首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
针对射电天文抗干扰技术对于射电天文观测设备灵敏度的影响,分析了评估自适应波束形成技术对阵列接收系统的噪声温度影响.首先通过噪声信号模型,获取了影响系统噪声温度变化的参数,并在此基础上研究了天线增益、接收机增益和耦合性等系统参数的不确定性对于噪声温度的影响,最后利用仿真实验分析了理想系统条件下当前主要的自适应波束形成算法对于系统噪声温度的影响.结果表明基于自适应波束形成的抗干扰方法在天文信号源和干扰信号源重合的情况下已不再适用.  相似文献   

2.
射电天文已成为人类研究宇宙的重要途径。但随着人类生产、生活的发展,射频干扰信号对射电天文观测的影响越来越严重,观测数据的好坏关系到科学成果的质量甚至结论的真伪。目前广泛采用基于阈值判断射频干扰,对干扰信号直接舍弃部分观测数据的方法。此类方法存在阈值确定困难、观测带宽和时间被缩减等问题。针对脉冲星观测射电信号中,各干扰信号及射电信号统计独立以及呈现出的非高斯性,利用独立成分分析对混合信号进行分解,并根据观测信号中脉冲星信号和干扰信号的分布特点识别脉冲星信号,实现干扰信号消除。使用该方法对云南天文台40 m射电望远镜接收到的脉冲星观测信号进行独立成分分析,分解出独立的射频干扰信号和脉冲星信号,消除射频干扰信号。独立成分分析法在干扰信号消除、射电信号保留及信噪比方面均取得良好效果。  相似文献   

3.
在射电天文观测中,射频干扰(Radio Frequency Interference, RFI)会以多种形式混入望远镜接收系统,给观测带来误判或者降低观测信噪比.近年来国内国际射电天文快速发展,国内国际大型射电望远镜和阵列先后建设,观测灵敏度大为提高,射频干扰的影响尤为突出.随着科技发展和人类活动的加剧,射频干扰日益严重且不可逆转.提出利用2维离散小波变换的方法分析射电天文观测的数据,对望远镜系统输出的时间频率序列进行小波变换,根据小波系数分离出原始信号中各分量,每个分量统计得到相应的阈值,将各分量与阈值相比较识别干扰成分并标记去除.利用该方法对实际观测数据进行了处理,结果表明该方法能够很好地标记并消减干扰信号,且提高了观测的信噪比.  相似文献   

4.
射电天文信号非常微弱,电磁环境对射电望远镜观测至关重要,通常可以利用地形、建立无线电宁静区、进行电磁屏蔽与防护等手段来减小电磁干扰.然而,仍有一些干扰难以屏蔽.故提出了一种基于自适应滤波的干扰消除方法,可用于复杂噪声环境中天文信号的提取.该方法借助自适应横向滤波器,采用最小均方(Least Mean Square, LMS)误差算法,以系统误差和收敛性为评判标准,通过改变步长与阶数对滤波效果进行优化,仿真结果显示该滤波器能在保证算法收敛的前提下有效提取信号.为了检验该算法的有效性,选取了新疆天文台南山26 m射电望远镜和Parkes 64 m射电望远镜记录的观测数据,采用设计的滤波器分别对不同的实测数据进行测试,验证了该滤波器的有效性.理论分析与实验结果一致表明该方法能有效消除天文观测中的干扰信号,具有一定的实用性.  相似文献   

5.
嫦娥四号着陆器将搭载低频射电频谱仪在月球背面进行低频射电天文观测,低频射电频谱仪的观测波段为0.1~40 MHz。根据着陆器在中国空间技术研究院的微波暗室进行的电磁兼容性试验结果,着陆器平台在该频段内自身存在非常强的噪声,其强度甚至淹没大部分来自太阳爆发的信号,难以探测有效信号,实现预期的科学目标。通过模拟仿真分析谱减法、维纳滤波及自适应滤波3种方法对着陆器噪声消除的效果,从而选择更为有效的噪声消除方法,为低频射电频谱仪在轨探测任务的数据处理提供依据。  相似文献   

6.
射电天文观测数据受无线电的影响日益严重。因此,射频干扰(Radio Frequency Interference,RFI)消除已经成为信号处理流程中不可或缺的一步。考虑了自适应阵列信号处理中的移动干扰源的消除问题,对于阵列天线望远镜而言,射频干扰消除可以通过采样协方差矩阵在空域实施处理。在很多应用场景中,可得到的零点深度受限于协方差矩阵的估计误差,进而影响干扰子空间的估计精度。方法应用了一种多项式模型以跟踪阵列协方差矩阵随时间的变化,消除干扰子空间的估计误差,提高干扰消除性能。最后通过仿真对比了传统的子空间投影(Subspace Projection,SP)算法和基于多项式模型的子空间投影(Polynomialaugmented Subspace Projection,PSP)算法,仿真结果证明了所提方法的有效性。  相似文献   

7.
相控阵馈源(Phased array feeds, PAFs)接收机作为下一代微波接收机,为大口径射电天文望远镜的射电干扰(Radio Frequency Interference, RFI)缓解工作带来了新的解决方法. PAFs接收机对射电望远镜焦平面的电磁波进行空域采样,返回时域阵列信号,使用最小方差无失真响应(Minimum Variance Distortionless Response, MVDR)波束合成器可以自适应地识别RFI的方向,同时抑制RFI在输出信号中的功率,从而达到提升射电望远镜灵敏度的效果.仿真结果表明MVDR波束合成器对有源高能量的射电干扰有很强的识别能力和一定程度的缓解能力,同时,该波束合成器对各阵元信道中加性噪声累积引起的无源干扰有很强的抑制能力,因此, PAFs接收机的MVDR波束合成器可以增强日益复杂电磁波环境下射电望远镜的抗干扰能力.  相似文献   

8.
相控阵馈源(Phased array feeds, PAFs)接收机作为下一代微波接收机, 为大口径射电天文望远镜的射电干扰(Radio Frequency Interference, RFI)缓解工作带来了新的解决方法. PAFs接收机对射电望远镜焦平面的电磁波进行空域采样, 返回时域阵列信号, 使用最小方差无失真响应(Minimum Variance Distortionless Response, MVDR)波束合成器可以自适应地识别RFI的方向, 同时抑制RFI在输出信号中的功率, 从而达到提升射电望远镜灵敏度的效果. 仿真结果表明MVDR波束合成器对有源高能量的射电干扰有很强的识别能力和一定程度的缓解能力, 同时, 该波束合成器对各阵元信道中加性噪声累积引起的无源干扰有很强的抑制能力, 因此, PAFs接收机的MVDR波束合成器可以增强日益复杂电磁波环境下射电望远镜的抗干扰能力.  相似文献   

9.
本文针对太阳射电高时间分辨率观测研究中普遍关心的事件证认问题,分析了精细结构事件与干扰信号在“空域”和“频域”上的特征差异,在“10cm波段高时间分辨率太阳强度纹”上,采取了抗干扰和识别干扰的技术措施,极大的抑制了雷达干扰,提高了事件的置信度。在缺乏不同地域精细结构同时性事件情况下,本文介绍的措施,对事件的自证认不失为一种有效的手段。  相似文献   

10.
本文对针太阳射电时间分辨率观测研究中的普遍关心的事件证认问题,分析了精细构事件与干扰信号在“空域”上的特征差异,在“10cm波段高时间分辨率太阳强度纹”上,采取了抗干扰和识别干扰的技术措施,极大的抑制了雷达干扰,提高了事件的置信度。在缺乏同地域精细结构同时性事件情况下,本文介绍的措施,对事件的自证认不失为一种有效的手段。  相似文献   

11.
为了使天线系统接收和显示的信号更清晰,达到消除系统噪声和电磁干扰的目的,针对中国科学院新疆天文台南山观测基地对射电天文观测和深空探测(探月工程和火星探测)的特殊要求,利用Matlab/Simulink强大的数值计算与仿真功能实现了一种依据自适应方法滤除噪声的滤波器。首先选择脉冲星1910+0728和1913-0440的观测信号为滤波参考信号。在Matlab上通过编写M文件设计了滤波算法并有效滤除了噪声。然后运用Simulink进行建模仿真,通过不断改变系统阶数与步长找到了滤波效果最好的自适应滤波器,确定了其最优参数为8阶,迭代步长为0.005。实验表明在这种阶数和步长下,滤波器能在保证快速滤波的前提下有效地还原接收信号的轮廓,将偏差降到最小。仿真最终结果表明自适应滤波器滤波效果良好,实用性强,满足了射电天文观测和探月的需求。  相似文献   

12.
射电望远镜具有极高的系统灵敏度,且系统内、系统间及台址内电子设备众多,电磁环境复杂,科学合理地评估台址内电子设备辐射发射对射电天文观测的影响,对系统电磁兼容性设计、无线电管理、屏蔽改造等有重要的指导意义。浅析了射电望远镜系统灵敏度及射电天文领域仪器设备辐射发射相关评估标准;基于射电望远镜系统灵敏度及观测需求,计算了南山25 m射电望远镜馈源口面干扰电平限值,并给出了天线旁瓣增益的计算方法;提出一种基于干扰电平限值、旁瓣增益、干扰测量、路径衰减的电子设备电磁辐射评估方法,并针对南山25 m射电望远镜天线驱动电磁辐射进行了评估,给出了屏蔽需求。  相似文献   

13.
在射电天文观测中,天文信号十分微弱,在大部分情况下可以看成是噪声功率的微小增加,需要长的积分时间才能从噪声中显现,因此在进行射电天文数据采集时对采集系统的性能具有较高的要求.针对射电天文数据的特点,从噪声特性、频率特性和同步特性3方面给出了系统性能的衡量指标,围绕这些指标,分别研究了其测试方法,最后以某个实际射电天文数据采集系统为测试平台,进行了指标的测试.测试结果验证了所提指标的有效性和指标测试方法的合理性.  相似文献   

14.
射频干扰是射电天文观测设备无法回避的问题。国家天文台(内蒙古)明安图观测基地多台各具特色的射电观测设备、各类电磁辐射源及其传播路径共同组成了复杂的电磁环境。现有超宽带高分辨太阳射电成像观测设备——明安图射电频谱日像仪,以及即将建设的子午二期工程的太阳行星际监测系统,包括米波-十米波射电日像仪、行星际闪烁望远镜和超宽带射电频谱仪等,全部频率覆盖1 MHz~15 GHz,观测结果用于太阳物理、空间天气监测和预报的关键问题研究,也对电磁环境提出了更高要求。介绍了明安图观测基地的观测设备及其地理环境,给出了方位频率功率谱、立体方向图、时间频率功率谱等射频干扰的初步监测结果,讨论了射频干扰预防、消减及射频干扰自监测方案。  相似文献   

15.
来自飞行器的航空信号会严重干扰邻近频段的射电天文观测,有效地分析确定射电天文台址附近航空信号分布范围,能够为射电天文观测干扰源的查找及抗航空信号干扰策略提供重要支撑.介绍了航空信号的获取方法.根据航空信号位置信息估算了飞机到测站距离随时间的分布情况,评估了航空信号到测站的功率损耗.提出了一种基于最小二乘多项式拟合和聚类算法划定高峰时段航迹分布范围的方法.首先通过最小二乘多项式拟合,获得航迹样本点在时间上的分布趋势和高峰时段;其次,对高峰时段的航迹样本点进行聚类分析,得到各高峰时段样本点空间分布范围;最后,采用相同方法对验证数据样本点进行聚类分析,计算航迹分布在已划定区域范围内的概率,验证了方法的有效性.  相似文献   

16.
射电天文中,射频干扰问题多样而复杂,面对不同的射频干扰问题,针对不同的干扰机制,采取针对性的方法。从器件阶段消减射频干扰,可以预防射频干扰进入望远镜内部。介绍了德令哈毫米波望远镜9波束边带分离型超导接收机, 1个本振链路系统分配18路本振信号方案,针对本振链路中信号发生器的谐波信号引起的中频窄带干扰,设计了注入模拟谐波信号的测试方案,确认了干扰产生机制并得出谐波信号频率与干扰信号频率和功率的对应关系,分析并验证了谐波干扰的传输路径。为了消减谐波干扰,利用YIG滤波器可变频段的带通特性,在本振链路上滤除谐波信号,防止谐波信号耦合到接收机系统,完成了谐波干扰的消减。  相似文献   

17.
本文利用DFT象复原方法讨论了用单个小口径射电望远镜获得高空间分辨率图象观测的细节。包括天线方向图的实测和拟合,一维射电太阳象滤波函数的确定,噪声对复原精度和空间分辨率的影响。最后给出了三次试观测的复原结果。其中1987年7月1日的结果与Fleurs站干涉仪的观测结果十分相似。从所得的结果的细节估计达到了7角分的分辨率。附录部分给出了利用射电太阳一维扫描像求出射电天线等效口径和主瓣宽度的方法  相似文献   

18.
全球性卫星导航系统占用了L波段在1.1 GHz~1.6 GHz之间约150 M带宽,严重限制了射电天文在该频段的观测。将通信、雷达等领域的自适应滤波方法应用于消除"北斗二号"卫星信号给中性氢(HI)21 cm谱线观测带来的射频干扰(Radio Frequency Interference,RFI)。为了提高最小均方误差(Least Mean Square,LMS)自适应算法的性能,在对一类传统变步长最小均方误差算法研究的基础上,提出了步长与误差信号之间的一种新的函数关系,进一步改善了自适应滤波算法的性能。在相同收敛速度或者相同稳态误差的前提下,改进后的算法具有更小的稳态误差或者更快的收敛速度。计算机仿真实验结果与理论分析一致,验证了改进后的变步长自适应滤波算法在射电天文射频干扰消除中的性能优于传统算法。  相似文献   

19.
宽带频谱序列干扰信号识别与统计方法   总被引:1,自引:0,他引:1  
随着科学技术的不断进步,射电天文台站趋于自动化,各类电子设备的广泛使用使得射电天文台站的电磁环境变得尤为复杂,如何有效识别和统计复杂频谱中的干扰信号是当前射电天文台站亟需解决的问题,故提出一种宽带频谱序列干扰信号识别与统计方法.首先,对每组宽带频谱进行信噪分离、识别频谱中的干扰信号;然后,对第1组宽带频谱信号识别结果及信号特征建立模板库,后续每组频谱的信号识别结果与模板库中对应频率的信号进行相似性分析,根据相似性分析结果,统计信号次数,更新模板库;实现宽带频谱序列干扰信号的识别与统计.针对QTT (QiTai Radio Telescope)台站实测频谱,运用该方法进行干扰信号识别与统计,能够有效识别并标记频谱中的干扰信号,并统计干扰信号随时间、方向的变化趋势.  相似文献   

20.
太阳射电爆发是太阳耀斑和日冕物质抛射等爆发过程的重要表现形式,是卫星通信和导航系统、地面电网系统、人类生活环境的潜在影响因素之一。对太阳射电爆发的监测与研究不仅可以预报空间天气,还可以作为太阳物理的研究工具。介绍了基于LabVIEW平台设计开发的双通道高速太阳射电频谱观测系统,针对太阳射电爆发具有随机性和持续时间短、变化快的特点实现对太阳射电爆发的监测。系统采用高速信号采集卡以1.5 GS/s的速率进行信号采集,系统时间分辨率可达4 ms,频率分辨率达45.776 4 kHz。采集的信号经过快速傅里叶变换(Fast Fourier Transform, FFT)功率谱分析处理后输出显示其频谱图和瀑布图,得到太阳射电爆发的频率、强度以及持续时间等信息。观测数据利用文件传输协议(File Transfer Protocol, FTP)上传至服务器,实现存储资源的优化,观测数据的共享。该系统集成度高,可以应用于分析澄江抚仙湖观测基地11 m太阳射电望远镜输出的70~700 MHz信号。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号