首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biomonitoring methods based on macrophytes have been used mandatorily in the assessment of freshwaters since the implementation of the Water Framework Directive (WFD). The Macrophyte Index for Rivers (MIR) was developed in Poland for the monitoring of running waters under the WFD requirements. This index shows the degree of river degradation under the influence of water pollutants, especially nutrients. The aim of the present study was to determine the relationship between the MIR and various hydrochemical parameters using artificial neural networks (ANNs). Physico-chemical parameters of water (monthly results for the whole year), which were derived from 147 lowland river survey sites, all located in Poland, were applied to model the MIR values. Water quality variables were determined over three timeframes: the annual average; the average for the vegetation period; and the average for the summer period. Quality of the networks was assessed using coefficient of determination (R2), Nash-Sutcliffe efficiency (NSE) and root mean square error (RMSE). The best modeling quality was obtained for yearly average values of water quality parameters. The quality statistics were: R2 = 0.722, NSE = 0.721 and RMSE = 0.056 (training dataset); R2 = 0.555, NSE = 0.533 and RMSE = 0.101 (validation dataset); R2 = 0.650. NSE = 0.600 and RMSE = 0.089 (testing dataset). This indicates that macrophytes reflect the whole year impact of pollution, whereas summer.  相似文献   

2.
During the northern hemisphere winter of 2005–2006, transient luminous events (TLEs) known as ‘sprites’ and ‘elves’ were imaged over thunderstorm cells in the eastern Mediterranean. Simultaneously, extremely low frequency (ELF) data (ELF: 3–3000 Hz) were recorded at two observation stations in Israel and Hungary in order to qualify and quantify parameters of the parent lightning discharge associated with the transient optical emissions in the upper atmosphere. In this study, we found that for 87% (Israel) and 77% (Hungary) of optically observed TLEs an intense ELF transient event was recorded. These stations are located some 500 and 2100 km, respectively, from the region of the TLEs. All ELF transients that were associated with TLEs were caused by lightning discharges with positive polarity. Calculation of the charge moment change showed values between 600 and 2800 C km with a peak around 1000 C km. Additionally, the time delay between the +CG and ensuing sprite was 76±34 ms and it was displaced up to 50 km from its parent CG.One of our objectives in the present study was to characterize, based on the ELF radiation from lightning, the electromagnetic (EM) waveforms of the lightning discharges which generate TLEs in the time and frequency domains, and to compare them with other lightning discharges occurring in the same thunderstorm cell at approximately the same time, but which did not produce TLEs. The survey for a typical EM waveform showed no unique ELF signature for lightning discharges associated with either sprites or elves.  相似文献   

3.
Inversion of local earthquake travel times and joint inversion of receiver functions and Rayleigh wave group velocity measurements were used to derive a simple model for the velocity crustal structure beneath the southern edge of the Central Alborz (Iran), including the seismically active area around the megacity of Tehran. The P and S travel times from 115 well-located earthquakes recorded by a dense local seismic network, operated from June to November 2006, were inverted to determine a 1D velocity model of the upper crust. The limited range of earthquake depths (between 2 km and 26 km) prevents us determining any velocity interfaces deeper than 25 km. The velocity of the lower crust and the depth of the Moho were found by joint inversion of receiver functions and Rayleigh wave group velocity data. The resulting P-wave velocity model comprises an upper crust with 3 km and 4 km thick sedimentary layers with P wave velocities (Vp) of ~5.4 and ~5.8 km s?1, respectively, above 9 km and 8 km thick layers of upper crystalline crust (Vp ~6.1 and ~6.25 km s?1 respectively). The lower crystalline crust is ~34 km thick (Vp  6.40 km s?1). The total crustal thickness beneath this part of the Central Alborz is 58 ± 2 km.  相似文献   

4.
Outcrops of the Cretaceous Upper sandstone formation some 375 km to the East of Addis Ababa on the motor Highway to Harar was paleomagnetically investigated. About seventy core samples were collected at various stratigraphic levels from 250–300 meters thick sedimentary formation. After standard sample preparations in the laboratory the resulting specimens were subjected to routine paleomagnetic demagnetization protocol. In the first steps of demagnetizations process the recent and viscous magnetizations were removed by heating until a temperature of level of 300 °C. Further demagnetization of the samples resulted in the isolation of the final magnetization with stable line segments that is directed towards the origin, which is interpreted as Characteristic Remanent Magnetization (ChRM). Rock – magnetic experiments have identified goethite (αFeOOH), hematite (αFe2O3), detritial hematite, and magnetite as the magnetic mineral phases carrying the remanence. The ChRM identified resulted in an average value of (Ds = 0.5°, Is = ?0.7°, α95 = 4.3°, N = 34) for the red sandstones while an average value of (Ds = 335.8°, Is = ?31.8°, α95 = 4.7°, N = 14) for the limestone intercalations. The former ChRM in the red sandstone is determined to be secondary while the latter ChRM is known to be primary. Comparison of these directional results and their pole equivalents with the African plate Apparent Polar Wander Path curve established by Besse and Courtillot (2003) give ages of between 115–130 Million years for the limestone intercalation and ages of 30 million years for red sandstone unit. These are interpreted respectively as estimates of the age of deposition and a later remagnetization respectively.  相似文献   

5.
《Continental Shelf Research》1999,19(9):1113-1141
Relationships among primary production, chlorophyll, nutrients, irradiance and mixing processes were examined along the salinity gradient in the Mississippi River outflow region. A series of six cruises were conducted during 1988–1992 at various times of year and stages of river discharge. Maximum values of biomass and primary production were typically observed at intermediate salinities and coincided with non-conservative decreases in nutrients along the salinity gradient. Highest values of productivity (>10 gC m−2 d−1) and biomass (>30 mg chlorophyll a m−3) were observed in April 1988, July–August 1990 and April–May 1992; values were lower in March and September 1991. Rates of primary production were apparently constrained by low irradiance and mixing in the more turbid, low salinity regions of the plume, and by nutrient limitation outside the plume. Highest values of primary production occurred at stations where surface nutrient concentrations exhibited large deviations from conservative mixing relationships, indicating that depletion of nutrients was related to phytoplankton uptake. Mixing and advection were important in determining the location and magnitude of primary production maxima and nutrient depletion. In addition to growth within plume surface waters, enhanced growth and/or retention of biomass may have occurred in longer residence time waters at the plume edge and/or beneath the surface plume. Vertical structure of some plume stations revealed the presence of subsurface biomass maxima in intermediate salinity water that was depleted in nutrients presumably by uptake processes. Exchange between subsurface water and the surface plume apparently contributed to the reduction in nutrients at intermediate salinities in the surface layer. DIN (=nitrate+nitrite+ammonium) : PO4 (=phosphate) ratios in river water varied seasonally, with high values in winter and spring and low values in late summer and fall. Periods of high DIN : PO4 ratios in river nutrients coincided with cruises when surface nutrient concentrations and their ratios indicated a high probability for P limitation. N limitation was more likely to occur at high salinities and during late summer and fall. Evidence for Si limitation was also found, particularly in spring.  相似文献   

6.
In situ measurements of electron density were made over Trivandrum (8.5°N, 76.9°E) during nighttime to study E-region plasma density irregularities. Irregularities, with vertical scale sizes from a few km to 15 cm, were detected during rocket ascent and descent. Electron density profiles during ascent and descent of an earlier nighttime rocket flight from Trivandrum are also presented. Some of the important results are as follows: (i) horizontal gradients in electron density exist in 110–120 km region with horizontal scale size of at least 40 km, (ii) based on the presence/absence of electron density structures during ascent and descent of both flights, the horizontal distance over which the gradient drift instability operates is found to be at least 80 km and 90 km, for both the flights, (iii) observed irregularities in regions of negative density gradient are suggested to be produced through the gradient drift instability (GDI) driven by vertical polarization electric field as well as by electric field produced through wind shears and those in positive gradient regions by wind driven GDI, (iv) largest irregularity amplitude (≈30%) was associated with steepest gradients and so was the presence of smallest vertical scale sizes (12 m to 15 cm), which were absent at other altitudes, (v) the spectral index of irregularities was in the range of ?2.2±0.2 for large scales (few kilometers>λ>50 m), ?3.25±0.25 for medium scales (50 m>λ>10 m) and ?2.6±0.1 for smaller scales (10 m>λ>1 m) and (vi) irregularities in large and medium scales are expected to be produced directly through GDI and the small and sum-meter scales through non-linear GDI.  相似文献   

7.
The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), a limb sounding Fourier transform interferometer in the mid-infrared band, on board the polar-orbiting ENVIronmental SATellite (ENVISAT) was launched in March 2002 by the European Space Agency (ESA). For the MIPAS data validation, three balloon flights with MIPAS-B, a balloon version of MIPAS, were carried out on the 24th and 25th of September 2002 from Aire sur l’Adour (France 44°N, 0°E), on the 20th and 21th of March, and on the 2nd and 3rd of July 2003 from Esrange, Kiruna (Sweden 68°N, 21°E). The MIPAS operational data version 4.61 for the temperature vertical profiles were compared with the correlative MIPAS-B measurements via the coincident comparison and the trajectory comparison approaches, respectively. The precision of the MIPAS temperature was estimated to be 1.04–2.48 K in the region 123–8 hPa (15–33 km) and beyond the expectation. The systematic difference shows that the absolute accuracy of the MIPAS temperature is within the total combined errors between 356 and 3 hPa (8–39 km). The agreements in the middle stratosphere are better than in the lower stratosphere and upper troposphere. The maximum difference of 1.9 K (0.9%) was found at 228 hPa (11 km). The biases of MIPAS measurements are ?0.39 K (?0.19%) and +0.25 K (+0.12%) (“+” positive bias, “?” negative bias) corresponding to the altitude regions 143–31 hPa (14–24 km) and 31–5 hPa (24–37 km), respectively.  相似文献   

8.
The Late Permian (260 Ma) Emeishan large igneous province of SW China contains numerous magmatic Fe–Ti oxide deposits. The Fe–Ti oxide deposits occur in the lower parts of evolved layered gabbroic intrusions which are spatially and temporally associated with A-type granitic rocks. The 260 Ma Panzhihua layered gabbroic intrusion hosts one of the largest magmatic Fe–Ti oxide deposits in China and is coeval with a peralkaline A-type granitic pluton. The granite has intruded the overlying Emeishan flood basalts and fed at least one dyke which erupted onto the surface producing columnar jointed trachytes. The presence of syenodiorite between the layered gabbro and granite is evidence for compositional evolution from mafic to intermediate to felsic rocks. The syenodiorites have intermediate to felsic composition with SiO2 = 61 to 65 wt.%, MgO = 0.27 to 0.6 wt.% and CaO = 1.0 to 2.5 wt.% as compared to the granite SiO2 = 65 to 72 wt.%, MgO = 0.1 to 0.4 wt.%, CaO = < 1.0 wt.%. Primitive-mantle-normalized incompatible element plots show corresponding reciprocal patterns between the mafic and felsic rocks. The chondrite-normalized REE patterns show Eu anomalies changing from > 1(Eu/Eu? = 1.1 to 2.6) in the gabbroic intrusion, to < 1 in the syenodiorite (Eu/Eu? = 0.75 to 0.83), granites and trachytes (Eu/Eu? = 0.55–0.87). Previously published εNd(T) values from clinopyroxenes (εNd(T) = + 1.1 to + 3.2) of the gabbroic intrusion match the whole-rock values of the syenodiorite (εNd(T) = + 2.1 to + 2.5), granite and trachyte (εNd(T) = + 2.2 to + 2.9), suggesting that all rock types originated from the same mantle source. MELTS and trace element modeling confirm that all rock types can be generated by fractional crystallization of high-Ti Emeishan basalt. The jump in SiO2 from the gabbro to the syenodiorite is attributed to the en masse crystallization of the Fe–Ti oxides. The geological and geochemical data indicate that fractional crystallization of a common parental magma produced the layered gabbroic intrusion and Fe–Ti oxide deposit, the syenodiorite, granites and trachyte of the Panzhihua region, which thus form a genetically related plutonic-hypabyssal-volcanic complex. Other granite–gabbro complexes in the region likely formed in a similar manner.  相似文献   

9.
The paper is focused on the global spatial structure, seasonal and interannual variability of the ~5-day Rossby (W1) and ~6-day Kelvin (E1) waves derived from the SABER/TIMED temperature measurements for 6 full years (January 2002–December 2007). The latitude structure of the ~5-day W1 wave is related to the gravest symmetric wave number 1 Rossby wave. The vertical structure of the ~5-day Rossby wave amplitude consists of double-peaked maxima centred at ~80–90 km and ~105–110 km. This wave has a vertically propagating phase structure from the stratosphere up to 120 km altitude with a mean vertical wavelength of ~50–60 km. The ~6-day E1 wave is an equatorially trapped wave symmetric about the equator and located between 20°N and 20°S. Its seasonal behaviour indicates some equinoctial and June solstice amplifications, while the vertical phase structure indicates that this is a vertically propagating wave between 20–100 km altitudes with a mean vertical wavelength of ~25 km.  相似文献   

10.
Explosion deep seismic sounding data sections of high quality had been obtained with RV Meteor in the Reykjanes Iceland Seismic Project (RRISP77 [Angenheister, G., Gebrande, H., Miller, H., Goldflam, P., Weigel, W., Jacoby, W.R., Pálmason, G., Björnsson, S., Einarsson, P., Pavlenkova, N.I., Zverev, S., Litvinenko, I.V., Loncarecic, B., Solomon, S., 1980. Reykjanes Ridge Iceland Seismic Experiment (RRISP 77). J. Geophys. 47, 228–238]) which close an information gap near 62°N. Preliminary results were presented by Weigel [Weigel, W., 1980. Aufbau des Reykjanes Rückens nach refraktionsseismischen Messungen. In: Weigel, W. (Ed.), Reykjanes Rücken, Island, Norwegischer Kontinentalrand. Abschlusskolloquium, Hamburg zur Meteor-Expedition, vol. 45. DFG, Bonn, pp. 53–61], and here we report on the data and results of interpretation. Clear refracted phases to 90 km distance permit crustal and uppermost mantle structure to be modelled by ray tracing. The apparent P-wave velocities are around 4.5, 6–6.5, 7–7.6 and 8.2–8.7 km/s, but no wide-angle reflections have been clearly seen. Accompanying sparker reflection data reveal thin sediment ponds in the axial zone and up to 400 m thick sediments at 10 Ma crustal age. Ray tracing reveals the following model below the sediments: (1) a distinct, 1–2 km thick upper crust (layer 2A) with Vp increasing with age (to 10 Ma) from <3.4 to 4.9 km/s and with a vertical gradient of 0.1–0.2 km/s/km, (2) a lower crust or layer 3 beginning at depths of 2 (axis) to 4 km (10 Ma age) below sea level with 6.1–6.8 km/s and similar vertical gradients as above, (3) the lower crust bottoms at 5.2–9.5 km depth below sea level (0–10 Ma) with a marked discontinuity, underneath which (4) Vp rises from about 7.5–7.8 km/s (0–10 Ma) with a positive vertical gradient of, again, 0.1–0.2 km/s/km such that 8 km/s would be reached at 12 km and deeper near the axis. Our preferred interpretation is that the mantle begins at the distinct discontinuity (“Moho”), but a deeper “Moho” of Vp  8 km/s cannot be excluded. From Iceland southward to 60°N several experiments show a decrease of crustal thickness from 14 to 8 km. Velocity trends with age across the ridge reflect cooling and filling of cracks, and thickness trends probably suggest volcanic productivity variations as previously suggested.Gravity inversion concentrates on a profile across the ridge with the above seismic a priori information; with 0.2–0.5 km depth uncertainty it leads to a good fit (±2.5 mGal where seismic data exist). Best fitting densities are (in kg/m3) for sediments, 2180; upper crust, 2450–2570; lower crust, 2850–2940; mantle lithosphere, 3215–3240 with a deficit for an asthenospheric wedge of no more than −100 kg/m3. The morphological ridges and troughs superimposed on the SE ridge flank are partly correlated, partly anti-correlated with the Bouguer anomaly and suggest that variable crustal density variations accompany the morphology variations.  相似文献   

11.
《Continental Shelf Research》2007,27(3-4):489-505
Sediment accumulation over the past century on the continental shelf near the Po delta varies with distance from the most active distributary channels. Near the Pila and Goro distributaries, sediment accumulation is rapid (1–4 cm yr−1) and occurs in pulses. In these areas, the seabed is dominated by physical sedimentary structures that can be related to flood sedimentation. Between the two distributaries and in the southern portion of the dispersal system, sediment accumulation is slower (rates reach a minimum of 0.23 cm yr−1 at ∼50 km from the Pila mouth) and steady-state, reflecting more continuous dispersal of sediment during non-flood periods. Sedimentary strata in these locations are composed of finer (clayey silt), mottled sediment. The similarity in the spatial distribution of long-term (100-yr) sediment accumulation to deposition resulting from the 2000 flood event suggests that the Po shelf is flood-dominated.About half of the sediment delivered by the Po River on a 100-yr time scale can be accounted for in the seabed deposit within ∼50 km of the Pila mouth. The remaining sediment is likely transported southward by the prevailing circulation, and this sediment coalesces with inputs from the Apennine Rivers.  相似文献   

12.
《Advances in water resources》2005,28(11):1230-1239
Taylor’s hypothesis (TH) for rainfall fields states that the spatial correlation of rainfall intensity at two points at the same instant of time can be equated with the temporal correlation at two instants of time at some fixed location. The validity of TH is tested in a set of 12 storms developed in Rondonia, southwestern Amazonia, Brazil, during the January–February 1999 Wet Season Atmospheric Meso-scale Campaign. The time Eulerian and Lagrangian Autocorrelation Functions (ACF) are estimated, as well as the time-averaged space ACF, using radar rainfall rates of storms spanning between 3.2 and 23 h, measured at 7–10-min time resolution, over a circle of 100 km radius, at 2 km spatial resolution. TH does not hold in 9 out of the 12 studied storms, due to their erratic trajectories and very low values of zonal wind velocity at 700 hPa, independently from underlying atmospheric stability conditions. TH was shown to hold for 3 storms, up to a cutoff time scale of 10–15 min, which is closely related to observed features of the life cycle of convective cells in the region. Such cutoff time scale in Amazonian storms is much shorter than the 40 min identified in mid-latitude convective storms, due to much higher values of CAPE and smaller values of storm speed in Amazonian storms as compared to mid-latitude ones, which in turn contribute to a faster destruction of the rainfall field isotropy. Storms satisfying TH undergo smooth linear trajectories over space, and exhibit the highest negative values of maximum, mean and minimum zonal wind velocity at 700 hPa, within narrow ranges of atmospheric stability conditions. Non-dimensional parameters involving CAPE (maximum, mean and minimum) and CINE (mean) are identified during the storms life cycle, for which TH holds: CAPE mean/CINE mean = [30–35], CAPE max/CINE mean = [32–40], and CAPE min/CINE mean = [22–28]. These findings are independent upon the timing of storms within the diurnal cycle. Also, the estimated Eulerian time ACF’s decay faster than the time-averaged space and the Lagrangian time ACF’s, irrespectively of TH validity. The Eulerian ACF’s exhibit shorter e-folding times, reflecting smaller correlations over short time scales, but also shorter scale of fluctuation, reflecting less persistence in time than over space. No significant associations (linear, exponential or power law) were found between estimated e-folding times and scale of fluctuation, with all estimates of CAPE and CINE. Secondary correlation maxima appear between 50 and 70 min in the Lagrangian time ACF’s for storms satisfying TH. No differences were found in the behavior of each of the three ACF’s for storms developed during either the Easterly or Westerly zonal wind regimes which characterize the development of meso-scale convective systems over the region. These results have important implications for modelling and downscaling rainfall fields over tropical land areas.  相似文献   

13.
Sea ice is an important climate variable and is also an obstacle for marine operations in polar regions. We have developed a small and lightweight, digitally operated frequency-domain electromagnetic-induction (EM) system, a so-called EM bird, dedicated for measurements of sea ice thickness. It is 3.5 m long and weighs only 105 kg, and can therefore easily be shipped to remote places and operated from icebreakers and small helicopters. Here, we describe the technical design of the bird operating at two frequencies of f1 = 3.68 kHz and f2 = 112 kHz, and study its technical performance. On average, noise amounts to ± 8.5 ppm and ± 17.5 ppm for f1 and f2, respectively. Electrical drift amounts to 200 ppm/h and 2000 ppm/h for f1 and f2, during the first 0.5 h of operation. It is reduced by 75% after 2 h. Calibration of the Inphase and Quadrature ppm signals varies by 2 to 3%. A sensitivity study shows that all these signal variations do affect the accuracy of the ice thickness retrieval, but that it remains better than ± 0.1 m over level ice in most cases. This accuracy is also confirmed by means of comparisons of the helicopter EM data with other thickness measurements. The paper also presents the ice thickness retrieval from single-component Inphase data of f1.  相似文献   

14.
《Marine pollution bulletin》2012,64(5-12):255-261
Mussels were maintained for 4 weeks under different combinations of dissolved oxygen concentration (1.5, 3.0 and 6.0 mg O2 l−1) and salinity (15, 20, 25 and 30) in a 3 × 4 factorial design experiment. Clearance rate (CR), absorption efficiency (AE), respiration rate (RR) and scope for growth (SFG) decreased with decreasing salinity and dissolved oxygen concentration (DO), while excretion rate (ER) increased with decreasing salinity and increasing DO. The O:N ratio was <10 at salinities of 15 and 20, irrespective of DO levels. SFG was negative in most of the treatments, except for those under 6.0 mg O2 l−1 or at a salinity of 30 when DO was lower. The results may help explain the distribution pattern of Perna viridis in Hong Kong waters and provide guidelines for mussel culture site selection.  相似文献   

15.
Many authors have proposed that the study of seismicity rates is an appropriate technique for evaluating how close a seismic gap may be to rupture. We designed an algorithm for identification of patterns of significant seismic quiescence by using the definition of seismic quiescence proposed by Schreider (1990). This algorithm shows the area of quiescence where an earthquake of great magnitude may probably occur. We have applied our algorithm to the earthquake catalog on the Mexican Pacific coast located between 14 and 21 degrees of North latitude and 94 and 106 degrees West longitude; with depths less than or equal to 60 km and magnitude greater than or equal to 4.3, which occurred from January, 1965 until December, 2014. We have found significant patterns of seismic quietude before the earthquakes of Oaxaca (November 1978, Mw = 7.8), Petatlán (March 1979, Mw = 7.6), Michoacán (September 1985, Mw = 8.0, and Mw = 7.6) and Colima (October 1995, Mw = 8.0). Fortunately, in this century earthquakes of great magnitude have not occurred in Mexico. However, we have identified well-defined seismic quiescences in the Guerrero seismic-gap, which are apparently correlated with the occurrence of silent earthquakes in 2002, 2006 and 2010 recently discovered by GPS technology.  相似文献   

16.
We report here the first detailed 2D tomographic image of the crust and upper mantle structure of a Cretaceous seamount that formed during the interaction of the Pacific plate and the Louisville hotspot. Results show that at ~ 1.5 km beneath the seamount summit, the core of the volcanic edifice appears to be dominantly intrusive, with velocities faster than 6.5 km/s. The edifice overlies both high lower crustal (> 7.2–7.6 km/s) and upper mantle (> 8.3 km/s) velocities, suggesting that ultramafic rocks have been intruded as sills rather than underplated beneath the crust. The results suggest that the ratio between the volume of intra-crustal magmatic intrusion and extrusive volcanism is as high as ~ 4.5. In addition, the inversion of Moho reflections shows that the Pacific oceanic crust has been flexed downward by up to ~ 2.5 km beneath the seamount. The flexure can be explained by an elastic plate model in which the seamount emplaced upon oceanic lithosphere that was ~ 10 Myr at the time of loading. Intra-crustal magmatic intrusion may be a feature of hotspot volcanism at young, hot, oceanic lithosphere, whereas, magmatic underplating below a pre-existing Moho may be more likely to occur where a hotspot interacts with oceanic lithosphere that is several tens of millions of years old.  相似文献   

17.
Narrow bipolar events (NBEs) are a distinct class of intra-cloud lightning discharge. In this paper we present observations of 10 negative and 67 positive such events in East China. Positive NBEs occurred at 7–12 km altitude above mean sea level (MSL) with a mean altitude of 9.5 km, and negative NBEs occurred at 14–16 km altitude. Electrical/channel characteristics of these events were derived from NBE pulse waveforms based on the transmission-line model. On average, the peak current moment and the charge moment change of a NBE event is 15 kA km, and 0.12 C km, respectively. The mean time for the propagation of current front along the channel is 2.2 μs. The upper limit on channel length for NBEs in this study is 510–1060 m, the lower limit on discharge current amplitude is 12.5–43.2 kA, and the minimum charge transfer is 0.1–0.3 C.  相似文献   

18.
We analyzed records of eight seismic stations of the autonomous broadband seismograph network of a joint project between Utrecht University (the Netherlands), California Institute of Technology, and Centro de Investigación Científica y de Estudios Superiores de Ensenada (CICESE). These stations recorded the Mw 5.6 earthquake that occurred on 12 November 2003 at Salsipuedes basin in the middle of the Gulf of California 2 km west of the island Angel de la Guarda. This event was located at 29.16º N and 113.37º W, 30 km northeast of Bahia de los Angeles. A foreshock and hundreds of aftershocks were recorded in the 48 hours after its origin time. With the location of 29 earthquakes we identified the active segment, perpendicular to the main transform fault NW–SE of Canal de Ballenas, representing the transtensional boundary between the Pacific and North American plates. The direction of the active fault described is consistent with the normal fault mechanism reported by the National Earthquake Information Center (strike=39º, dip=34º, slip=–44º).From the duration magnitude of 456 aftershocks, we calculated a b-value of 1.14±0.28; furthermore, we calculated a seismic moment of (3.5 ±3.3) X1017Nm, a source radius of 3.7 ± 2.63 km, and a static stress drop of 3.94 ± 1.15 MPa (39.4 ± 11.5 bar.).  相似文献   

19.
The seismic history of the city of Ragusa (Italy), the geotechnical characterisation of the subsoil and the site response analysis should be correctly evaluated for the definition of the Seismic Geotechnical Hazard of the city of Ragusa, through geo-settled seismic microzoning maps. Basing on the seismic history of the city of Ragusa, the following earthquake scenarios have been considered: the “Val di Noto” earthquake of January 11, 1693 (with intensity X–XI on MCS scale, magnitude MW=7.41 and epicentral distance of about 53 km); the “Etna” earthquake of February 20, 1818 (with intensity IX on MCS scale, magnitude MW=6.23 and epicentral distance of about 64 km); the Vizzini earthquake of April 13, 1895 (with intensity I=VII–VIII on MCS scale, magnitude MW=5.86 and epicentral distance of about 26 km); the “Modica” earthquake of January 23, 1980 (with intensity I=V–VI on MCS scale, magnitude MW=4.58 and epicentral distance of about 10 km); the “Sicilian” earthquake of December 13, 1990 (with intensity I=VII on MCS scale, magnitude MW=5.64 and epicentral distance of about 50 km). Geotechnical characterisation has been performed by in situ and laboratory tests, with the definition of shear wave velocity profiles in the upper 30 m of soil. Soil response analyses have been evaluated for about 120 borings location by some non-linear 1-D models. Finally the seismic microzonation of the city of Ragusa has been obtained in terms of maps with different peak ground acceleration at the surface; shaking maps for the central area of the city of Ragusa were generated via GIS for the earthquake scenarios.  相似文献   

20.
To date, studies of the stability of subsurface ice in the McMurdo Dry Valleys of Antarctica have been mainly based on climate-based vapor diffusion models. In University Valley (1800 m), a small glacier is found at the base of the head of the valley, and adjacent to the glacier, a buried body of massive ice was uncovered beneath 20–40 cm of loose cryotic sediments and sandstone boulders. This study assesses the origin and stability of the buried body of massive ice by measuring the geochemistry and stable O–H isotope composition of the ice and applies a sublimation and molecular diffusion model that accounts for the observed trends. The results indicate that the buried massive ice body represents an extension of the adjacent glacier that was buried by a rock avalanche during a cold climate period. The contrasting δ18O profiles and regression slope values between the uppermost 6 cm of the buried massive ice (upward convex δ18O profile and SD-18O = 5.1) and that below it (progressive increase in δ18O and SD-18O = 6.4) suggest independent post-depositional processes affected the isotope composition of the ice. The upward convex δ18O profile in the uppermost 6 cm is consistent with the ice undergoing sublimation. Using a sublimation and molecular diffusion model, and assuming that diffusion occurred through solid ice, the sublimation rate needed to fit the measured δ18O profile is 0.2 ? 10? 3 mm yr? 1, a value that is more similar to net ice removal rates derived from 3He data from cobbles in Beacon Valley till (7.0 ? 10? 3 mm yr? 1) than sublimation rates computed based on current climate (0.1–0.2 mm yr?1). We suggest that the climate-based sublimation rates are offset due to potential ice recharge mechanisms or to missing parameters, particularly the nature and thermo-physical properties of the overlying sediments (i.e., temperature, humidity, pore structure and ice content, grain size).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号