首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Sixteen years (1994 – 2009) of ozone profiling by ozonesondes at Valentia Meteorological and Geophysical Observatory, Ireland (51.94° N, 10.23° W) along with a co-located MkIV Brewer spectrophotometer for the period 1993–2009 are analyzed. Simple and multiple linear regression methods are used to infer the recent trend, if any, in stratospheric column ozone over the station. The decadal trend from 1994 to 2010 is also calculated from the monthly mean data of Brewer and column ozone data derived from satellite observations. Both of these show a 1.5 % increase per decade during this period with an uncertainty of about ±0.25 %. Monthly mean data for March show a much stronger trend of?~?4.8 % increase per decade for both ozonesonde and Brewer data. The ozone profile is divided between three vertical slots of 0–15 km, 15–26 km, and 26 km to the top of the atmosphere and a 11-year running average is calculated. Ozone values for the month of March only are observed to increase at each level with a maximum change of +9.2?±?3.2 % per decade (between years 1994 and 2009) being observed in the vertical region from 15 to 26 km. In the tropospheric region from 0 to 15 km, the trend is positive but with a poor statistical significance. However, for the top level of above 26 km the trend is significantly positive at about 4 % per decade. The March integrated ozonesonde column ozone during this period is found to increase at a rate of ~6.6 % per decade compared with the Brewer and satellite positive trends of ~5 % per decade.  相似文献   

3.
The two types of ozone, the simulation with interactive (prognostic) ozone using linear photochemistry parameterization (LPP) (INTR) and the simulation with non-interactive ozone using ozone climatology (CLIM), were used in the global forecast model. These two types of ozone were compared with ozone observations from the Aura Microwave Lim Sounder (MLS) and ozonesondes from 16-30 September 2008. The INTR is sensitive to LPP schemes while less sensitive to the time average of initial ozone data. Among three LPP schemes, CARIOLLE, COPCAT, and LINOZ, the COPCAT produces ozone profiles with least differences from MLS and ozonesondes. CLIM overestimates MLS at 200-20 hPa while INTR with COPCAT scheme underestimates MLS ozone above 5 hPa. Over the Antarctic in the lower stratosphere CLIM overestimates MLS and ozonesondes whereas INTR underestimates MLS but overestimates the ozonesonde data. Thus, COPCAT agrees better with ozonesonde data than any other LPP schemes and CLIM. Changing the ozone distribution from CLIM to INTR affects temperature profiles mainly through the modification of differential radiative fluxes. The correlations between ozone, differential radiative fluxes, and temperature are distinguished by altitude (or pressure levels). The correlations are strong or moderate between 3-1000 hPa (lower atmosphere) and weak above 3 hPa (upper atmosphere). This study demonstrates that the simulation of ozone using an appropriate LPP scheme is excellent in overcoming the drawbacks of using climatological ozone profiles that poorly agree with observations in extreme ozone hole events.  相似文献   

4.
In this paper, we show that the rate of ozone loss in both polar and mid-latitudes, derived from ozonesonde and satellite data, has almost the same vertical distribution (although opposite sense) to that of ozone laminae abundance. Ozone laminae appear in the lower stratosphere soon after the polar vortex is established in autumn, increase in number throughout the winter and reach a maximum abundance in late winter or spring. We indicate a possible coupling between mid-winter, sudden stratospheric warmings (when the vortex is weakened or disrupted) and the abundance of ozone laminae using a 23-year record of ozonesonde data from the World Ozone Data Center in Canada combined with monthly-mean January polar temperatures at 30 hPa.Results are presented from an experiment conducted during the winter of 1994/95, in phase II of the Second European Stratospheric And Mid-latitude Experiment (SESAME), in which 93 ozone-enhanced laminae of polar origin observed by ozonesondes at different time and locations are linked by diabatic trajectories, enabling them to be probed twice or more. It is shown that, in general, ozone concentrations inside laminae fall progressively with time, mixing irreversibly with mid-latitude air on time-scales of a few weeks. A particular set of laminae which advected across Europe during mid February 1995 are examined in detail. These laminae were observed almost simultaneously at seven ozonesonde stations, providing information on their spatial scales. The development of these laminae has been modelled using the Contour Advection algorithm of Norton (1994), adding support to the concept that many laminae are extrusions of vortex air. Finally, a photochemical trajectory model is used to show that, if the air in the laminae is chemically activated, it will impact on mid-latitude ozone concentrations. An estimate is made of the potential number of ozone molecules lost each winter via this mechanism.  相似文献   

5.
该文介绍了中国科学院大气物理研究所(简称IAP)研制的电化学浓度电池(ECC)型臭氧(O3)探空仪基本性能测试和2013年上半年室外比对观测结果。结果表明:ECC的背景电流(Ibg)在0.1 μA以下或更低;测量O3的响应时间为21~26 s;NO2(SO2)使O3测值偏高(低);抽气泵低压泵效系数(Cef)在100 hPa高度以下为1.0左右,在该高度以上上升,10 hPa达到1.17±0.10,5 hPa达到1.28±0.16,性能略低于同类进口产品(1.055以下)。国产和进口仪器在气象探空或抽气泵等部件上具有良好兼容性;两者所测O3垂直分布廓线总体一致。IAP O3探空仪O3总量与Brewer光谱仪测值比值为0.9~1.1;Cef和Ibg订正有效降低了IAP O3探空仪在平流层低层与进口仪器测值的差别,这一订正对O3柱浓度在平流层和对流层的贡献分别为约15 DU和4~6 DU;在对流层,IAP O3探空仪测值与进口仪器间的绝对差别稳定且低于0.5 mPa;而平流层受泵效影响较明显。因此,建议IAP O3探空仪提高其Cef的稳定性,参与国际比对测试,国产气象探空平台数据接收处理增加必要的滤波技术以降低平流层探测数据(包括O3)的振荡。  相似文献   

6.
Owing to the importance of middle atmosphere, recently, a Middle Atmospheric Dynamics (MIDAS) program was carried out during the period 2002?C2007 at Thumba (8.5°N, 77°E). The measurements under this program, involving regular radiosonde/rocket flights as well as atmospheric radars, provided long period observations of winds and temperature in the middle atmospheric region from which waves and oscillations as well as their forcing mechanisms particularly in the low-latitude middle atmosphere could be analyzed. However, a detailed analysis of the forcing mechanisms remains incomplete due to the lack of important measurements like ozone which is a significant contributor to atmospheric dynamics. Presently, profiles of ozone are available from TIMED/SABER (Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics/Sounding of the Atmosphere using Broad Emission Radiometry) satellite globally from about 15 to 100?km, over multiple years since 2002. In this regard, a comprehensive study has been carried out on ozone and its variability at Quasi Biennial Oscillation (QBO) and Semiannual Oscillation (SAO) scales using TIMED/SABER ozone observations during the MIDAS campaign period. Before using the TIMED/SABER ozone measurements, an inter-comparison has been carried out with in situ measurements of ozone obtained under the Southern Hemisphere Additional Ozonesondes (SHADOZ) campaign for the year 2007 at few stations. The inter-comparison showed very good agreement between SABER and ozonesonde derived ozone profiles. After validating the SABER observations, ozone profiles are used extensively to study the QBO and SAO along with temperature and winds in the 20?C100?km height region. It is known that the SAO in mesosphere and stratosphere are in opposite phases, but the present study for the first time reports the aspect of opposite phases in the mesosphere itself. Thus, the present work attempts to study the long-period oscillations in stratosphere and mesosphere in ozone, temperature and winds simultaneously for the first time over this latitude. These observations provided a unique opportunity to explore long-period oscillations in chemistry, dynamics and thermal structure of the middle atmosphere simultaneously.  相似文献   

7.
Abstract

An intercomparison of ozonesondes was held at Vanscoy, Saskatchewan, from 13 to 24 May 1991. The intercomparison, which was sponsored by the WMO and hosted by the Atmospheric Environment Service (AES) of Canada, was attended by scientists from six countries: Canada, Finland Germany, India, Japan and the United States. Four different makes of ozonesondes were used: the ECC sonde, the Brewer‐Mast sonde, the Indian ozonesonde and the Japanese RSH‐KC79 ozonesonde. These represent most of the sonde types that are in routine operation in the Global Ozone Observing System.

A balloon payload and telemetry system was developed to accommodate up to eight ozonesondes that could operate independently and transmit data simultaneously to a ground receiver. Ten flights were launched, each carrying 7 or 8 sondes, and a total of 65 successful profile measurements were made. The payloads were carried to altitudes between 35 and 40 km. The measured profiles are used to determine statistically meaningful evaluations of the different sonde types. The results compared with those from previous intercomparisons indicate that there has been a general improvement in performance for most of the types. In addition there appears to have been changes with time in the relative sensitivity to tropospheric ozone for different sonde types. This result should be considered when drawing conclusions regarding trends in tropospheric ozone.  相似文献   

8.
An examination of typical tropospheric ozone variability on daily, monthly, annual and interannual timescales and instrumental precision indicates that the current ozonesonde network is insufficient to detect a trend in tropospheric ozone of 1% per year at the 2 level even at stations with records a decade in length. From a trend prediction analysis we conclude that in order to detect a 1% per year trend in a decade or less it will be necessary to decrease the time between observations from its present value of 3–7 days to 1 day or less. The spatial distribution of the current ozonesonde stations is also inadequate for determining the global climatology of ozone. We present a quantitative theory taking into account photochemistry, surface deposition, and wind climatology to define the effectively sampled region for an observing station which, used in conjunction with the instrumental precision and the above prediction analysis, forms the basis for defining a suitable global network for determining regional and global ozone climatology and trends. At least a doubling of the present number of stations is necessary, and the oceans, most of Asia, Africa, and South America are areas where more stations are most needed. Differential absorption lidar ozone instruments have the potential for far more frequent measurements of ozone vertical profiles and hence potentially more accurate climatology and trend determinations than feasible with ozonesondes but may produce a (fair weather) biased data set above the cloud base. A strategy for cloudy regions in which either each station utilizes both lidars and sondes or each station is in fact a doublet comprised of a near-sea-level lidar and a proximal-mountain-top lidar could serve to minimize this bias.  相似文献   

9.
为促进中国大气臭氧高空探测业务化进程,中国科学院大气物理研究所和中国气象局监测网络司联合组织了对国产GPS数字化大气臭氧探空仪(GPSO3)和芬兰Vaisala 公司产大气臭氧探空仪(Vaisala)主要技术性能的比对。现场平行施放比对于2002年1月在北京进行,共施放了7对臭氧探空仪。对两类大气臭氧探空仪现场平行施放比对试验结果的分析表明,两种臭氧探空仪所获得的大气中臭氧浓度随高度的变化特征之间有很好的一致性。在12~27 km高度范围内,两种探空仪臭氧测值之间的相对误差平均在10%以内,而在10 km以下和27 km以上,GPSO3探空仪的臭氧测值偏高。本文介绍了比对方法,分析了两类探空仪对臭氧廓线某些特征值的比对结果并讨论了平行施放比对时气球升速的差异可能对臭氧测值带来的影响。  相似文献   

10.
The summertime ozone valley over the Tibetan Plateau is formed by two influences,the Asian summer monsoon(ASM) and air column variations.Total ozone over the Tibetan Plateau in summer was ~33 Dobson units(DU) lower than zonal mean values over the ocean at the same latitudes during the study period 2005-2009.Satellite observations of ozone profiles show that ozone concentrations over the ASM region have lower values in the upper troposphere and lower stratosphere(UTLS) than over the non-ASM region.This is caused by frequent convective transport of low-ozone air from the lower troposphere to the UTLS region combined with trapping by the South Asian High.This offset contributes to a ~20-DU deficit in the ozone column over the ASM region.In addition,along the same latitude,total ozone changes identically with variations of the terrain height,showing a high correlation with terrain heights over the ASM region,which includes both the Tibetan and Iranian plateaus.This is confirmed by the fact that the Tibetan and Iranian plateaus have very similar vertical distributions of ozone in the UTLS,but they have different terrain heights and different total-column ozone levels.These two factors(lower UTLS ozone and higher terrain height) imply 40 DU in the lower-ozone column,but the Tibetan Plateau ozone column is only ~33 DU lower than that over the non-ASM region.This fact suggests that the lower troposphere has higher ozone concentrations over the ASM region than elsewhere at the same latitude,contributing ~7 DU of total ozone,which is consistent with ozonesonde and satellite observations.  相似文献   

11.
Abstract

Ground‐based measurements of total ozone were made during the polar night from Arctic stations in the winters of 1987–88 and 1988–89. The measurements were made with automated Brewer ozone spectrophotometers using the moon as a light source. Data were obtained from Alert and Resolute in Canada for both winters and from Heiss Island, USSR, for the second winter. The method of measurement is briefly reviewed and data from the three stations are presented. The ground‐based total ozone measurements are compared with the integrated values derived from ozonesonde profiles.  相似文献   

12.
西宁夏季对流层臭氧垂直分布变化与气象要素的关系   总被引:6,自引:1,他引:6  
根据臭氧、气象探空观测数据,分析了1996年7月5日至8月3日西宁(36°44’N,101°45'E,海拔高度2296m)上空对流层臭氧垂直分布变化与气象要素之间的关系。对流层臭氧浓度的增加(减少)总伴随着干、冷(暖、湿)气流的输送变化,而这又与大气垂直方向的运动是紧密联系在一起的。分析表明天气动力输送过程对对流层臭氧垂直分布变化有重要作用。  相似文献   

13.
The chemically induced ozone loss inside the Arctic vortex during the winter 1994/95 has been quantified by coordinated launches of over 1000 ozonesondes from 35 stations within the Match 94/95 campaign. Trajectory calculations, which allow diabatic heating or cooling, were used to trigger the balloon launches so that the ozone concentrations in a large number of air parcels are each measured twice a few days apart. The difference in ozone concentration is calculated for each pair and is interpreted as a change caused by chemistry. The data analysis has been carried out for January to March between 370 K and 600 K potential temperature. Ozone loss along these trajectories occurred exclusively during sunlit periods, and the periods of ozone loss coincided with, but slightly lagged, periods where stratospheric temperatures were low enough for polar stratospheric clouds to exist. Two clearly separated periods of ozone loss show up. Ozone loss rates first peaked in late January with a maximum value of 53 ppbv per day (1.6 % per day) at 475 K and faster losses higher up. Then, in mid-March ozone loss rates at 475 K reached 34 ppbv per day (1.3 % per day), faster losses were observed lower down and no ozone loss was found above 480 K during that period. The ozone loss in hypothetical air parcels with average diabetic descent rates has been integrated to give an accumulated loss through the winter. The most severe depletion of 2.0 ppmv (60 %) took place in air that was at 515 K on 1 January and at 450 K on 20 March. Vertical integration over the levels from 370 K to 600 K gives a column loss rate, which reached a maximum value of 2.7 Dobson Units per day in mid-March. The accumulated column loss between 1 January and 31 March was found to be 127 DU (36 %).  相似文献   

14.
基于球载式下投北斗探空仪测风观测试验,建立了针对下投式的测风试验评估方法.试验结果表明上升段北斗测风的准确度接近RS92探空仪的探测准确度要求,两者一致性较好;下降段RS92测风误差基本上与上升段的属于同一量级水平,下降初期测风数据在使用时需要做预处理或者有效控制;下降段BD探空仪测风误差与下降段RS92的基本相当,除了球炸初期外,基本上接近WMO的测量要求,此外初期的急速下降对导航定位测风提出了更高的技术要求.整体而言,球载式下投探空观测在时间上可以实现对原有的1次探空进行加密,在空间上可以增加1个区域的探测,并为对现有探空站网分布进行合理优化提供依据,具有良好的应用前景.  相似文献   

15.
In this paper we present first-time measurements of ozone profiles from a high altitude station in Quito, Ecuador (0.19°S, 78.4°W, and 2391 masl) taken from June 2014 to September 2015. We interpret ozone observations in the troposphere, tropopause, and stratosphere through a zonal comparison with data from stations in the Atlantic and Pacific (Natal and San Cristobal from the SHADOZ network). Tropospheric ozone concentrations above the Andes are lower than ozone over San Cristobal and Natal for similar time periods. Ozone variability and pollution layers are also reduced in the troposphere above the Andes. We explain these differences in terms of reduced contributions from the boundary layer and from horizontal transport. In the tropical tropopause layer, ozone is well-mixed up to near the cold point tropopause level. In this regard, our profiles do not show constraints to deep mixing above 14 km, as has been consistently observed at other tropical stations. Total column ozone and stratospheric column ozone are comparable among the three sites. However, the contribution of tropospheric column ozone to total column ozone is significantly lower above the Andes. Our comparisons provide a connection between observations from tropical stations in equatorial South America separated by the wide continental mass. Identified differences in ozone throughout the atmospheric column demonstrate the global benefit of having an ozone sounding station at the equatorial Andes in support of global monitoring networks.  相似文献   

16.
During winter 1982/83 and in early 1985, abnormal ozone deficiencies in the stratosphere were recorded at northern midlatitude stations. Ozone variations measured by ozonesondes at Hohenpeissenberg are analysed with respect to dynamic transport variations related to the quasibiennial oscillation (QBO). After the elimination of seasonal fluctuations, long-term trends and average QBO related variations, ozone time series are compared to particle surface area densities derived from lidar measurements of the stratospheric aerosol layer at Garmisch-Partenkirchen. The two stations are only 37 km apart. The analysis reveals that the 1985 ozone minimum is a transport effect, as well as most of the 1982/83 minimum. But at 17 to 20 km in 1982/83, 30 to 40% of the ozone deficiency is most probably related to the aerosol perturbation of the lower stratosphere following the April 1982 eruption of the Mexican volcano El Chichón.  相似文献   

17.
A new lightweight in situ instrument designed to measure ClO was flown on a balloon launched into the arctic vortex at dawn on February 3, 1995 at Kiruna, Sweden during the Second European Stratospheric Arctic and Mid-latitude Experiment (SESAME), together with instruments to measure ozone and long-lived tracers. Observations on ascent and descent at different solar zenith angles are compared to results from Lagrangian and box model calculations that assume the airmasses at similar potential temperatures had comparable photochemical histories. Between 20 and 22 km, in a region where ClO was significantly enhanced, a model constrained by currently recommended rate parameters significantly underestimates the abundances of ClO that were observed on ascent at high solar zenith angles, whereas the agreement is much better if a smaller ClO-Cl2O2 equilibrium constant, one inferred from previous ER-2 aircraft observations of ClO in the Arctic during nighttime, is assumed. On ascent, ClO is additionally enhanced in a narrow region between 20 and 21 km. We believe the most plausible explanation for this feature is rapid photolysis of OClO produced by the slow bimolecular reaction ClO + ClO over the 48 hours prior to the observations when the airmass was warmed to 225 K by adiabatic compression while in polar darkness. These results suggest that under special circumstances, OClO can be produced by a reaction other than one involving BrO, and, hence, OClO is not necessarily a universal proxy for BrO abundances in the perturbed polar vortex.  相似文献   

18.
The review is compiled based on the results of the operational of the Total Ozone (TO) Monitoring System in the CIS and Baltic countries, functioning in the operational regime at the Central Aerological Observatory (CAO). Basic TO observational data for each month of the fourth quarter of 2007 and for the year as a whole are summarized. Long-term TO changes at Russian stations are compared with similar changes at two foreign stations in the temperate latitudes of the Northern Hemisphere. Data on the spring Antarctic ozone anomaly of 2007 are considered. Results of regular observations of surface ozone concentration in the Moscow region are also presented.  相似文献   

19.
《大气与海洋》2013,51(4):325-338
Abstract

A portable ground‐based instrument has been constructed for the automated measurement of vertical column abundances of a number of gases pertinent to stratospheric ozone chemistry. The instrumentation is described in this paper and results are presented from the first set of field measurements, made during the Middle Atmosphere Nitrogen TRend Assessment (MANTRA) 1998 field campaign at Vanscoy, Saskatchewan, Canada. Zenith‐sky spectra in the near ultraviolet and visible wavelength regions were recorded for a period of seven days, prior to and following the launch of the MANTRA balloon on 24 August 1998. The spectra were then analysed using the differential optical absorption spectroscopy (DOAS) technique in conjunction with a radiative transfer model to determine vertical column amounts of ozone and NO2. Ozone measurements compared favourably with concurrent observations by ozonesondes, a Brewer spectrophotometer, and satellite instruments. Vertical NO2 columns were in broad agreement with those determined by the Global Ozone Monitoring Experiment (GOME) satellite instrument.  相似文献   

20.
Winter-spring precipitation in southern China tends to be higher (lower) than normal in El Niño (La Niña) years during 1953–1973. The relationship between the southern China winter-spring precipitation and El Niño-Southern Oscillation (ENSO) is weakened during 1974–1994. During 1953–1973, above-normal southern China rainfall corresponds to warmer sea surface temperature (SST) in the equatorial central Pacific. There are two anomalous vertical circulations with ascent over the equatorial central Pacific and ascent over southern China and a common branch of descent over the western North Pacific that is accompanied by an anomalous lower-level anticyclone. During 1974–1994, above-normal southern China rainfall corresponds to warmer SST in eastern South Indian Ocean and cooler SST in western South Indian Ocean. Two anomalous vertical circulations act to link southern China rainfall and eastern South Indian Ocean SST anomalies, with ascent over eastern South Indian Ocean and southern China and a common branch of descent over the western North Pacific. Present analysis shows that South Indian Ocean SST anomalies can contribute to southern China winter-spring precipitation variability independently. The observed change in the relationship between southern China winter-spring rainfall and ENSO is likely related to the increased SST variability in eastern South Indian Ocean and the modulation of the Pacific decadal oscillation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号