15.
The stratification in the Northern Gulf of Eilat/Aqaba follows a well-known annual cycle of well-mixed conditions in winter, surface warming in spring and summer, maximum vertical temperature gradient in late summer, and erosion of stratification in fall. The strength and structure of the stratification influences the diverse coral reef ecosystem and also affects the strength of the semi-diurnal tidal currents. Long-term (13 months) moored thermistor data, combined with high temporal and vertical resolution density profiles in deep water, show that transitions from summer to fall and winter to spring/summer occur in unpredictable, pulses and are not slow and gradual, as previously deduced from monthly hydrographic measurements and numerical simulations forced by monthly climatologies. The cooling and deepening of the surface layer in fall is marked by a transition to large amplitude, semi-diurnal isotherm displacements in the stratified intermediate layer. Stratification is rebuilt in spring and summer by intermittent pulses of warm, buoyant water that can increase the upper 100–150 m by 2 °C that force surface waters down 100–150 m over a matter of days. The stratification also varies in response to short-lived eddies and diurnal motions during winter. Thus, the variability in the stratification exhibits strong depth and seasonal dependence and occurs over range of timescales: from tidal to seasonal. We show that monthly or weekly single-cast hydrographic data under-samples the variability of the stratification in the Gulf and we estimate the error associated with single-cast assessments of the stratification.  相似文献   

16.
Thus far various numerical models have been developed and improved to aid understanding of the sediment transport process due to tsunamis. However, the applicability of these models for the field-scale bathymetric change remains a major issue due to the scarcity of measured bathymetric data immediately before and after tsunamis. This study focuses on assessing the applicability of the sediment transport model by comparing the model results with measured bathymetry data obtained one month before and two months after the 2004 Indian Ocean tsunami at Kirinda Fishery Harbor, Sri Lanka. Obtained model results were compared with measured data along four different transects. In particular, similar to the measured data, the model reproduced the bed level change at the harbor mouth well, although it shows some discrepancy on bathymetric change along the shoreline, which is directly affected by littoral drift. Therefore, it is noted that the divergence of reproducing the local bathymetry change is due to the normal wind wave effect on measured data and the model limitations. Hence we included the wind wave effect in modeled data and the discrepancy between measured and modeled data was reduced. Furthermore, the modeled bed level change indicates a dynamic behavior in terms of the net variation during the tsunami flow, such that deposition dominates in the inflow and erosion dominates in the backflow. Both bed level variation and the suspended load concentration reveal that the large amount of eroded sediment attributable to tsunami waves was in suspended form and was deposited in the nearshore area after the water fluctuation had abated. The model results further indicate that eroded sediment at the initial depth deeper than 11 m might be brought by the incoming tsunami waves and deposited in the nearshore area where the depth is shallower than 7 m.  相似文献   

17.
The results from a~1 km resolution HYbrid Coordinate Ocean Model (HYCOM), forced by 1/2° Navy Operational Global Atmospheric Prediction System (NOGAPS) atmospheric data, were used in order to study the dynamic response of the Persian Gulf to wintertime shamal forcing. Shamal winds are strong northwesterly winds that occur in the Persian Gulf area behind southeast moving cold fronts. The period from 20 November to 5 December 2004 included a well defined shamal event that lasted 4–5 days. In addition to strong winds (16 m s?1) the winter shamal also brought cold dry air (Ta=20 °C, qa=10 g kg?1) which led to a net heat loss in excess of 1000 W m?2 by increasing the latent heat flux. This resulted in SST cooling of up to 10 °C most notably in the northern and shallower shelf regions. A sensitivity experiment with a constant specific humidity of qa=15 g kg?1 confirmed that about 38% of net heat loss was due to the air–sea humidity differences. The time integral of SST cooling closely followed the air–sea heat loss, indicating an approximate one-dimensional vertical heat balance. It was found that the shamal induced convective vertical mixing provided a direct mechanism for the erosion of stratification and deepening of the mixed layer by 30 m. The strong wind not only strengthened the circulation in the entire Persian Gulf but also established a northwestward flowing Iranian Coastal Current (ICC, 25–30 cm s?1) from the Strait of Hormuz to about 52°E, where it veered offshore. The strongest negative sea level of 25–40 cm was generated in the northernmost portion of the Gulf while the wind setup against the coast of the United Arab Emirates established a positive sea level of 15–30 cm. The transport through the Strait of Hormuz at 56.2°E indicated an enhanced outflow of 0.25 Sv (Sv≡106 m3 s?1) during 24 November followed by an equivalent inflow on the next day.  相似文献   

18.
19.
In this paper we present a process-based numerical model for the prediction of storm hydrodynamics and hydrology on gravel beaches. The model comprises an extension of an existing open-source storm-impact model for sandy coasts (XBeach), through the application of (1) a non-hydrostatic pressure correction term that allows wave-by-wave modelling of the surface elevation and depth-averaged flow, and (2) a groundwater model that allows infiltration and exfiltration through the permeable gravel bed to be simulated, and is referred to as XBeach-G. Although the model contains validated sediment transport relations for sandy environments, transport relations for gravel in the model are currently under development and unvalidated. Consequently, all simulations in this paper are carried out without morphodynamic feedback. Modelled hydrodynamics are validated using data collected during a large-scale physical model experiment and detailed in-situ field data collected at Loe Bar, Cornwall, UK, as well as remote-sensed data collected at four gravel beach locations along the UK coast during the 2012–2013 storm season. Validation results show that the model has good skill in predicting wave transformation (overall SCI 0.14–0.21), run-up levels (SCI < 0.12; median error < 10%) and initial wave overtopping (85–90% prediction rate at barrier crest), indicating that the model can be applied to estimate potential storm impact on gravel beaches. The inclusion of the non-hydrostatic pressure correction term and groundwater model is shown to significantly improve the prediction and evolution of overtopping events.  相似文献   

20.
黄河三角洲区域水动力条件下岸滩侵蚀研究   总被引:3,自引:1,他引:2  
An ideal nature system for the study of post-depositional submarine mass changing under wave loading was selected in the intertidal platform of the subaqueous Huanghe River Delta, a delta formed during period from 1964 to 1976 as the Huanghe River discharged into the Bohai Gulf by Diaokou distributary. A road embankment constructed for petroleum recovery on the inter-tidal platform in 1995 induced the essential varieties of hydrodynamic conditions on the both sides of the road. With both sides sharing similarities in (1) initial sedimentary environment, (2) energetic wave loading, (3) differential hydrodynamic conditions in later stages, (4) enough long-range action, and (5) extreme shallow water inter-tidal platforms; the study is representative and feasible as well. Two study sites were selected on each side of the road, and a series of measurements, samplings, laboratory experiments have been carried out, including morphometry, hydrodynamic conditions, sediment properties, granularity composition, and fractal dimension calculation of the topography in the two adjacent areas. It was observed that in the outer zone, where wave loading with high magnitude prevailed, the tidal flat was bumpy and exhibited a high erosion rate and high fractal dimension. Further, the fractal dimension diminished quickly, keeping with the enlarging of calculative square size. However in the inner zone, where the hydrodynamic condition was weak, the tidal fiat was fiat and exhibited a low erosion rate and low fractal dimensions; the fractal dimension diminished with the enlarging of calcu- lative square size. The fractal dimensions in the different hydrodynamic areas equalized increasingly as the calculative square size accreted to threshold, indicating that the hydrodynamic condition plays a significant role in topography construction and submarine delta erosion process. Additionally, the later differentiation of sediment properties, granularity composition, microstructure characteristics, and mineral composition  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号