首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
《岩土力学》2017,(7):2015-2021
基岩断层错动引起上覆土体变形,互层胶结土体中断层破裂机制认识不足,隐伏裂缝影响规律掌握不明确。基于4个离心机试验,针对黏土与砂土构成的9层互层土,对比土体胶结特性和隐伏裂缝上断点埋深影响。试验结果表明,正断层错动影响下,互层非胶结土体受剪切作用发生变形破坏,在断层上方形成一倒梯形分布的不均匀沉降区,并形成集中剪切带。当不均匀沉降传至地表时,顶层非饱和黏土层形成地表张拉破裂。而互层胶结土则观测到受弯变形破坏,从而产生剪切破裂和张拉破裂。其中,地表张拉破裂的深度远大于互层非胶结土体的观测结果。互层胶结土中,随着隐伏裂缝上断点埋深的增加,由上断点扩展形成破裂的倾角随之增加,地表破裂向上盘一侧偏移。  相似文献   

2.
地震中发震断层诱发桩基失效,导致上部结构破坏甚至坍塌,相关破坏机制和避让距离缺乏系统研究。通过离心机试验和数值模拟,针对基岩正断层活动诱发上覆砂土中群桩基础的静力破坏展开研究,考察不同群桩断层相对位置下群桩的破坏特征。试验与计算结果均表明,当群桩跨越断层时,正断层活动使群桩向上盘一侧倾斜,并使基桩弯向上盘一侧。基桩桩顶荷载的重分布进一步使基桩形成受拉和受压两种破坏模式。数值参数分析表明,在不同桩位上,群桩的变形响应可划分为5个特征区域。对于埋深为20.0 m的基岩正断层,群桩在上盘和下盘一侧的安全避让距离分别为23.5 m和15.9 m,其中下盘一侧离开断层7.9 m至上盘一侧离开断层4.1 m的区域需要进行重点避让。  相似文献   

3.
地震中基岩走滑断层活动引起跨断层地下结构物破坏,上覆土层的非一致响应机制尚不明确,隐伏裂缝影响规律认识不足。基于可模拟走滑断层活动的层状剪切箱,针对黏土地层展开两个离心机振动台试验,对比上覆土体中隐伏裂缝的影响。试验结果表明,当地层中不存在隐伏裂缝时,基岩走滑断层错动对两盘地层的非一致振动的影响不显著。当地层中存在隐伏裂缝,错动盘一侧土体的振动加速度幅值随振动循环次数的增加逐渐减小,固定盘和错动盘两侧土体出现非一致振动响应,固定盘一侧土体产生的超静孔压大于错动盘一侧。隐伏裂缝对土体非一致振动响应的影响范围受限于其在地层中的分布范围,探明隐伏裂缝上断点的埋深具有重要工程意义。  相似文献   

4.
《岩土力学》2017,(Z1):189-194
采用土工离心机试验,研究正断层和逆断层错动引起上覆饱和黏土层在20步连续断层错动作用下的变形特性以及裂缝扩展的规律。研究结果显示,正断层错动后地表呈现多条且平行断层面的张拉裂缝,随着错动量的增大,正断层破裂逐渐偏离基岩断层的错动方向,偏向上盘一侧,裂缝逐渐向上盘的方向开裂,裂缝主要发生在断层延长线附近;逆断层错动后地表裂缝均分布在上盘,而且离断层尖端延长线较远,产生的裂缝较细、数量较少,随着断层错动量的增大,地表位移增大,靠近断层下盘一侧的地表受断层错动影响较小,位于断层上盘一侧的地表则随着断层错动显著移动;随着断层错动量的增大,最大地表坡度随之增大,正断层引起的最大坡度的位置逐渐向上盘方向移动,逆断层引起的最大坡度的位置逐渐向下盘方向移动,逆断层的影响范围比正断层的影响范围更广。  相似文献   

5.
骆冠勇  蔡奇鹏  吴宏伟 《岩土力学》2012,33(10):2985-2990
地震断层错动会引起上覆土层变形,从而造成断层附近的建筑结构、管线产生附加的变形和内力引起破坏。通过一个土工离心机试验分析上覆饱和黏土层在4步连续断层错动作用下的静力响应行为。着重分析断层错动引起的地层变形的范围、不均匀沉降区的分布特点、剪切裂缝在土层传播路径及地表开裂的位置等工程上重点关注的问题。得到以下几点认识:(1) 基岩断层错动引起的地层变形范围基本上不受基岩错动量大小的影响。(2) 断层错动引起地层的不均匀沉降区基本呈三角形分布,其地表宽度约为1倍左右的土层厚度。(3) 基岩错动引起的主剪切裂缝基本沿竖直方向向上传播,其传播距离取决于基岩错动量及土体的破坏应变。(4) 基岩断层错动在主剪区的下盘一侧边缘会产生张拉裂缝,且产生张拉裂缝所需基岩错动量远小于产生剪切裂缝所需的错动量。  相似文献   

6.
孙飞  张志强  易志伟 《岩土力学》2019,(8):3037-3044,3053
以乌鲁木齐市轨道交通1号线地铁区间隧道穿越九家湾断层为工程依托,开展地铁隧道分段式衬砌结构穿越倾角60°正断层的大型剪切错动模型试验,对断层错动模拟过程中的隧道结构变形、应变分布特征、围岩压力、开裂形态等关键力学特征进行监测分析,获得了正断层黏滑错动下的隧道结构响应规律。研究结果表明:(1)正断层黏滑错动影响下,断层面处的隧道拱脚处于压剪状态,断层面附近的上盘仰拱及下盘拱顶处于纵断面内的受拉状态,断层面两侧较大范围内的隧道仰拱内侧及墙脚外侧处于横断面内的大偏心受力状态;(2)断层错动后,隧道开裂破坏形态主要包括斜裂缝、纵向裂缝及环向裂缝;(3)正断层黏滑错动达到7.0cm(相当于实际错动量1.75m)后,上盘隧道结构的破坏范围为4.2D(D为隧道跨度),下盘破坏范围为2.4D,上盘破坏范围明显大于下盘。  相似文献   

7.
陡倾断层上下盘开挖引起地表变形的数值模拟分析   总被引:1,自引:0,他引:1  
考虑地下开挖区与断层相对位置关系,采用简化数值模型对陡倾断层上下盘开挖引起的地表变形特征进行了数值模拟。结果表明,当断层位于地下开挖引起地表变形的压缩区且开挖区位于下盘时,地表出现不连续变形的可能性小;当断层位于地下开挖引起地表变形的压缩区且开挖区位于上盘时,随下向开挖进行地表断层处裂缝有减小趋势;而当断层位于地下开挖引起的地表变形拉张区时,断层出露处水平拉张明显,表现为拉张裂缝,随下向开挖深度增加、规模增大,不论开挖区位于上盘还是下盘,极可能导致地表出现正断层式的错动.  相似文献   

8.
黄辉 《工程地质学报》2016,24(6):1255-1261
基岩逆断层错动引起上覆土体变形会导致地表及地下建筑的破坏,相应的变形预测模型仍较为缺乏,相关因素的影响规律尚未掌握。本文通过补余误差方程来表征逆断层错动引起的上覆土体变形,建立可预测不排水条件下上覆土体的变形理论计算模型,并通过离心机实验数据、数值模拟数据加以验证。对比分析结果表明,补余误差方程能表征基岩逆断层错动所引起的地表及地表以下土体变形。参数分析结果表明:基岩错动量的幅值对地表不均匀隆起区域范围的影响并不显著;形状参数的增加会使得地表不均匀隆起区域趋向集中;断层倾角的增加会使得地表不均匀隆起区域向断层上盘一侧偏移。  相似文献   

9.
针对地表下隧道周围土体变形的观测困难,用熔融石英和溴化钙溶液配置透明土,提出基于透明土的盾构开挖面失稳试验研究方案,获得隧道前方纵断面土体位移矢量、沉降槽曲线和破坏模式等。试验结果表明,隧道开挖面失稳后土体变形以垂直位移为主,浅埋时土体破坏呈现“楔”形,破坏面延伸至地表,埋深增加时扰动范围向开挖面变窄,深埋时出现压力拱,扰动体呈现为筒仓形;隧道纵断面内沉降槽呈现为Weibull分布,最大沉降发生在隧道开挖面前方约(0.3~0.5)D(D为隧道半径)的拱顶处,变形主要发生在隧道开挖面前方的拱顶以上,浅埋时沉降槽从地表往下向深而窄变化,深埋时沉降槽宽度接近相同,从地表往下逐渐变深。  相似文献   

10.
震害调研表明,活动性断裂带区域的隧道灾害最为严重。针对错动作用下穿越活动性断裂带隧道的纵向响应进行了研究,推导了隧道纵向力学响应的解析解并进行了验证。考虑断裂破碎带围岩力学性质较差且处于错动变形的主要影响区,将隧道沿纵向进行分区,包括错动影响区、过渡影响区和非影响区。采用Pasternak双参数弹性地基梁,假定不同分区的地基参数和计算模式不同,建立了满足变形和内力连续的隧道纵向力学解析模型并进行了求解。解析计算结果与数值模拟结果、室内试验数据基本一致,验证了解析解的正确性。结果表明:错动作用下,活动性断裂带区域的隧道内力和变形发生了显著变化;隧道纵向挠曲变形与错动方向一致,但在断裂带与上下盘交界区域发生了反向的挠曲;在正断层错动下,纵向弯矩在断裂带与上下盘交界区域达到最大值,且上、下盘区域的隧道拱顶分别出现受拉和受压区域;断裂带区域内的剪力远大于其他区域,且受到较大弯矩,隧道结构易发生破坏。上述计算结果与实际震害调研结果相一致,表明了本文提出的解析计算方法可用于活动性断裂带错动下的隧道纵向响应分析。最后,针对地基系数和断裂带宽度两个关键参数进行了敏感性分析,得到了有益规律,可为该类区域的隧道设计和施工提供技术支撑。  相似文献   

11.
震害调研表明,活动性断裂带区域的隧道灾害最为严重。针对错动作用下穿越活动性断裂带隧道的纵向响应进行了研究,推导了隧道纵向力学响应的解析解并进行了验证。考虑断裂破碎带围岩力学性质较差且处于错动变形的主要影响区,将隧道沿纵向进行分区,包括错动影响区、过渡影响区和非影响区。采用Pasternak双参数弹性地基梁,假定不同分区的地基参数和计算模式不同,建立了满足变形和内力连续的隧道纵向力学解析模型并进行了求解。解析计算结果与数值模拟结果、室内试验数据基本一致,验证了解析解的正确性。结果表明:错动作用下,活动性断裂带区域的隧道内力和变形发生了显著变化;隧道纵向挠曲变形与错动方向一致,但在断裂带与上下盘交界区域发生了反向的挠曲;在正断层错动下,纵向弯矩在断裂带与上下盘交界区域达到最大值,且上、下盘区域的隧道拱顶分别出现受拉和受压区域;断裂带区域内的剪力远大于其他区域,且受到较大弯矩,隧道结构易发生破坏。上述计算结果与实际震害调研结果相一致,表明了本文提出的解析计算方法可用于活动性断裂带错动下的隧道纵向响应分析。最后,针对地基系数和断裂带宽度两个关键参数进行了敏感性分析,得到了有益规律,可为该类区域的隧道设计和施工提供技术支撑。  相似文献   

12.
震害调研表明,活动性断裂带区域的隧道灾害最为严重。针对错动作用下穿越活动性断裂带隧道的纵向响应进行了研究,推导了隧道纵向力学响应的解析解并进行了验证。考虑断裂破碎带围岩力学性质较差且处于错动变形的主要影响区,将隧道沿纵向进行分区,包括错动影响区、过渡影响区和非影响区。采用Pasternak双参数弹性地基梁,假定不同分区的地基参数和计算模式不同,建立了满足变形和内力连续的隧道纵向力学解析模型并进行了求解。解析计算结果与数值模拟结果、室内试验数据基本一致,验证了解析解的正确性。结果表明:错动作用下,活动性断裂带区域的隧道内力和变形发生了显著变化;隧道纵向挠曲变形与错动方向一致,但在断裂带与上下盘交界区域发生了反向的挠曲;在正断层错动下,纵向弯矩在断裂带与上下盘交界区域达到最大值,且上、下盘区域的隧道拱顶分别出现受拉和受压区域;断裂带区域内的剪力远大于其他区域,且受到较大弯矩,隧道结构易发生破坏。上述计算结果与实际调研结果相一致,表明了提出的解析计算方法可用于活动性断裂带错动下的隧道纵向响应分析。最后,针对地基系数和断裂带宽度两个关键参数进行了敏感性分析,得到了有益规律,可为该类区域的隧道设计和施工提供技术支撑。  相似文献   

13.
以西安地铁临潼线穿越骊山山前断裂为研究背景,采用数值模拟方法,通过建立地铁隧道-断裂-地层三维有限元模型,研究了骊山山前断裂错动作用下隧道结构的变形受力特征,以此揭示了骊山山前断裂错动作用对西安地铁临潼线的影响机制以及重点设防位置,确定了地铁临潼线的设防范围,提出了相应防治建议措施。研究结果表明:断裂错动作用造成地铁隧道沿纵向发生弯曲变形,大致可分为3个变形区域:下盘稳定区、剪切拉张区和整体沉降区。断裂附近地层竖向应力和隧道拱底接触压力均表现为上盘减小而下盘增大,而隧道拱顶接触压力在上盘增大下盘减小。同时,沿纵向隧道顶部结构在上盘受压而下盘受拉,底部结构受力刚好相反,在上盘受拉下盘受压;隧道受剪区范围随断裂位错量变化基本保持不变,且最大值均出现在与断裂相交位置处。最后,综合确定了西安地铁临潼线跨越骊山山前断裂的纵向设防长度至少为80 m,并给出了跨断裂西安地铁临潼线的防治措施。研究结果可为西安地铁临潼线跨越骊山山前断裂带设计及其病害防治提供科学参考。  相似文献   

14.
沁水盆地长治区块现处于开发初期,煤层气资源条件较好,产能潜力大。依据现有地质资料和测试数据,对该区块煤层气赋存特征及控气因素进行了分析,认为区内煤储层吸附、解吸能力强,吸附时间短,但储层渗透率低。区块内含气量自东北到西南逐渐降低,主要受控于埋深、顶板厚度和地质构造条件,表现为:随埋深和顶板泥岩厚度的增加含气量降低;正断层附近煤层含气量随远离断层面而升高,同一断层上盘较下盘更利于煤层气封存,向斜轴部含气量高于翼部,背斜构造则反之。  相似文献   

15.
黔南地区古生代正断层对构造特征的制约   总被引:2,自引:1,他引:1  
黔南地区发育东西向的古生代正断层以及南北向的中、新生代逆冲断层和褶皱。通过对地层、褶皱和断层的平面展布、野外地质调查以及地震剖面的解释,结合雪峰隆起的逆冲推覆特征,研究黔南地区古生代正断层对构造特征的制约作用。研究结果表明东西向的古生代正断层在中、新生代的构造变形过程中起构造转换带的作用。通过建立区内构造转换带的几何学模型,对地震线上的构造变形特征进行了解释。在构造转换带(正断层)附近,断层上盘逆冲推覆不明显;在远离断层处,逆冲断层和与断层相关的褶皱发育。随着距离断层面越来越远,构造转换带(正断层)下盘地层的逆冲推覆特征逐渐消失。  相似文献   

16.
断层错动不仅可以引起地震灾害,而且带来的地层永久性变形,对结构物特别是线性构造物,如地下管线,隧道等,造成很大影响,因此,研究断层破坏在上覆土层中传播规律是十分必要的。本文依据正断层砂箱模型试验,对断层在砂土中传播模式,断层在地表的露头位置,断层垂直位移与土体厚度关系等内容进行了分析,并认为:(1)砂土中正断层破裂面不唯一,出现分叉; (2)传至地表所需的断层垂直位移与倾角无关; (3)正断层传播形成三角剪切带,其宽度随断层倾角减小而增大。  相似文献   

17.
不同埋深的软硬岩层叠置复合地层变形破坏形式复杂而使得软岩大变形和硬岩岩爆位置相关关系不够明确。在拉张盆地中自重应力为主,侧压系数一般较小且多数在1.0以内。本文以在水平和铅垂叠置复合地层中TBM开挖圆形断面隧道为例,采用有限差分程序FLAC3D对拉张盆地中不同埋深、不同叠置型式复合地层中TBM开挖后的三维弹塑性位移变形、主应力和塑性破坏分布变化特征展开数值模拟研究。模拟结果表明,围岩变形主要发生在软岩层地层中,埋深超过800 m后沿隧道轴向软岩大变形藕节状分段开始显现;随埋深增加,硬岩稳定性变差,顶拱位移增加尤其明显;随埋深增加,软岩和硬岩地层之间主应力差异变小,硬岩中储能明显;埋深越大塑性区分布范围越大;埋深较小时岩层以拉张破坏为主,埋深较大时以剪切破坏为主,两种状态的转换埋深(临界深度)约为800 m。由此对拉张盆地中深埋界限值给予了理论验证。  相似文献   

18.
犁式正断层是在局部或区域张应力体制下形成,产生于伸展体制下有韧性岩石垫底的脆性岩石中。犁式正断层在平面上呈弯曲状,断层两侧发育次级断层,具分支复合特征;在剖面上,随深度增加,断层倾角逐渐变缓,并且形成分支产状较陡的次级断层,断距逐渐变大。黔东松桃西溪堡大型锰矿床发育的F1断层为犁式正断层,其发生伸展作用的时间应与早白垩世区域挤压构造体制向伸展构造体制转换的时间一致。整个F1断层及其分支断层造成含锰岩系呈阶梯状下降拉伸,造成含锰岩系的不连续,越往深部,断层滑脱面越趋于平缓,拉空带宽度愈加增加。该断层及其次级断层将含锰岩系破坏并断切为几个部分,影响了含锰岩系的连续性,形成矿体-拉空带-矿体这种空间组合形态。F1断层上盘的下降,造成了上盘含锰岩系的埋深加大。因此,在找矿预测中,应充分考虑断层断距差异,合理圈出拉空带,从而避免在探矿过程中打到拉空带。  相似文献   

19.
汪成兵 《岩土力学》2012,33(1):103-108
采用模型试验与离散元模拟的方法,对均质岩体中隧道开挖后围岩的变形破坏过程进行了研究,并对围岩变形破坏过程中围岩应力及地表位移的变化规律进行了分析,模型试验结果与数值模拟结果取得了较好的一致性。研究结果表明:隧道开挖后,拱顶处围岩变形明显并出现裂缝,围岩破坏从拱顶开始,进而呈渐进式向上发展,最终形成稳定的塌落拱;开挖后,隧道围岩径向应力减小,隧道周边一定范围内围岩切向应力减小,且随隧道变形破坏的发展,围岩切向应力减小的区域逐渐扩大;隧道塌方后,拱底垂直应力增加,开挖结束至塌方开始期间地表位移增量最大,塌方期间地表位移增量最小。  相似文献   

20.
针对不同埋深下隧道表现出不同震害的特点,对地震响应振动台模型试验进行研究。首先进行了试验方案设计及试验模型的相似比设计,然后对不同地震波类型、地震强度及不同埋深下的隧道依次进行了振动台模型试验。试验结果表明:地震作用下,隧道衬砌应力在隧道埋深较浅时最大,达到一定埋深(约40 m)时,隧道衬砌应力明显减小,之后,隧道衬砌应力随埋深的变化不明显;隧道衬砌应力随埋深的变化规律在不同的地震波类型、不同的地震加速度峰值下相似;不同深度土层的加速度放大系数随着埋深的减小逐渐增大。通过对试验后隧道周边土体观测可知,浅埋隧道周边土体的裂缝多于深埋隧道。试验验证了地震灾害调查结果,为隧道抗震设计提供依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号