首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chalcopyrite bio-dissolution plays an important role in the processing of copper sulfide ores. However, due to the slow dissolution rates of CuFeS2, bio-dissolution processes have not yet found widespread application. In order to enhance the dissolution of chalcopyrite, a novel method for enhancing the dissolution using ozone was proposed and verified. The generated products in chalcopyrite dissolution process in the presence of Leptospirillum ferrooxidans and Acidithiobacillus thiooxidans was studied. The X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) results indicate that a surface layer mainly consisting of jarosite and polysulfide (Snn−/S0) might be formed during biotic stage, which can be eliminated with the introduction of ozone. Electrochemical results show that ozone significantly increased the electrochemical reactivity of bioleached chalcopyrite, further proving that ozone enhanced the dissolution through destroying the surface layer. Hence, a bi-stage method for dissolution of chalcopyrite can be proposed.  相似文献   

2.
X-ray absorption and emission spectra were used to characterize the surface of chalcopyrite after oxidation both in air and in air-saturated aqueous solution (pH = 2-10). For chalcopyrite oxidized in aqueous solution, the Cu and Fe L-edge spectra show that the surface oxidation layer is copper deficient. As the pH increases, O K-edge spectra reveal a change in the nature of the oxidation layer. An iron (hydroxy)sulfate is dominant at low pH, whereas FeOOH is the major surface phase under alkaline conditions. Fe2O3 may be present at intermediate pH. The surfaces of chalcopyrite samples oxidized in air consist of a mixture of copper oxides, FeOOH, and sulfate phases. Sulfate is much more abundant on the surface of air-oxidized chalcopyrite because of its high solubility in aqueous solution. Likewise, copper oxidation products can be observed in the O K-edge spectra of air-oxidized chalcopyrite in contrast to the aqueous samples.  相似文献   

3.
As the most abundant copper containing resource and zinc containing resource, chalcopyrite and sphalerite/marmatite commonly coexist as Cu-Zn mixed ores in deposits. However, it is difficult to completely separate sphalerite and chalcopyrite by flotation, thus resulting in the existence of zinc impurity in copper concentrate. Sphalerite/marmatite existed in copper sulfide concentrate as impurity may lead to severe damage of the smelting equipment, and cause the waste of copper and Zn resources, it will also decrease of the sale price of copper concentrates. Therefore, the deep separation of zinc from zinc bearing copper sulfide concentrate is of great significance. In this work, selective chemical leaching was developed to efficiently remove zinc from zinc containing copper sulfide concentrate. Under the optimal condition (i.e., sulfuric acid concentration exceed 100 g/L, temperature of 80 °C, pulp density of 10%, leaching time of 48 h), over 85% Zn was extracted into the leaching solution together with only about 10% Cu and Fe, according to the leaching experiment. Leaching slurry had good solid-liquid separation characteristics, and zinc can be further effectively recovered from the leaching solution. According to X-ray diffraction (XRD) and scanning electron microscope/energy dispersive spectrometer (SEM/EDS) analysis, chalcopyrite was the main mineralogical phase in the residues, which can be regarded as high quality copper concentrate for metallurgy. Accordingly, a new process for deep and efficient separation of Cu-Zn mixed ores has been proposed.  相似文献   

4.
Complex sulfides containing sphalerite, galena, chalcopyrite, and small amounts of silver in a matrix of pyrite can be decomposed at 120°C and oxygen pressure of 1000 kPa in 1–2 N HCl for 90 min to yield > 97% of the zinc and > 95% of the copper in solution while about 83% of the lead remains in the residue as PbCl2 and PbSO4 and 85% of the silver, together with most of the pyrite. The recovery of elemental sulfur is nearly 100% with respect to ZnS, PbS, and CuFeS2. Leaching in HCl is faster than in H2SO4 at the same acid normality, and the process is diffusion-controlled (strongly dependant on agitation speed and having an activation energy of 3.6 kcal/mole). Lead jarosite, Pb0.5Fe3 (SO4)2?(OH)6, is mainly formed when H2SO4 is used as a leaching agent.  相似文献   

5.
《Applied Geochemistry》2002,17(2):93-103
Mimicking geochemical processes to solve environmental problems was implemented in dealing with waste acidic jarosite and alkaline coal fly ash. By placing these two chemically different materials adjacent to one another, a self-sealing layer was formed at the interface between both wastes, isolating and immobilizing chemical constituents in the process. A series of leaching experiments were performed on each material separately to study the release behavior of the principal constituents. Radiotracer experiments were conducted to explore diffusion and reaction of constituents such as Fe3+ in a combined jarosite/fly ash system. A model has been developed to simulate the coupled processes of diffusion and precipitation taking into account porosity change due to pore filling by precipitates. The formation of a self-sealing isolation layer in a hypothetical jarosite/fly ash disposal site was modelled. Leaching results indicate that the release of elements from jarosite is much larger than that from fly ash, and that the highly pH dependent release of Fe, Al, and Zn was controlled by the solubility of their hydroxides. Leaching results also suggest that precipitation reactions can be expected to occur at the interface between jarosite and alkaline coal fly ash where a large pH gradient exists. Radiotracer experiments showed that accumulation of constituents occurred at the interface. Modeled Fe3+ profiles in layered jarosite/fly ash were well validated by experiments. Modeling results also showed that with the accumulation of constituents at the interface, a new layer with low porosity was formed. Application of this model suggests that there is a potential use to form a self-sealing layer in jarosite/fly ash co-disposal sites.  相似文献   

6.
Sulfur K-edge x-ray absorption spectra (XANES and EXAFS) and L-edge XANES of sphalerite (ZnS), chalcopyrite (CuFeS2) and stannite (Cu2FeSnS4) have been recorded using synchrotron radiation. The K- and L-edge XANES features are interpreted using a qualitative MO/energy band structure model. The densities of unoccupied states at the conduction bands of sphalerite, chalcopyrite and stannite are determined using S K- and L-edge XANES features (up to 15 eV above the edge), combined with published metal K-edge XANES. The SK- and L-edge XANES also indicate that, for sphalerite, the Fe2+ 3d band at the fundamental gap has little or no bonding hybridization with S 3p and S 3s orbitals; for chalcopyrite, the Cu+ 3d and Fe3+ 3d bands have strong mixing with S 3p and S 3s states, while for stannite the Cu+ 3d band strongly hybridizes with S 3p and S 3s orbitals, but the Fe2+ 3d band does not. The post-edge XANES features (15–50 eV above the edge) of sphalerite, chalcopyrite and stannite are similar. These features are related to the tetrahedral coordination of sulfur in all these structures, and interpreted by a multiple scattering model. The resonance energies from both the K-edge and L-edge XANES for these minerals are well correlated with reciprocal interatomic distances and lattice spaces. Sulfur K-edge EXAFS analyses using Fourier transform and curve fitting procedures are presented. Comparison of the structural parameters from EXAFS with x-ray structure data shows that the first shell bond distances (BD) from EXAFS are usually accurate to ±0.02 Å, and that coordination numbers (CN) are generally accurate to ±20 percent. For sphalerite, EXAFS analysis yields the structure parameters for the first three neighbour shells around a sulfur atom; the BD and CN even for the third shell are in close agreement with the x-ray structure, and the Debye-Waller term decreases from the first shell to the third shell. It is shown that sphalerite (ZnS) is a good model compound for EXAFS analysis of sulfur in chalcogenide glasses and metalloproteins.  相似文献   

7.
In northern Saskatchewan, Canada, high-grade U ores and the resulting tailings can contain high levels of As. An environmental concern in the U mining industry is the long-term stability of As within tailings management facilities (TMFs) and its potential transfer to the surrounding groundwater. To mitigate this problem, U mill effluents are neutralized with lime to reduce the aqueous concentration of As. This results in the formation of predominantly Fe3+–As5+ secondary mineral phases, which act as solubility controls on the As in the tailings discharged to the TMF. Because the speciation of As in natural systems is critical for determining its long-term environmental fate, characterization of As-bearing mineral phases and complexes within the deposited tailings is required to evaluate its potential transformation, solubility, and long-term stability within the tailings mass. In this study, synchrotron-based bulk X-ray absorption spectroscopy (XAS) was used to study the speciation of As and Fe in mine tailings samples obtained from the Deilmann TMF at Key Lake, Saskatchewan. Comparisons of K-edge X-ray absorption spectra of tailings samples and reference compounds indicate the dominant oxidation states of As and Fe in the mine tailings samples are +5 and +3, respectively, largely reflecting their generation in a highly oxic mill process, deposition in an oxidized environment, and complexation within stable oxic phases. Linear combination fit analyses of the K-edges for the Fe X-ray absorption near edge spectra (XANES) to reference compounds suggest Fe is predominantly present as ferrihydrite with some amount of the primary minerals pyrite (8–15% in some samples) and chalcopyrite (5–15% in some samples). Extended X-ray absorption fine structure (EXAFS) analysis of As K-edge spectra indicates that As5+ (arsenate) present in tailings samples is adsorbed to the ferrihydrite though an inner-sphere bidentate linkage.  相似文献   

8.
Chalcopyrite is known to be slow reacting mineral in hydrometallurgical systems and is considered one of the most inert sulphide minerals with respect to leaching. Such character of chalcopyrite seems to be linked to a formation of a passive layer on its surface. This work reports that freshly fractured chalcopyrite surfaces exhibit highly selective reactivity depending on the exposed fracture planes. ToF-SIMS was used to qualitatively characterize various fracture planes in freshly fractured chalcopyrite particles, prior to and after hydrometallurgical treatment. It was found that, prior to treatment, certain areas exhibited pronounced contamination from atmospheric hydrocarbons; whereas, others were highly unreactive and remarkably free from adventitious hydrocarbon contamination. The positive ion spectra recorded from these areas were found to be dominated by peaks from Fe- and Cu-elements and related compounds. The negative ion spectra for the reactive areas on the other hand showed a high content of oxidized (sulphur) species.The differences between the areas of low and high reactivity, as detected after leaching, were more subtle than prior to leaching; whereas, SEM analysis showed clear evidence for selective attack of ferric sulphate to specific planes. Furthermore, it was shown that, when chalcopyrite is in intimate contact with pyrite, it experiences an enhanced oxidation compared to when there is no electric contact with pyrite.Attempts were made to explain the preferential oxidation observed based on the different chemistry of the fracture surfaces.  相似文献   

9.
矿床技术经济评价在地质勘查工作中占有重要地位。目前编写地质勘查报告都必须包括技术经济评价章节。但我国矿床技术经济评价的理论和方法还存在一些问题,某些评价方法和基本概念还不够统一。通过对投资回收期、净现值、总现值、销售成本、经营成本等参数的研究认为,矿床技术经济评价要进一步规范化。  相似文献   

10.
Metal L2,3, sulfur K and oxygen K near-edge X-ray absorption fine structure (NEXAFS) spectra for chalcopyrite, bornite, chalcocite, covellite, pyrrhotite and pyrite have been determined from single-piece natural mineral specimens in order to assess claims that chalcopyrite should be regarded as CuIIFeIIS2 rather than CuIFeIIIS2, and that copper oxide species are the principal initial oxidation products on chalcopyrite and bornite exposed to air. Spectra were obtained using both fluorescence and electron yields to obtain information representative of the bulk as well as the surface. Where appropriate, NEXAFS spectra have been interpreted by comparison with the densities of unfilled states and simulated spectra derived from ab initio calculations using primarily the FEFF8 code and to a lesser extent WIEN2k. Metal 2p and S 2p photoelectron spectra excited by monochromatised Al Kα X-rays were determined for each of the surfaces characterised by NEXAFS spectroscopy. The X-ray excited Cu LMM Auger spectrum was also determined for each copper-containing sulfide. FEFF8 calculations were able to simulate the experimental NEXAFS spectra quite well in most cases. For covellite and chalcocite, it was found that FEFF8 did not provide a good simulation of the Cu L3-edge spectra, but WIEN2k simulations were in close agreement with the experimental spectra. Largely on the basis of these simulations, it was concluded that there was no convincing evidence for chalcopyrite to be represented as CuIIFeIIS2, and no strong argument for some of the Cu in either bornite or covellite to be regarded as Cu(II). The ab initio calculations for chalcopyrite and bornite indicated that the density of Cu d-states immediately above the Fermi level was sufficient to account for the Cu L3-edge absorption spectrum, however these incompletely filled Cu d-states should not be interpreted as indicating some Cu(II) in the sulfide structure. It was also concluded that the X-ray absorption spectra were quite consistent with the initial oxidation products on chalcopyrite and bornite surfaces being iron oxide species, and inconsistent with the concomitant formation of copper-oxygen species.  相似文献   

11.
Mafic-ultramafic cumulates can provide records of basaltic magma chambers' conditions and processes, which are often difficult to determine in areas dominated by crustal-derived felsic intrusions, such as the Malayer Plutonic Complex (MPC), Western Iran. New U-Pb zircon ages for mafic cumulates in the MPC confirm the presence of isolated magma chambers of contrasting compositions during Middle Jurassic. Mafic cumulates found in seven separate zones across the MPC vary from olivine gabbro to anorthosite. While the mineralogical, textural, and geochemical lines of evidence recorded in mafic cumulates indicate pH2O controls on the liquidus phases, the estimated oxygen fugacity (logfO2) using zircon and apatite chemistry suggests a smoothly rising redox state during the fractionation process, consistent with the trend expected for late-stages differentiation of hydrous arc magmas. This trend is further confirmed by sulfur speciation in apatites determined from microbeam sulfur K-edge X-ray absorption near edge structure (μ-XANES) spectra (S6+/∑S = 0.93–0.98 ~ FMQ + 2 to 0.99 ~ FMQ + 3, where ∑S = S6++S4++S2−). The low S content and increasing redox state of the fractionating basaltic melts most likely resulted from preferential removal of sulfur en-route to the magma chambers along with effective assimilation of oxidizing crustal components. The reduced condition in the early basaltic melt is also evidenced by the presence of pyrite and magnetite inclusions in olivines in mafic cumulates. The shift in the prevailing fO2 from sulfide-saturated to sulfate-bearing recorded by MPC mafic cumulates, similar to that in other magmatic arcs, is accompanied by changes in the differentiation path from transitional tholeiitic to calc-alkaline.  相似文献   

12.
X-ray photoelectron and absorption spectra have been obtained for natural specimens of cubanite and compared with the corresponding spectra for chalcopyrite. Synchrotron X-ray photoelectron spectra of surfaces prepared by fracture under ultra-high vacuum revealed some clear differences for the two minerals, most notably those reflecting their different structures. In particular, the concentration of the low binding energy S species formed at cubanite fracture surfaces was approximately double that produced at chalcopyrite surfaces. However, the core electron binding energies for the two S environments in cubanite were not significantly different, and were similar to the corresponding values for the single environment in chalcopyrite. High binding energy features in the S 2p and Cu 2p spectra were not related to surface species produced either by the fracture or by oxidation, and most probably arose from energy loss due to inter-band excitation. Differences relating to the Fe electronic environments were detectable, but were smaller than expected from some of the observed physical properties and Mössbauer spectroscopic parameters for the two minerals. X-ray absorption and photoelectron spectra together with the calculated densities of states for cubanite confirmed an oxidation state of CuI in the mineral. It was concluded that the best formal oxidation state representation for cubanite is CuI(Fe2)VS 3 ?II .  相似文献   

13.
《Applied Geochemistry》2001,16(6):571-581
A soil, containing waste material from an industrially contaminated site, was found to be heavily contaminated with several heavy metals and As. A risk assessment for As leaching from this material has been carried out in several stages, collation and examination of historical records, solid-phase characterization and chemical modelling. The historical record indicates that the most probable source of As was arsenopyrite. However, the solid phase characterization of the soil, using X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive microanalysis (EDAX), did not yield any direct evidence for pyritic phases, although there was clear evidence of known pyrite-weathering products, such as jarosite. The relative stability of pyrite and arsenopyrite have been modelled for the range of acidity and redox potentials likely to be encountered on the site. For adsorption modelling, a surface complexation model was used to predict arsenate desorption as a function of pH. It was assumed that the principal reactive adsorbent for As was hydrous ferric oxide (HFO) and this assumption was supported by the results of direct and indirect measurements and by the mineral stability calculations. This approach was successful at predicting the increased mobility of As at increasingly alkaline conditions. The modelling predictions were supported by results from batch equilibration experiments. Thus, it was possible to link direct observations of mineralogy, mineral stability calculations and adsorption models in order to predict the mobility of As. The success of this approach was dependent on identifying the reactive phase in this particular soil and having the appropriate data required for the adsorption modelling.  相似文献   

14.
We calculated the forsterite Mg K-edge and the fayalite Fe K-edge X-ray absorption spectra both for the M 1 and M 2 sites and for the overall edge by using the one-electron multiple-scattering theory. The validity of the theoretical model is well illustrated by comparison of calculations with experimental data at the Mg K-edge of MgO (periclase) and at the Mg and Fe K-edges spectra of forsterite and fayalite. Starting from these results at room conditions, we calculated the Mg and Fe K-edges X-ray absorption spectra of forsterite and fayalite at low and high temperatures and at high pressures as well. Variations of fine structures occur mostly in the intermediate multiple scattering (IMS) regions and as a result of the applied pressure. In order to demonstrate the capability of XAS to lead to deeper knowledge of structure relevant to Earth's upper mantle we also attempted calcuating the high-P edge for Fe 2+ in low-spin using a different occupation of valence electrons. If a change in spin state really occurs in fayalite, our simple model shows that XAS would evidence it easily even with low resolution.  相似文献   

15.
Reactive amendments such as Portland and super-sulfate cements offer a promising technology for immobilizing metalloid contaminants such as mercury (Hg) in soils and sediments through sequestration in less bioavailable solid forms. Tidal marsh sediments were reacted with dissolved Hg(II) in synthetic seawater and fresh water solutions, treated with Portland cement and FeSO4 amendment, and aged for up to 90 days. Reacted solids were analyzed with bulk sequential extraction methods and characterized by powder X-ray diffraction (XRD), electron microscopy, and synchrotron X-ray absorption spectroscopy at the Hg LIII- and S K-edge. In amended sediments, XRD, SEM and sulfur K-edge XANES indicated formation of gypsum in seawater experiments or ettringite-type (Ca6Al2(SO4)3(OH)12.26H2O) phases in fresh water experiments, depending on the final solution pH (seawater ∼8.5; freshwater ∼10.5). Analysis of Hg EXAFS spectra showed Cl and Hg ligands in the first- and second-coordination shells at distances characteristic of a polynuclear chloromercury(II) salt, perhaps as a nanoparticulate phase, in both seawater and fresh water experiments. In addition to the chloromercury species, a smaller fraction (∼20–25%) of Hg was bonded to O atoms in fresh water sample spectra, suggesting the presence of a minor sorbed Hg fraction. In the absence of amendment treatment, Hg sorption and resistance to extraction can be accounted for by relatively strong binding by reduced S species present in the marsh sediment detected by S XANES. Thermodynamic calculations predict stable aqueous Hg–Cl species at seawater final pH, but higher final pH in fresh water favors aqueous Hg-hydroxide species. The difference in Hg coordination between aqueous and solid phases suggests that the initial Hg–Cl coordination was stabilized in the cement hydration products and did not re-equilibrate with the bulk solution with aging. Collectively, results suggest physical encapsulation of Hg as a polynuclear chloromercury(II) salt as the primary immobilization mechanism.  相似文献   

16.
Aragonite was analyzed from Porites lobata, Pavona gigantea, Pavona clavus, and Montastrea annularis corals by Sr K-edge extended absorption X-ray fine structure (EXAFS) and compared with aragonite, strontianite, and mechanically mixed standards. Bulk analyses were performed and data compared with equivalent micro-EXAFS analyses on small (∼400 μm3) analytical volumes with a microfocused X-ray beam. As a result of the architecture of the coral skeleton, the crystals within the microanalytical volume are not randomly oriented, and the microanalytical X-ray absorption spectra show orientational dependence. However, refinement of bulk and microanalytical data provided indistinguishable interatomic distances and thermal vibration parameters in the third shell (indicative of Sr speciation). The Sr K-edge EXAFS of all the coral samples refine, within error, to an ideally substituted Sr in aragonite, in contrast to previous studies, in which significant strontianite was reported. Some samples from that study were also analyzed here. Strontianite may be less widely distributed in corals than previously thought.  相似文献   

17.
Tetragonal FeS1−x mackinawite, has been synthesized by reacting metallic iron with a sodium sulfide solution and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), transmission Mössbauer spectroscopy (TMS) and X-ray photoelectron spectroscopy (XPS). Based on XRD and TEM analyses, synthetic mackinawite exhibits crystallization and is identical to the natural mineral. Unit cell parameters derived from XRD data are a = b = 0.3670 nm and c = 0.5049 nm. The bulk Fe:S ratio derived from the quantitative dispersive energy analysis is practically 1. XPS analyses, however, showed that mackinawite surface is composed of both Fe(II) and Fe(III) species bound to monosulfide. Accordingly, monosulfide is the dominant S species observed at the surface with lesser amount of polysulfides and elemental sulfur. TMS analysis revealed the presence of both Fe(II) and Fe(III) in the mackinawite structure, thus supporting the XPS analysis. We propose that the iron monosulfide phase synthesized by reacting metallic iron and dissolved sulfide is composed of Fe(II) and S(-II) atoms with the presence of a weathered thin layer covering the bulk material that consists of both Fe(II) and Fe(III) bound to S(-II) atoms and in a less extent of polysulfide and elemental sulfur.  相似文献   

18.
Leaching of three high-phosphorus manganese ore samples from central India with dilute hydrochloric acid (0.1–0.6 M) has been found to reduce their phosphorus contents below the specified limit of 0.12%. Various process parameters, such as concentration of acid, liquid/solid ratio, temperature and period of leaching, particle size of ore etc., have been investigated in detail and optimum values have been worked out on the laboratory scale. Both liquid/solid ratio (slurry concentration) and temperature of leaching appear to be critical process parameters. While the increase in liquid/solid ratio above 3–4 has no beneficial effect, leaching temperature above 50°C has an adverse effect on the extent of dephosphorization. Grain size of ore finer than 100 mesh (B.S.) in general gives satisfactory dephosphorization. Laboratory-scale results have been, in general, supported by bench-scale work which shows that phosphorus can be effectively removed from high-phosphorus manganese ores of central India by leaching in dilute hydrochloric acid at ambient temperature. Comparative performance of the dilute solutions of all the three mineral acids as leaching agents has been discussed.  相似文献   

19.
《Applied Geochemistry》2000,15(8):1219-1244
Arsenian pyrite, formed during Cretaceous gold mineralization, is the primary source of As along the Melones fault zone in the southern Mother Lode Gold District of California. Mine tailings and associated weathering products from partially submerged inactive gold mines at Don Pedro Reservoir, on the Tuolumne River, contain ∼20–1300 ppm As. The highest concentrations are in weathering crusts from the Clio mine and nearby outcrops which contain goethite or jarosite. As is concentrated up to 2150 ppm in the fine-grained (<63 μm) fraction of these Fe-rich weathering products.Individual pyrite grains in albite-chlorite schists of the Clio mine tailings contain an average of 1.2 wt.% As. Pyrite grains are coarsely zoned, with local As concentrations ranging from ∼0 to 5 wt.%. Electron microprobe, transmission electron microscope, and extended X-ray absorption fine-structure spectroscopy (EXAFS) analyses indicate that As substitutes for S in pyrite and is not present as inclusions of arsenopyrite or other As-bearing phases. Comparison with simulated EXAFS spectra demonstrates that As atoms are locally clustered in the pyrite lattice and that the unit cell of arsenian pyrite is expanded by ∼2.6% relative to pure pyrite. During weathering, clustered substitution of As into pyrite may be responsible for accelerating oxidation, hydrolysis, and dissolution of arsenian pyrite relative to pure pyrite in weathered tailings. Arsenic K-edge EXAFS analysis of the fine-grained Fe-rich weathering products are consistent with corner-sharing between As(V) tetrahedra and Fe(III)-octahedra. Determinations of nearest-neighbor distances and atomic identities, generated from least-squares fitting algorithms to spectral data, indicate that arsenate tetrahedra are sorbed on goethite mineral surfaces but substitute for SO4 in jarosite. Erosional transport of As-bearing goethite and jarosite to Don Pedro Reservoir increases the potential for As mobility and bioavailability by desorption or dissolution. Both the substrate minerals and dissolved As species are expected to respond to seasonal changes in lake chemistry caused by thermal stratification and turnover within the monomictic Don Pedro Reservoir. Arsenic is predicted to be most bioavailable and toxic in the reservoir’s summer hypolimnion.  相似文献   

20.
Speciation of Cr and V within BOF steel slag reused in road constructions   总被引:1,自引:0,他引:1  
Basic Oxygen Furnace (BOF) steel slag is a residue from the basic oxygen converter in steel-making operations, which is partially reused as an aggregate for road constructions. It is essentially composed of calcium, silicon and iron but also contains potential toxic elements present as traces, like chromium (Cr, 2600 mg kg− 1) and vanadium (V, 690 mg kg− 1), which can be released. The linked results of chemical analysis, XRD and SEM-EDX enabled to identify the main mineral phases composing BOF slag and EDX micro-analyses indicated that V and Cr were associated to dicalciumferrite. A 47-days static leaching test at a laboratory scale with a controlled pH of 5 (pHstat leaching test) showed that Cr was little released, while V was significantly released. Finally, X-ray absorption near-edge structure (XANES) spectra of 3 BOF slag samples were recorded (“raw”, leached 47 days at pH 5 and aged 2 years in a lysimeter). XANES spectra showed that Cr is present at octahedral coordination in the trivalent form, the less mobile and less toxic one, and that its speciation does not evolve during natural ageing and leaching at pH 5. They also indicated that V is predominantly present in the + 4 oxidation state and seems to become oxidized to the pentavalent form (the most toxic form) during natural ageing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号